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Abstract

Three notions of definability in multimodal logic are considered.
Two are analogous to the notions of explicit definability and implicit
definability introduced by Beth in the context of first-order logic. How-
ever, while by Beth’s theorem the two types of definability are equiv-
alent for first-order logic, such an equivalence does not hold for multi-
modal logics. A third notion of definability, reducibility, is introduced;
it is shown that in multimodal logics, explicit definability is equivalent
to the combination of implicit definability and reducibility. The three
notions of definability are characterized semantically using (modal) al-
gebras. The use of algebras, rather than frames, is shown to be neces-
sary for these characterizations.
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1 Introduction

In the context of logic, the notion of the definability of an entity, described
in broad strokes, refers to the expression or determination of that entity
in terms of other entities of the same type in the framework of a certain
logic. A simple example is the definition of conjunction in terms of negation
and disjunction in propositional calculus. Closer to this paper is the case of
the definition of the diamond operator in modal logics in terms of the box
operator by the formula ♦p↔ ¬�¬p.

Two notions of predicate definability, explicit and implicit definability,
were first formalized by Beth [1953] for first-order logic:

An n-ary predicate R is explicitly defined in a first-order logic Λ
if there is a formula R(x1, . . . , xn) ↔ ϕ in Λ such that ϕ does
not contain the predicate R.

The predicate R is implicitly defined in Λ if there do not exist two
models of Λ that have the same domain and agree on the meaning
of all predicates other than R, but disagree on the meaning of
R.

Beth’s theorem states that the predicate R is explicitly defined in Λ if and
only if it is implicitly defined in Λ.

In this paper, we study modal definability in the context of multimodal
logic, by considering when one modality is defined in terms of others. For
ease of exposition, we assume that all modal operators are unary.

The modality M is explicitly defined in a multimodal logic Λ if
there exists a formula Mp↔ δ in Λ such that M does not occur
in δ.

The modality M is implicitly defined in a multimodal logic Λ if
there do not exist two models of Λ that coincide except in the
interpretation of M .1

Just as in first-order logic, if a modality is explicitly defined in a modal
logic Λ, then it is implicitly defined in Λ. But the converse does not hold
for modal logic. An example of this is the multimodal logic of KD45-belief

1Implicit definability can be defined syntactically, both in first-order and multimodal
logics. By the completeness theorem, the syntactic version is equivalent to that above. In
Section 3, we actually define implicit definability syntactically.
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and S5-knowledge. As we show in [Halpern, Samet, and Segev 2008], in this
logic knowledge is implicitly defined but not explicitly defined. Henceforth,
we refer to this paper as “the companion paper”.2

We can understand the relationship between explicit and implicit de-
finability in multimodal logic by considering a third notion of definability.
Let Λ0 be the sublogic of Λ consisting of formulas that do not mention the
modality M .

The modality M is reducible to the other modalities in Λ if there
is a formula Mp ↔ δ such that M does not occur in δ and the
logic Λ0 + (Mp ↔ δ) generated by Λ0 and this definition of M
(a) includes Λ and (b) is a conservative extension of Λ0.

As we argue in the companion paper, reducibility comes closest to cap-
turing our intuitions when we say that knowledge is (or is not) definable
in terms of belief. The question we are asking is whether, for example, by
defining knowledge as true belief, that is, by adding Kp↔ p∧Bp to the logic
of belief, we can recover all the properties of knowledge of interest. If M is
explicitly defined in Λ, then Λ contains Λ0 + (Mp↔ δ). With reducibility,
the containment goes in the opposite direction.

When M is explicitly defined in Λ by the formula Mp ↔ δ, then M is
reducible to the other modalities in M by the same formula, and M is im-
plicitly defined in Λ. However, neither implicit definability nor reducibility
implies explicit definability. Our main result states that

The modality M is explicitly defined in Λ if and only if it is im-
plicitly defined in Λ and is reducible in Λ to the other modalities.

Reducibility can be defined in first-order languages analogously to the
definition for multimodal logics. It is easily seen to follow from explicit de-
finability. Thus, by Beth’s theorem, implicit definability implies reducibility.
However, in the context of modal logic, implicit definability and reducibility
are incomparable. In the companion paper, we examine the three notions
of definability in the context of logics of knowledge and belief. Among
other things, we show that in the logic of KD45-belief and S5-knowledge,
knowledge is implicitly defined but it is not reducible to belief; in the logic
of KD45-belief and S4-knowledge, knowledge is not implicitly defined but
is reducible to belief by defining knowledge as true belief (i.e., using the
formula Kp↔ p ∧Bp).

2We have included enough review in each paper to make them both self-contained.
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The fact that S5 knowledge is implicitly defined by KD45 belief implies
that there is a unique way to extend each frame for KD45 belief to a frame
for S5 knowledge. It may seem surprising that this is the case and yet S5
knowledge is not reducible to belief. We explain this apparent disconnect
between syntax and semantics by going beyond frames to (modal) algebras
[Blackburn et al. 2001; Kracht 1999]. Although each frame for KD45 be-
lief can be extended to a frame for S5 knowledge, we show that there is
an algebra for KD45 belief that cannot be extended to an algebra for S5
knowledge.

Algebras play a significant role in this paper. The three notions of defin-
ability we consider are all defined syntactically (that is, in terms of whether
formulas are in certain logics). We characterize each of them semantically,
using algebras. As we show, in a precise sense, the greater generality of
algebras is necessary for our characterizations.

The rest of the paper is organized as follows. In Section 2, we review the
relevant definitions of modal logic that we need for this paper. definability
that have been considered before in the context of modal logic. In Section 4,
we give semantic characterizations of our notions in terms of algebras. We
discuss the extent to which we can characterize our notions using frames;
this also allows us to relate definability in modal logic to definability in
first-order logic. Most proofs are relegated to the appendix.

2 Modal logic review: syntax, semantics, and ax-
ioms

In this section, we review the essentials of modal logic, including syntax, se-
mantics, and standard axiomatizations. The reader is encouraged to consult
a standard reference (e.g., [Blackburn et al. 2001; Kracht 1999]) for more
details.

2.1 Modal logics

Let P be a nonempty set of primitive propositions. Let M1, . . .Mn be modal
operators or modalities. Formulas are defined by induction. Each primitive
proposition is a formula. If ϕ and ψ are formulas then ¬ϕ, (ϕ → ψ), and
Miϕ for i = 1, . . . n, are also formulas.3 The propositional connectives ∨,
∧, ↔ are defined in terms of ¬ and → in the usual way; we take true to

3The modalities in this paper are unary. It is straightforward to extend our results to
modal operators of higher arity.
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be an abbreviation of p ∨ ¬p. The language L(M1, . . .Mn) is the set of all
formulas defined in this way.

For the purposes of this paper, we take a (modal) logic Λ to be any
collection of formulas in a language L(M1, . . . ,Mn) that (a) contains all
tautologies of propositional logic; (b) is closed under modus ponens, so that
if ϕ ∈ Λ and ϕ → ψ ∈ Λ, then ψ ∈ Λ; and (c) is closed under substitution,
so that if ϕ ∈ Λ, p is a primitive proposition, and ψ ∈ L(M1, . . . ,Mn),
then ϕ[p/ψ] ∈ Λ, where ϕ[p/ψ] is the formula that results by replacing all
occurrences of p in ϕ by ψ. A logic Λ is normal if, in addition, for each modal
operator Mi, Λ contains the axiom KMi , Mi(p→ q) → (Mip→Miq), and is
closed under generalization, so that if ϕ ∈ Λ, then so is Miϕ. In this paper,
we consider only normal modal logics. If Λ1 and Λ2 are two sets of formulas,
we denote by Λ1+Λ2 the smallest normal modal logic containing Λ1 and Λ2.
Even if Λ1 and Λ2 are themselves normal modal logics, Λ1 ∪Λ2 may not be;
for example, it may not be closed under the modus ponens. Thus, Λ1 + Λ2

will in general be a superset of Λ1∪Λ2. Note that if Λ is a normal logic and
L is a language (which might not contain Λ), then Λ ∩ L is a normal logic.

2.2 Frames and Kripke models

Perhaps the most common approach to giving semantics to modal logic
makes use of frames and Kripke models. We review this approach in this
section, and consider an alternative approach, using algebras and algebraic
models, in the next subsection.

A frame F for the language L(M1, . . . ,Mn) is a tuple (W,R1, . . . , Rn),
whereW is a nonempty set of possible worlds (worlds, for short), and for each
i = 1, . . . , n, Ri ⊆W ×W is a binary relation on W , called the accessibility
relation for the modality Mi. A Kripke model M based on the frame F is
a pair (F , V ) where V : P → 2W is a valuation of the primitive propositions
as subsets of W .

The function V is extended inductively to a meaning function [[·]]M on all
formulas. We omit the subscript M when it is clear from context. For each
primitive formula p, [[p]] = V (p). For all formulas ϕ and ψ, [[¬ϕ]] = ¬[[ϕ]],
where we abuse notation and use ¬ to denote set-theoretic complementation,
[[ϕ ∨ ψ]] = ([[ϕ]]) ∪ [[ψ]], and [[Miϕ]] = {x | Ri(x) ⊆ [[ϕ]]}, where Ri(x) = {y |
(x, y) ∈ Ri}.

We write (M, w) |= ϕ if w ∈ [[ϕ]]. When [[ϕ]] = W , we write M |= ϕ and
say that ϕ is valid in M. The formula ϕ is valid in a frame F if it is valid
in each of the models based on F . The set of formulas that are valid in a
frame F is called the theory of F , denoted Th(F). For a class S of frames,
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Th(S) is the set of formulas that are valid in each frame in S. A logic Λ is
sound for S if Λ ⊆ Th(S), and is complete for S if Λ ⊇ Th(S). A frame F
is said to be a Λ-frame if Λ ⊆ Th(F).

The canonical frame for Λ is defined on the set W that consists of all
maximally consistent sets of formulas in L. The set W is made a frame by
defining, for each modality Mi, a relation Ri such that (w,w′) ∈ Ri if, for all
formulas ϕ, ifMiϕ ∈ w then ϕ ∈ w′. The canonical model is the model based
on the canonical frame with the valuation V defined by V (p) = {w : p ∈ w}.
Every normal logic Λ is sound and complete with respect to its canonical
model, but may not be sound with respect to its canonical frame.

In the sequel, we consider the logic (KD45)B + (S5)K + {L1,L2} ⊆
L(B,K), where the modal operator B satisfies the axioms of KD45, K
satisfies the axioms of S5, and L1 and L2 are axioms that link K and B. To
make this paper self-contained, we list the relevant axioms here:

(DB) Bp→ ¬B¬p
(4B) Bp→ BBp
(5B) ¬Bp→ B¬Bp.
(4K) Kp→ KKp
(5K) ¬Kp→ K¬Kp
(TK) Kp→ p
(L1) Kp→ Bp
(L2) Bp→ KBp.

2.3 Algebras and algebraic models

We now consider a more general approach for giving semantics to modal
logics, using algebras and algebraic models, that goes back to Jónsson and
Tarski [1951, 1952]. As we shall see, syntactical notions of definability have
certain semantic equivalents that can be formulated in terms of algebras but
not in terms of frames.

A modal algebra (or algebra for short) A for the language L(M1, . . . ,Mn)
is a tuple

(B,∨,¬, 1,M1, . . . ,Mn),

where (B,∨,¬, 1) is a Boolean algebra, and for each i = 1, . . . , n, Mi is a
unary operator on B. An algebraic model M based on the algebra A is a
pair (A, V ), where V : P → B is a valuation of the primitive propositions
as elements of B. The function V is extended inductively to a meaning
function [[·]]M on all formulas: [[¬ϕ]]M = ¬[[ϕ]]M (where the second ¬ is the
operator in the Boolean algebra, not set complementation), [[ϕ ∨ ψ]]M =
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([[ϕ]])M∨ [[ψ]]M (where the second ∨ is the operator in the Boolean algebra),
and [[Miϕ]]M = Mi([[ϕ]]M). We again omit the subscript M if no confusion
results. A formula ϕ is valid in M if [[ϕ]]M = 1; it is valid in A if it is valid
in all algebraic models based on A. Soundness and completeness are defined
just as for Kripke models. We define Th(M) and Th(A) in the obvious way.
A is a Λ-algebra if Λ ⊆ Th(A); similarly, M is an algebraic model for Λ if
Λ ⊆ Th(M).

Each frame F = (W,R1, . . . , Rn) is associated in a natural way with the
algebra A = (2W ,∨,¬,W,M1, . . . ,Mn), where ∨ is union, ¬ is set-theoretic
complementation, and, for i = 1, . . . , n, the set operator Mi is defined by
taking

Mi(E) = {x | Ri(x) ⊆ E}

for E ⊆ W . Similarly, we associate with the Kripke model (F , V ) the
algebraic model (A, V ) with the same valuation function V . It is easy to see
that the meaning functions in both models coincide.

It is well known that there are algebras that are not associated with
frames. We demonstrate in the sequel that, as a consequence, the set of Λ-
frames may have a particular definability property that does not correspond
to a property of Λ. The definability properties of Λ-algebras, on the other
hand, correspond exactly to those of the logic Λ.

For a logic Λ in a language L, define an equivalence relation ≡Λ on
L by ϕ ≡Λ ψ iff ϕ ↔ ψ ∈ Λ. Consider the partition of Λ into equiv-
alence classes L/≡Λ. The equivalence class that contains the formula ϕ
is denoted |ϕ|Λ. The Lindenbaum-Tarski Λ-algebra is the Boolean algebra
(L/≡Λ,∨,¬, |true|Λ) where |ϕ|Λ ∨ |ψ|Λ = |(ϕ ∨ ψ)|Λ and ¬ |ϕ|Λ = |¬ϕ|Λ;
we leave it to the reader to check that these definitions are independent of
the choice of representative of the equivalence class, and so are well defined.
The canonical Λ-algebra AΛ is the modal algebra based on the Lindenbaum-
Tarski Λ-algebra where, for each i, Mi(|ϕ|Λ) = |Mi(ϕ)|Λ. It is easy to see
that since Λ is a normal logic, all the operators are well defined. The canon-
ical algebraic model for Λ is MΛ = (AΛ, VΛ), where VΛ(p) = |p|Λ. It is well
known that Λ is sound and complete with respect to the class of Λ-algebras,
with respect to {AΛ}, and with respect to {MΛ} [Blackburn et al. 2001;
Kracht 1999].

3 Three notions of definability

In this section we examine the three different notions of defining one modal-
ity in terms of others mentioned in the introduction.
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Let δ be a formula in L(M1, . . . ,Mn−1). The formula

(DMn) Mnp↔ δ

is called a definition of Mn (in terms of M1, . . . ,Mn−1). When the only
primitive proposition in δ is p we say that the definition is simple.

The formula DMn is the obvious analogue of the formula used in first-
order logic to define one predicate in terms of others. We also have an
obvious analogue of the notion of explicit definability in first-order logic.
Consider a logic Λ in the language L(M1, . . . ,Mn).

Explicit definability: Mn is explicitly defined in Λ if there is
a definition DMn of Mn such that DMn ∈ Λ.

In the context of first-order logic, an apparently weaker notion of defin-
ability called implicit definability has been studied. We define what seems to
be the appropriate analogue for modal logic. Let M ′

n be a modal operator
distinct from M1, . . . ,Mn, and consider the language L(M1, . . . ,Mn,M

′
n).

The logic Λ[Mn/M
′
n] is obtained by replacing all occurrences of Mn in for-

mulas in Λ by M ′
n.

Implicit definability: Mn is implicitly defined in Λ if Mnp↔
M ′

np ∈ Λ + Λ[Mn/M
′
n].

To simplify notation, we henceforth take L = L(M1, . . . ,Mn), L0 =
L(M1, . . . ,Mn−1), and Λ0 = Λ∩Λ0. With this notation, explicit definability
can be described by the inclusion Λ0 + DMn ⊆ Λ.

The notion of reducibility, which we introduce next, seems to capture
our intuition of defining knowledge in terms of belief better than the notion
of explicit definability. When we define knowledge as true, justified belief,
we do not expect this definition to follow from the logic that characterizes
knowledge. We expect just the opposite: that the desired properties of
knowledge follow from this definition when it is added to the logic of belief
and justification. We get this effect by reversing the inclusion in the above
description of explicit definability. Recall that a logic Λ in a language L is
a conservative extension of a logic Λ′ in a language L′ ⊆ L if Λ′ = Λ ∩ L′.

Reducibility: Mn is reducible to M1, . . . ,Mn−1 in Λ if there is
a definition DMn of Mn, such that Λ ⊆ Λ0+DMn, and Λ0+DMn

is a conservative extension of Λ0.
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The requirement that Λ0 +DMn be a conservative extension of Λ0 guar-
antees that when Λ is consistent, then Λ0 + DMn is also consistent. It also
enables us to consider only simple definitions of Mn, as we state next.

Proposition 3.1 If Mn is reducible to M1, . . . ,Mn−1 in Λ, then it is re-
ducible by a simple definition.

But the main reason to require that Λ0+DMn be a conservative extension
of Λ0 is to ensure that the definition DMn does not affect the operators
M1, . . . ,Mn−1. Without this requirement it is possible that the definition
“sneaks in” extra properties of the defining modalities as demonstrated in
the following example.

Example 3.2 Let Λ be the minimal normal logic in L. Obviously, Λ0 is the
minimal normal logic in L0. Let DMn be the formula Mnp↔ ¬M1(p∧¬p).
By the minimality of Λ, Λ ⊆ Λ0+DMn. By the generalization rule,Mntrue ∈
Λ0 +DMn, and therefore ¬M1(true∧¬true) ∈ Λ0 +DMn. But this formula
is not in Λ0. Thus, the smallest normal logic containing both DMn and Λ0

includes formulas in L0 not in Λ0.

We further discuss reducibility and some of its variants in Section 5 of the
companion paper [Halpern, Samet, and Segev 2008].

In first-order logic, Beth’s theorem [1953] states that implicit and explicit
definability coincide. When reducibility is defined for first-order logics, anal-
ogously to the definition for multimodal logic, then it can be shown to be
implied by the other two notions of definability. However, in the context of
modal logic, none of the statements above holds, as demonstrated by the
following proposition, which is proved in the companion paper.

Proposition 3.3

(a) Knowledge is neither explicitly nor implicitly defined in the logic (KD45)B+
(S4)K + {L1,L2}), but it is reducible to belief in this logic.

(b) Knowledge is neither explicitly defined nor reducible to belief in the
logic (KD45)B + (S5)K + {L1,L2}), but it is implicitly defined in this
logic.

The two parts of this proposition show that neither implicit definabil-
ity nor reducibility implies explicit definability, and that neither implicit
definability nor reducibility implies the other.

The following theorem describes the relations between the three notions
of definability.
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Theorem 3.4 The modal operator Mn is explicitly defined in Λ if and only
if Mn is implicitly defined and reducible to M1, . . . ,Mn−1 in Λ.

We provide a direct proof of Theorem 3.4 in the appendix. We also give
an alternative proof later which uses the semantic characterizations of the
three notions of definability given in the next section.

Maksimova [1992a, 1992b] studies implicit and explicit definability of
primitive propositions (rather than modal operators) in unimodal logics.
She shows that implicit and explicit definability of primitive propositions are
equivalent for large classes of modal logics (in particular, for those containing
K4). Our results show that this equivalence does not hold for our notions
of implicit and explicit definability. (See Kracht [1999] for a discussion of
definability of primitive propositions in modal logic.)

Lenzen [1979] also studied definability of one modality in terms of other
modalities. He requires that the definition DMn be simple (which in our
framework follows from reducibility in Proposition 3.1), and calls the logic
Λ + DMn (that is, the underlying logic extended by a definition DMn) a
definitional extension of Λ. He calls two logics Λ ⊆ L(M1, . . . ,Mn−1,Mn)
and Λ′ ⊆ L(M1, . . . ,Mn−1,M

′
n) synonymous when there is a third logic

Λ∗ ∈ L(M1, . . . ,Mn−1,Mn,M
′
n) that is a definitional extension of both Λ

and Λ′. To relate Lenzen’s definitional extension to our terminology, we note
that if we add the requirement that Λ + DMn is a conservative extension of
Λ, then, in our terminology, Mn is reducible to M1, . . . ,Mn−1 in the logic
Λ + DMn by DMn.

There has also been relevant work on translation schemes between lan-
guages that is relevant to our work (see Pelletier and Urquhart [2003] and
the references therein). A definition DMn of the modality Mn defines a
natural translation ϕ 7→ ϕt from the language L to L0 that is described in
the appendix. When Mn is explicitly defined in Λ, then for every ϕ ∈ Λ,
the translated formula ϕt is in Λ0 (see Lemma A.2 in the appendix). In
the terminology of Pelletier and Urquhart, this means that the translation
is sound (with respect to the logics Λ and Λ0).

4 The semantics of definability

In this section, we provide semantic characterizations of the three notions of
definability we have been considering. We use the following definition. An
algebra A for the language L is an extension of an algebra A′ for L′ ⊆ L if A
is obtained by adding to A′ operators that correspond to the modalities in
L that are not in L′. Similarly, a frame F for the language L is an extension
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of a frame F ′ for L′ ⊆ L if F is obtained by adding to F ′ relations that
correspond to the modalities in L that are not in L′. If A (F) is obtained
by adding operators (Mi)i∈I to A′ (relations (Ri)i∈I to F ′), we sometimes
abuse notation and write A = (A′, (Mi)i∈I) (F = (F ′, (Ri)i∈I)).

Note that if A extends A′, then for all models M = (A, V ) and M′ =
(A′, V ) and each formula ϕ ∈ L′, we have [[ϕ]]M = [[ϕ]]M′ . For an algebra
A = (B,∨,¬, 1,M1, . . . ,Mn), letA0 denote the algebra (B,∨,¬, 1,M1, . . . ,Mn−1).
Clearly, A is an extension ofA0. Similar remarks apply to frames and Kripke
models.

We start with the characterization of implicit definability.

Theorem 4.1 The following are equivalent:

(a) the modality Mn is implicitly defined in Λ;

(b) if A = (A0,Mn) and A′ = (A0,M′
n) are Λ-algebras, then Mn = M′

n.

We cannot expect a characterization of implicit definability in terms
of frames, since a normal logic may not be complete with respect to its
frames; indeed, there may be no frames for a logic at all. In the next section
we formulate a characterization of implicit definability in terms of frames
for a restricted class of logics, and relate modal definability to first-order
definability of relations for this class of logics.

The characterization of explicit definability and reducibility is done in
terms of algebras only. In the next section we will see why an analogous
characterization in terms of frames or Kripke models is impossible.

For the next two characterizations we need the following definition. An
algebra of operators O on a Boolean algebra (B,∨,¬, 1) is a set O of unary
operators on B that is itself a Boolean algebra and is closed under compo-
sition. Thus, for every f, g ∈ O, ¬f , f ∨ g, and f ◦ g are all in O, where
(¬f)(x) = ¬f(x), (f ∨ g)(x) = f(x) ∨ g(x), and (f ◦ g)(x) = f(g(x)). The
top element in O is the constant operator that always returns the value 1 in
B.

For an algebra A = (B,∨,¬, 1,M1, . . . ,Mn), let O∗
A be the smallest

algebra of operators on B that contains the operators M1, . . . ,Mn, and let
A0 be the algebra (B,∨,¬, 1,M1, . . . ,Mn−1).

Theorem 4.2 The modality Mn is explicitly defined in Λ if and only if, for
each Λ-algebra A, O∗

A = O∗
A0

.
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Theorem 4.3 The modality Mn is reducible to M1, . . . ,Mn−1 in Λ if and
only if each Λ0-algebra A0 has an extension to a Λ-algebra A such that
O∗
A = O∗

A0
.

In light of Theorems 4.1, 4.2, 4.3, the following result can be viewed as a
reformulation of Theorem 3.4 in semantic terms. One of the implications in
this result is significantly simpler to prove than the analogous implication
in Theorem 3.4; moreover, it provides an alternative proof of this result.

Theorem 4.4 For each Λ-algebra A = (B,∨,¬, 1,M1, . . . ,Mn), O∗
A =

O∗
A0

iff (a) every Λ0-algebra A0 can be extended to a Λ-algebra A such that
O∗
A = O∗

A0
and (b) if A = (A0,Mn) and A′ = (A0,M′

n) are Λ-algebras,
then Mn = M′

n.

5 Definability and frame semantics

The semantic characterizations of definability in Section 4 mainly use alge-
bras rather than frames. Here we explore the relationship between modal
definability and frame semantics. Of course, we cannot expect a frame-
semantic characterization for all normal logics, since some normal logics are
poorly described by frame semantics. We therefore restrict ourselves to what
we call orthodox logics, to be defined shortly, for which frame semantics is
adequate. Using frame semantics for orthodox logics enables us to explore
the relationship between the definability of modalities and the definability
of predicates in first-order logic.

Given a language L, the first-order frame language of L, denoted Lfo, is
the first-order language with equality that includes, for every modality Mi

in L, a binary predicate Rfo
i . The frames of many axioms of modal logic can

be described in the frame language. Thus, for example, the axiom Kp→ p
is valid in a frame iff the relation corresponding to K is reflexive, which is
expressed in the first-order frame-language by ∀xRfo

K(x, x). We say in this
case that Kp → p and ∀xRfo

K(x, x) correspond. In general, formulas ϕ ∈ L
and α ∈ Lfo correspond if, for all frames F for L, ϕ is valid in F iff α is
valid in F .

A formula ϕ ∈ L is canonical if it is valid in the canonical frame of each
logic Λ that contains ϕ [Blackburn et al. 2001]. If the logic Λ is generated
by a set of canonical formulas (i.e., if there is a set C of canonical formulas
such that Λ is the smallest logic containing C), then Λ is complete with
respect to its canonical frame. A logic is orthodox if it is generated by a set
A of formulas such that each formula f ∈ A is canonical and corresponds
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to a first-order formula. Let Afo denote the set of first-order formulas that
correspond to the formulas in A. The first-order logic Λfo generated by Afo

is sound and complete with respect to all Λ-frames.

5.1 Implicit definability

The implicit definability of a modality can be characterized by frame seman-
tics in a way analogous to the algebraic characterization of Theorem 4.1.
This characterization is stated in the next theorem, as well as its character-
ization in terms of the definability properties of the predicate corresponding
to the modality in the frame language.

Theorem 5.1 If Λ is an orthodox logic in the language L(M1, . . . ,Mn).
then the following are equivalent:

(a) the modality Mn is implicitly defined in Λ;

(b) for all Λ-frames (F0, Rn) and (F0, R
′
n), we have Rn = R′n;

(c) the predicate Rfo
n is implicitly defined in Λfo;

(d) the predicate Rfo
n is explicitly defined in Λfo.

The equivalence of (b) and (c) follows from the fact that the set of Λ-
frames is the set of Λfo-models and the definition of implicit definability for
first-order logic. The equivalence of (c) and (d) is Beth’s theorem. We prove
in the appendix that (a) is equivalent to (b). The latter equivalence is the
frame-semantics counterpart of Theorem 4.1. Parts (b) and (c) of Theo-
rem 5.1 show that for orthodox logics, the implicit definability of a modality
is equivalent to the implicit and explicit definability of its corresponding
relation.

Theorem 5.1 can be used to provide a semantic proof of Proposition
3.3(b), namely, that S5 knowledge is implicitly defined in (KD45)B+(S5)K+
{L1,L2}. This logic is orthodox; thus, it suffices to show that the relation
RK is explicitly defined by the predicate Rfo

B associated with the relation
RB. The following proposition shows that this is indeed the case.

Proposition 5.2 The formula Rfo
K(x, y) ↔ ∃z(Rfo

B(x, z)∧Rfo
B(y, z)) is valid

in all ((KD45)B + (S5)K + {L1,L2})-frames.

13



5.2 Explicit definability

The explicit definability of Mn is characterized semantically in Theorem 4.2
by the condition O∗

A = O∗
A0

, or equivalently, Mn ∈ O∗
A0

. This condition
says that the algebraic operator Mn is generated using Boolean operations
and composition from the algebraic operators M1, . . . ,Mn−1. An analogous
frame-semantics condition is that Rfo

n can be explicitly defined in terms of
Rfo

1 , . . . , R
fo
n−1. But this condition does not characterize the explicit defin-

ability of Mn. The logic (KD45)B + (S5)K + {L1,L2} illustrates this claim.
As stated in Proposition 5.2, Rfo

K is explicitly defined by Rfo
B , yet, by Propo-

sition 3.3, the modality K is not explicitly defined by B. This gap between
definability in the modal logic and definability in the first-order frame lan-
guage is due to the fact that in orthodox logics, the first-order frame language
is more expressive than the modal language it is associated with.

5.3 Reducibility

A frame-semantics analogue of Theorem 4.3 would state that Mn is re-
ducible to M1, . . . ,Mn−1 in an orthodox logic Λ if and only if each Λ0-
frame (W,R1, . . . , Rn−1) can extended to a Λ-frame (W,R1, . . . , Rn−1, Rn)
in which Rfo

n can be explicitly defined. But this claim is false. Consider
again the logic (KD45)B + (S5)K + {L1,L2}. It is easy to show that every
(KD45)B-frame can be extended to a ((KD45)B + (S5)K + {L1,L2})-frame
(see Proposition A.2 in the companion paper). Combining this result with
Proposition 5.2, it follows that every (KD45)B-frame can be extended to a
((KD45)B +(S5)K +{L1,L2})-frame in which Rfo

K is explicitly defined. Yet,
by Proposition 3.3, K is not reducible to B in this logic. By the semantic
characterization of reducibility in Theorem 4.3, it follows that (KD45)B-
algebras should not have this property of extension that (KD45)B-frames
have. Indeed, we next construct an example of a (KD45)B-algebra that
cannot be extended at all to a ((KD45)B + (S5)K + {L1,L2})-algebra. This
example also provides a direct proof of the irreducibility of S5 knowledge
to belief stated in Proposition 3.3, using the semantic characterization of
reducibility in Theorem 4.3.

Example 5.3 Let (B,∪,¬,W ) be the Boolean algebra of the finite and
cofinite subsets of the set of nonnegative integers W = {0, 1, 2, . . . } (recall
that a cofinite set is the complement of a finite set), where the Boolean
operations are union and set-theoretic complement, and the top element is
W . Let U be the subset of B which consists of all the cofinite sets. Define
an operator B on B by taking
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B(E) =

{
E ∪ {0} if E ∈ U
E \ {0} if E 6∈ U .

Theorem 5.4 The algebra A = (B,∪,¬,W,B) is a (KD45)B-algebra that
cannot be extended to a (KD45)B + (S5)K + {L1,L2})-algebra.

Note that by the Jónsson-Tarski theorem [Blackburn et al. 2001], the
(KD45)B set-algebra in Example 5.3 can be isomorphically embedded in
a (KD45)B set-algebra in which the operator B is derived from a relation.
However, in the algebra of the example itself, B is not derived from a relation
on W . Indeed, if it were, then, by Proposition A.2 of the companion paper,
we could extend this model to one where an S5 knowledge operator is defined.

The only properties of B and U used in the proof of Theorem 5.4 are the
facts that B is an algebra that contains all the singletons and that U is a
nonprincipal ultrafilter in B.4 Thus, the theorem also holds if we take B to
be 2W and U to be a nonprincipal ultrafilter on W . These conditions also
hold if W = [0, 1], B consists of all Borel sets in [0, 1] that have Lebesgue
measure either 0 or 1, and U consists of all the sets in B with Lebesgue
measure 1.

Theorem 5.4 has another, somewhat surprising, application. It allows
us to prove general results regarding the irreducibility of knowledge to a
combination of belief and justification. In the companion paper, we show
that knowledge cannot be reduced to belief in the logic (KD45)B + (S5)K +
{L1,L2}. However, that does not preclude knowledge from being reducible
to a combination of belief and justification. Indeed, as we observe in the
companion paper, without some constraints, knowledge can be reduced to
a combination of belief and justification. For example, if J satisfies all the
axioms of S5 and the axioms L1 and L2 with K replaced by J , then we can
reduce K to J by the definition Kp ↔ Jp. We now provide an arguably
reasonable condition on a logic Λ of belief and justification that suffices to
guarantee that knowledge is not reducible to belief and justification in Λ.
Roughly speaking, the condition says that the interaction between B and
J is rather weak. We give two interpretations of this condition. The first
is semantic, and is expressed in terms of algebras. It requires that every
(KD45)B-algebra be extendible to an algebra of Λ ∩ L(B, J); intuitively, it
says that the properties of J do not put any constraints on B.

4Recall that a filter C in B is a set of sets in B that is closed under supersets and
intersection (so that if E1, E2 ∈ C and E1 ⊆ E3, then E3 ∈ C and E1 ∩ E2 ∈ C); the filter
C is proper if ∅ 6∈ C; it is nonprincipal if there is no E ∈ B such that C consists of all
supersets of E; an ultrafilter is a maximal proper filter.
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Theorem 5.5 Let Λ be a logic in L(B, J,K) such that (KD45)B +(S5)K +
{L1,L2} ⊆ Λ. If every (KD45)B-algebra can be extended to an algebra of
Λ ∩ L(B, J), then K is not reducible to B and J in Λ.

Obviously, our previous example that shows how S5 knowledge can be
reduced to belief and justification must fail the stipulation of Theorem 5.5.
That is, it must be the case that some (KD45)B-algebra cannot be extended
to a Λ ∩ L(B, J)-algebra. But the operator J in our example is just an S5
knowledge operator, and thus it must be the case that there is a (KD45)B-
algebra that cannot be extended to an algebra of belief and S5 knowledge.
But this is precisely what is shown in Theorem 5.4. Theorem 5.4 not only
shows that certain logics do not satisfy the antecedent of Theorem 5.5, but
is actually the key to its proof.

The following corollary gives a syntactic version of the statement that
the interaction between B and J be weak. It says that the axioms for B
and J can be “decomposed” into axioms for B (KD45B) and axioms for J
(which are contained in S5J).

Corollary 5.6 Let Λ be a logic in L(B, J,K) such that Λ ∩ L(B, J) =
(KD45)B + ΛJ , where ΛJ ⊆ (S5)J . Then K is not reducible to B and J in
Λ.

Thus, as long as there is no axiomatic link between belief and justifica-
tion, and justification does not have any properties that go beyond S5, then
knowledge is not reducible to a combination of belief and justification. See
the companion paper for further discussion of this issue.

5.4 Interpolation

A logic Λ has the interpolation property if for any formula ϕ1 → ϕ2 in Λ,
there exists a formula χ (an interpolant) whose non-logical constants are
common to ϕ1 and ϕ2 such that ϕ1 → χ and χ→ ϕ2 are in Λ. Craig’s inter-
polation theorem states that first-order logic has the interpolation property.
The interpolation property is used in the proof of Beth’s theorem to show
that implicit definability implies explicit definability. The proof makes use
of the Deduction Theorem, which says that for a set of sentences Γ and a
sentence ϕ, if ψ is in the logic generated by Γ ∪ {ϕ}, then ϕ → ψ is in the
logic generated by Γ.

In the case of modal logic, Andréka, van Bentham, and Németi [1998]
sketch a proof for the following interpolation theorem. Let Λ be the minimal
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normal modal logic in some multimodal language L.5 If ϕ1 → ϕ2 ∈ Λ, then
there exists a formula χ that contains only modalities that are contained in
both ϕ1 and ϕ2 such that ϕ1 → χ and χ→ ϕ2 are in Λ. However, implicit
definability in normal multimodal logics does not imply explicit definability.
The failure of Beth’s theorem for such logics is due to the fact that there is
no Deduction Theorem for modal logics.

Craig’s interpolation theorem for first-order logic can be generalized as
follows. Let L1 and L2 be two first-order languages, and let Λ be a logic
in the language L = L1 ∪ L2. If ϕ1 → ϕ2 ∈ Λ, then there exists a formula
χ ∈ L1 ∩L2 such that ϕ1 → χ and χ→ ϕ2 are in Λ. This result also makes
use of the Deduction Theorem.

Again, in the modal case this generalization does not hold. The logic
(KD45)B + (S5)K + {L1,L2}, discussed in Subsection 5.1, demonstrates
this, and highlights the difference between an orthodox modal logic and
the corresponding first-order logic. For i = 1, 2, consider the multimodal
logic Λi = (KD45)B + (S5)Ki

+ {L1,L2} in the language L(B,Ki). Let
Λ = Λ1 + Λ2. By Proposition 3.3(b), K1p ↔ K2p ∈ Λ. However, there
is no formula χ in the language L(B,K1) ∩ L(B,K2) = L(B) such that
K1p → χ and χ → K2 are in Λ. Indeed, if such a formula χ existed, then
K1p ↔ χ would be in Λ, because K2p → K1p ∈ Λ. Let F = (W,RK1 , RB)
be the canonical frame for Λ1. Obviously, the frame F̂ = (W,RK1 , RK2 , RB),
where RK2 = RK1 , is a frame for which Λ1 +Λ2 is sound. Thus, K1p↔ ϕ is
valid in F̂ . But the interpretation of this formula depends only on RK1 and
RB. Thus, it is also valid in F . Hence, this formula is in Λ1, which means
that it is a definition of K1 in terms of B, contrary to Proposition 3.3(b).
The corresponding first-order logic Λfo includes the formula Rfo

K1
(x, y) ↔

Rfo
K2

(x, y) and, by Proposition 5.2, the formula ∃z(Rfo
B(x, z) ∧ Rfo

B(y, z)) is
an interpolant for this equivalence. However, this interpolant has no modal
equivalent.

A Proofs

In this appendix, we prove all results whose proof was omitted from the main
text. We repeat the statement of the results for the reader’s convenience.
We start with the proof of two elementary lemmas that are used in many of
the proofs.

5“Minimal” here means that it is the least set of formulas that contains all tautologies
of propositional logic, is closed under modus ponens and substitution, and is normal.
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Lemma A.1 Let ϕ, ψ and χ be formulas in a language L, and let χ′ be a
formula obtained by replacing some occurrences of ϕ in χ by ψ. If Λ is a
logic in L such that ϕ↔ ψ ∈ Λ then χ↔ χ′ ∈ Λ.

We omit the simple proof by induction on the structure of χ.
Given a definition DMn, we construct a map ϕ 7→ ϕt that translates

formulas ϕ in L to formulas ϕt in L0. We define ϕt by induction on the
structure of ϕ. If ϕ is a primitive proposition, then ϕt = ϕ. We define
(ϕ → ψ)t = (ϕt → ψt) and (¬ϕ)t = ¬ϕt. For Mi 6= Mn, (Miϕ)t = Miϕ

t,
and (Mnϕ)t = δ[p/ϕt].

Lemma A.2 For each formula ϕ ∈ L, the formula ϕ↔ ϕt is in every logic
that contains DMn.

Proof: Let Λ be a logic that contains DMn. The proof that ϕ ↔ ϕt ∈ Λ
proceeds by induction on the structure of formulas, using Lemma A.1. For
the case of formulas Mnϕ we use the assumption that DMn ∈ Λ. From
this it follows by substitution that Mnϕ ↔ δ[p/ϕ] ∈ Λ for each ϕ. By the
induction hypothesis and Lemma A.1, δ[p/ϕ] ↔ δ[p/ϕt] ∈ Λ, which implies
that (Mnϕ)t ↔Mnϕ ∈ Λ.

Proposition 3.1: If Mn is reducible to M1, . . . ,Mn−1 in Λ, then it is
reducible by a simple definition.

Proof: Suppose that Mn is reducible to M1, . . . ,Mn−1 in Λ by the defini-
tion Mnp↔ δ. Let DM′

n be the formula Mnp↔ δ′, where δ′ is the formula
obtained by substituting p for all primitive propositions in δ. By substitu-
tion, DM′

n ∈ Λ0 + DMn. Thus Λ0 + DM′
n ⊆ Λ0 + DMn. It follows that

δ ↔ δ′ ∈ Λ0 + DMn. But δ ↔ δ′ ∈ L0. Hence, since Λ0 +DM is a conser-
vative extension of Λ0, δ ↔ δ′ ∈ Λ0. This implies that DMn ∈ Λ0 + DM′

n,
and hence Λ0 + DMn ⊆ Λ0 + DM′

n. Therefore, Λ0 + DMn = Λ0 + DM′
n.

In the proofs of the following two theorems, we write Λ′ for Λ[Mn/M
′
n].

Theorem 3.4: The modal operator Mn is explicitly defined in Λ if and
only if Mn is implicitly defined and reducible to M1, . . . ,Mn−1 in Λ.

Proof: Let DM′
n be the formula M ′

np ↔ δ that results from replacing Mn

by M ′
n in DMn. Suppose that Mn is explicitly defined in Λ by DMn. We

first show that Λ = Λ0 + DMn. By definition, Λ0 ⊆ Λ and, by assumption,
DMn ∈ Λ. Thus, Λ0 + DMn ⊆ Λ. For the opposite inclusion, let ϕ ∈ L. By
Lemma A.2 and the explicit definability of Mn, ϕ ↔ ϕt ∈ Λ0 + DMn ⊆ Λ.
If ϕ ∈ Λ, then ϕt ∈ Λ, so ϕt ∈ Λ0. It follows that ϕ ∈ Λ0 + DMn, proving
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that Λ ⊆ Λ0 +DMn, as desired. It immediately follows that Mn is reducible
to M1, . . . ,Mn−1 in Λ.

To see that Mn is implicitly defined in Λ, note that DMn ∈ Λ and
similarly DM′

n ∈ Λ′; thus, Mnp↔M ′
np ∈ Λ + Λ′.

Now suppose thatMn is reducible toM1, . . . ,Mn−1 in Λ by the definition
DMn and that Mn is implicitly defined in Λ. Consider the set Λ∗ of formulas
in L(M1, . . . ,Mn,M

′
n) defined by Λ∗ = {ϕ : ϕt ∈ Λ′}. Here, ϕt is the

translation of ϕ to the language L(M1, . . . ,Mn−1,M
′
n) using DMn. Clearly

Λ′ ⊆ Λ∗. As we now show, we also have Λ ⊆ Λ∗. Indeed, if ϕ ∈ Λ, then by
reducibility, ϕ ∈ Λ0 + DMn. Since, by Lemma A.2, ϕ↔ ϕt ∈ Λ0 + DMn, it
follows that ϕt ∈ Λ0 + DMn. Since Λ0 + DMn is a conservative extension of
Λ0, ϕt ∈ Λ0 ⊆ Λ′. Since ϕt ∈ Λ′, it follows that ϕ ∈ Λ∗, as desired.

We prove below that Λ∗ is a logic. Therefore Λ + Λ′ ⊆ Λ∗. Since, by
assumption, Mn is implicitly defined in Λ, Mnp ↔ M ′

np ∈ Λ∗. Clearly
DMn ∈ Λ∗, since DMt

n = (δ ↔ δ) ∈ Λ′. Thus, by the equivalence of Mn and
M ′

n, we must have DM′
n ∈ Λ∗. But (DM′

n)t = DM′
n, and thus DM′

n ∈ Λ′. It
follows that DMn ∈ Λ, as desired.

It remains to show that Λ∗ is a logic. Since Λ∗ contains the logics Λ and
Λ′[Mn/M

′
n], it contains all tautologies of propositional logic as well as the

axiom KM for each modal operator M ∈ {M1, . . . ,Mn,M
′
n}.

To see that Λ∗ is closed under modus ponens, suppose that ϕ,ϕ→ ψ ∈
Λ∗. But then ϕt and (ϕ → ψ)t = ϕt → ψt are in Λ′. Thus, ψt ∈ Λ′, so
ψ ∈ Λ∗, as desired. Another argument in this spirit shows that Λ∗ is closed
under substitution.

Finally, we must show that Λ∗ satisfies the generalization rules. If M 6=
Mn and ψ ∈ Λ∗ then, by definition, ψt ∈ Λ′. Moreover, (Mψ)t = M(ψt),
so Mψt ∈ Λ′ by the generalization rule for M in Λ′. Hence, Mψ ∈ Λ∗.
If M = Mn, we proceed as follows. Since (Mnψ)t = δ[p/ψt], we need to
show that δ[p/ψt] ∈ Λ[Mn/M

′
n]. Since ψt ∈ Λ[Mn/M

′
n], it follows that

ψt ↔ true ∈ Λ[Mn/M
′
n]. By Lemma A.1, δ[p/ψt] ↔ δ[p/true] ∈ Λ[Mn/M

′
n].

Thus, to complete the proof, we need to show that δ[p/true] ∈ Λ[Mn/M
′
n].

Mntrue ∈ Λ by generalization, so by reducibility, Mntrue ∈ Λ0 + DMn.
Moreover, Mntrue ↔ δ[p/true] ∈ Λ0 + DMn, so δ[p/true] ∈ Λ0 + DMn. But
Λ0 +DMn is a conservative extension of Λ0, so δ[p/true] ∈ Λ0 ⊆ Λ[Mn/M

′
n].

Theorem 4.1: The following are equivalent:

(a) the modality Mn is implicitly defined in Λ;

(b) if A = (A0,Mn) and A′ = (A0,M′
n) are Λ-algebras, then Mn = M′

n.
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Proof: To prove that (a) implies (b), suppose that Mn is implicitly defined
in Λ, and that both A = (A0,Mn) and A′ = (A0,M′

n) are Λ-algebras. Let
A+A′ denote the algebra (A0,Mn,M′

n). Clearly all the formulas in Λ∪Λ′

are valid in A + A′; moreover, the set of formulas valid in an algebra is
easily seen to be closed under substitution and generalization, so all the
formulas in Λ + Λ′ are also valid in A +A′. Since Mn is implicitly defined
in Λ, it follows that Mnϕ ↔ M ′

nϕ ∈ Th(A + A′). Now suppose, by way
of contradiction, that Mn 6= M′

n. Then for some x, Mn(x) 6= M′
n(x).

Consider theA+A′-modelM = ((A0,Mn,M′), V ) where V (p) = x. Clearly
[[Mnp]]M 6= [[Mnp]]M, giving the desired contradiction.

To show that (b) implies (a), suppose that (b) holds. LetA = (A0,Mn,M′
n)

be the canonical (Λ + Λ′)-algebra, where now M′
n is taken to be the inter-

pretation of M ′
n. Note that ϕ ∈ Λ ∪ Λ′ iff ϕ ∈ Th(A). We can view both

(A0,Mn) and (A0,M′
n) as Λ-algebras, by taking M′

n to interpret Mn. By
assumption, Mn = M′

n. Thus, Mnϕ↔M ′
nϕ must be valid in the canonical

(Λ + Λ′)-algebra for all formulas ϕ. Thus, Mnϕ↔M ′
nϕ ∈ Λ + Λ′, so Mn is

implicitly defined in Λ.

To prove Theorem 4.2, we need the the following lemma, whose straight-
forward proof is omitted.

Lemma A.3 Let Φ be the set of all formulas in L0 that contain only the
primitive proposition p and let A0 be a Λ0-algebra. There exists a unique
function ϕ 7→ ϕop from Φ to O∗

A0
that satisfies the following: pop is the

identity operator; for each ϕ,ψ ∈ Φ, (¬ϕ)op = ¬ϕop and (ϕ ∨ ψ)op = ϕop ∨
ψop; for each i = 1, . . . , n− 1, (Miϕ)op = Mi ◦ ϕop. Moreover, this function
is a surjection onto O∗

A0
, and, for all ϕ ∈ Φ, ψ ∈ L0, and models M0 =

(A0, V ), [[ϕ[p/ψ]]]M0 = ϕop([[ψ]])M0.

Theorem 4.2: The modality Mn is explicitly defined in Λ if and only if,
for each Λ-algebra A, O∗

A = O∗
A0

.

Proof: We first note thatO∗
A = O∗

A0
if and only if Mn ∈ O∗

A0
. Assume that

the modality Mn is explicitly defined in Λ via the definition Mnp↔ δ, and
let A be a Λ-algebra. Thus, for each modelM = (A, V ), Mn([[p]]M) = [[δ]]M.
By Lemma A.3, [[δ]]M = δop([[p]]M). For all x ∈ A, let Mx = (A, Vx) be a
model such that V (p) = x. It is easy to check that Mn(x) = δop(x). Thus,
Mn = δop, and hence O∗

A = O∗
A0

.
For the converse, suppose that for each Λ-algebra A, O∗

A = O∗
A0

. Let
A be the canonical algebra of Λ. By Lemma A.3, there exists a formula
δ ∈ Φ such that Mn = δop. Moreover, for each model M based on A,
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Mn([[p]]M) = δop([[p]]M) = [[δ]]M. Thus, Mnp ↔ δ is valid in each model
based on A, and hence Mnp↔ δ ∈ Λ.

To prove Theorem 4.3, we need the following lemma, which will also be
useful in our later proofs.

Lemma A.4 If L1 ⊆ L2, Λ1 ⊆ Λ2 are two logics in the corresponding
languages such that Λ1 is sound and complete for a family S of frames, and
each frame (algebra) in S can be extended to a Λ2-frame (algebra), then Λ2

is a conservative extension of Λ1.

Proof: Suppose that the condition in the lemma holds. Let F be a
Λ1-frame in S and F ′ an extension of F to a Λ2-frame. Consider models
M = (F , V ) and M′ = (F ′, V ). Suppose that ϕ ∈ Λ2 ∩ L1. Then M′ |= ϕ.
Since ϕ ∈ L1, it follows that [[ϕ]]M′ = [[ϕ]]M. Thus, M |= ϕ. Since this is
true for any model based on a frame in S, ϕ ∈ Λ1, and hence Λ2 ∩L1 ⊆ Λ1.
The converse inclusion holds since Λ1 ⊆ Λ2. The proof for algebras is similar.

Theorem 4.3: The modality Mn is reducible to M1, . . . ,Mn−1 in Λ if
and only if each Λ0-algebra A0 can be extended to a Λ-algebra A such that
O∗
A = O∗

A0
.

Proof: Suppose that Mn is reducible to M1, . . . ,Mn−1 in Λ by DMn, which
is Mnp↔ δ. Let A0 be a Λ0-algebra. Extend A0 to A by defining Mn = δop.
Thus, O∗

A = O∗
A0

, and we need only show that A is a Λ-algebra. Suppose
that ϕ ∈ Λ. By reducibility, ϕ ∈ Λ0 + DMn. By Lemma A.2, ϕ ↔ ϕt ∈
Λ0 + DMn. Thus, ϕt ∈ Λ0 + DMn. Since Λ0 + DMn is a conservative
extension of Λ0, it follows that ϕt ∈ Λ0. Consider a model M = (A, V ) and
the model M0 = (A0, V ). Since M and M0 agree on formulas in Λ0, and
M0 is a model of Λ0, we must have [[ϕt]]M = 1. It thus suffices to show
that for every formula ϕ ∈ L, [[ϕ]]M = [[ϕt]]M. This is proved by induction
on the structure of ϕ. We show here only the case that ϕ = Mnψ. In this
case, (Mnψ)t = δ[p/ψt]. By Lemma A.3, [[δ[p/ψt]]]M = δop([[ψt]]M). By the
induction hypothesis, this is δop([[ψ]]M), which is [[Mnψ]]M.

For the converse, suppose that the condition in the theorem holds. Let
A0 be the canonical algebra of Λ0 and A its extension to a Λ-algebra that
satisfies O∗

A = O∗
A0

. Then Mn ∈ O∗
A0

, and hence there exists a formula
δ ∈ Φ such that Mn = δop. Let DMn be the formula Mnp↔ δ.

We show first that A is a Λ0 +DMn-algebra. Since Th(A) is a logic (the
theory of any algebra is a logic), it suffices to show that DMn ∈ Th(A).
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To see that this is the case, note that if M is a model based on A, then
Mn([[p]]M) = δop([[p]]M), which, by Lemma A.3, is [[δ]]M.

Since Λ0 is complete for A0, it follows by Lemma A.4 that Λ0 + DMn

is a conservative extension of Λ0. It remains to show that Λ ⊆ Λ0 + DMn.
Suppose that ϕ ∈ Λ. Then, for any model M = (A, V ), [[ϕ]]M = 1. By
Lemma A.2, ϕ ↔ ϕt ∈ Λ0 + DMn. Since A is a (Λ0 + DMn)-algebra,
[[ϕ]]M = [[ϕt]]M. But [[ϕt]]M = [[ϕt]]M0 for the model M0 = (A0, V ). Thus,
ϕt is valid in every model based on A0. Since A0 is canonical, it follows that
ϕt ∈ Λ0. Since ϕ↔ ϕt ∈ Λ0 + DMn, we have that that ϕ ∈ Λ0 + DMn.

Theorem 4.4: For each Λ-algebra A = (B,∨,¬, 1,M1, . . . ,Mn), O∗
A =

O∗
A0

iff (a) every Λ0-algebra A0 can be extended to a Λ-algebra A such that
O∗
A = O∗

A0
and (b) if A = (A0,Mn) and A′ = (A0,M′

n) are Λ-algebras,
then Mn = M′

n.

Proof: The proof follows from Theorem 3.4, using Theorems 4.1, 4.2, and
4.3. Nevertheless, we prove here that (a) and (b) imply the first condition
because the proof is simpler than the syntactic proof that reducibility and
implicit definability imply explicit definability.

Suppose that (a) Mn is reducible to M1, . . . ,Mn−1 in Λ by the definition
DMn, and (b) Mn is implicitly defined in Λ. By Theorem 4.2 we need to
show that for each Λ-algebra A, Mn ∈ O∗

A0
. Let A be a Λ-algebra. By (a)

and Theorem 4.3, applied to the logic Λ′ = Λ[Mn/M′
n], the algebra A0 can

be extended to an algebra A′ with operators M1, . . . ,Mn−1M′
n, such that

M′
n ∈ A∗

0. By (b) and Theorem 4.1, Mn = M′
n, which completes the proof.

Theorem 5.1: If Λ is an orthodox logic in the language L(M1, . . . ,Mn),
then the following are equivalent:

(a) the modality Mn is implicitly defined in Λ;

(b) for all Λ-frames (F0, Rn) and (F0, R
′
n), we have Rn = R′n;

(c) the predicate Rfo
n is implicitly defined in Λfo;

(d) the predicate Rfo
n is explicitly defined in Λfo.

Proof: As noted in Section 5, we need to show only that (a) is equivalent
to (b). Suppose that (a) holds and that F = (F0, Rn) and F ′ = (F0, Rn)
are both Λ-frames. We can view F+F ′ = (F0, Rn, R

′
n) as a Λ+Λ′-frame by

taking R′n to be the interpretation ofM ′
n. (It is easy to check that Th(F+F ′)
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is normal.) Since Mn is implicitly defined in Λ, we must have Mnϕ ↔
M ′

nϕ ∈ Th(F + F ′) for all formulas. This implies that Rn = R′n, because
if Rn(w) 6= R′n(w) for some w, then, without loss of generality, Rn(w) 6⊆
R′n(w) and therefore Mnp↔M ′

np is not valid in a model (A+A′, V ) where
V (p) = R′n(w). Now suppose that (b) holds. Then Mnϕ ↔ M ′

nϕ holds
for all formulas ϕ in all (Λ + Λ′)-frames. As Λ is orthodox, so is (Λ + Λ′),
and therefore it is complete with respect to its canonical frame. Thus,
Mnϕ↔M ′

nϕ ∈ Λ + Λ′.

Proposition 5.2: The formula Rfo
K(x, y) ↔ ∃z(Rfo

B(x, z) ∧ Rfo
B(y, z)) is

valid in all ((KD45)B + (S5)K + {L1,L2})-frames.

Proof: It is well known [Hoek 1993] that (KD45)B + (S5)K + {L1,L2} is
sound and complete with respect to frames where (1) the RB relation is
serial, transitive, and Euclidean;6 (2) the RK is an equivalence relation; (3)
RB ⊆ RK ; and (4) for all x, y, and z in W , if (x, y) ∈ RK and (y, z) ∈ RB,
then (x, z) ∈ RB [Hoek 1993]. The last two conditions correspond to L1 and
L2, respectively.

Let (W,RB, RK) be a ((KD45)B + (S5)K + {L1,L2})-frame. If (x, y) ∈
RK then, since RB is serial, there exists some z such that (y, z) ∈ RB.
By the semantic condition corresponding to L2, we also have (x, z) ∈ RB.
For the converse, suppose that there exists some z such that (x, z) ∈ RB

and (y, z) ∈ RB. Then, by the semantic condition corresponding to L1,
(x, z) ∈ RK and (y, z) ∈ RK . By the symmetry and transitivity of RK ,
(x, y) ∈ RK .

Theorem 5.4: The algebra A = (W,B,∪,¬,W,B) is a KD45B-algebra
that cannot be extended to a (KD45B + S5K + {L1,L2})-algebra.

Proof: We first show that A is a (KD45)B-algebra.
In order to see that axiom KB is valid in A, we need to show that for

each E and F in B, ¬B(¬E ∪ F ) ∪ (¬B(E) ∪B(F )) = W , or equivalently,
B(¬E ∪ F ) ⊆ ¬B(E) ∪B(F ). The left and right sides of this inclusion can
differ only by 0. Suppose that 0 ∈ ¬B(E ∪ ¬F ). Then it must be the case
that ¬E ∪ F ∈ U . Now either E /∈ U , in which case 0 ∈ ¬B(E) and we are
done, or E ∈ U . In the latter case, since U is closed under intersection, it
follows that (¬E ∪ F ) ∩ E = F ∩ E ∈ U , and thus F must be in U , and
0 ∈ B(F ). In either case, it follows that 0 ∈ ¬B(E) ∪B(F ), as desired.

For axiom DB, we need to show that for each set E, B(E) ⊆ ¬B(¬E).
Again, the two sides of the inclusion can differ only by 0. If 0 ∈ B(E) then

6R is serial if for each x there exists a y such that (x, y) ∈ R; R is Euclidean if, for all
x, y, and z, if (x, y) ∈ R and (x, z) ∈ R then (y, z) ∈ R.
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E ∈ U . But then ¬E /∈ U , It easily follows that 0 ∈ ¬B(¬E).
Axiom 4B requires that B(E) ⊆ B(B(E)). If 0 ∈ B(E) then E ∈ U , and

B(E) = E∪{0}, which is also in U . Hence, B(B(E)) = B(E∪{0}) = E∪{0}.
For 5B, we have to prove that ¬B(E) ⊆ B(¬B(E)). If 0 ∈ ¬B(E) then

E /∈ U , and ¬B(E) = ¬E∪{0}. It follows that both ¬E and hence ¬E∪{0}
are in U , and therefore B(¬E ∪ {0}) = ¬E ∪ {0}. This complete the proof
that A is a (KD45)B-algebra.

Suppose, by way of contradiction, thatA can be extended to a ((KD45)B+
(S5)K + {L1,L2})-algebra (A,K). Let E = W \ {0}. We first show that
K(E) = E. By TK , it is enough to show that E ⊆ K(E). Obviously,
for each x ∈ E, B({x}) = {x}. By L2 it follows that, for each x ∈ E,
B({x}) ⊆ K(B({x})). Substituting {x} for B({x}), we conclude that
{x} ⊆ K({x}) for each x ∈ E. It is easy to see that the validity of ax-
iom KK implies that K is monotonic, and hence K({x}) ⊆ K(E), from
which we conclude as required that {x} ⊆ K(E). Thus, E ⊆ K(E). More-
over, since K(E) = E, ¬K(E) = {0}. By L1, K({0}) ⊆ B({0}). By the
definition of B, B({0}) = ∅. Substituting ¬K(E) for {0} in K({0}), we
have K(¬K({E})) = ∅ 6= ¬K({E}), contradicting 5K .

We remark that Theorem 5.4 shows that the converse of Lemma A.4
does not hold.

Theorem 5.5: Let Λ be a logic in L(B, J,K) such that (KD45)B +(S5)K +
{L1,L2} ⊆ Λ. If every (KD45)B-algebra can be extended to an algebra of
Λ ∩ L(B, J), then K is not reducible to B and J in Λ.

Proof: Suppose, by way of contradiction, that every (KD45)B-algebra can
be extended to an algebra of Λ ∩ L(B, J) and that K is reducible to B
and J in Λ. Consider the (KD45)B-algebra A constructed in the proof of
Theorem 5.4. By assumption, it can be extended to a (Λ∩L(B, J))-algebra
A′. Since K is reducible to B and J , by Theorem 4.3, A′ can be extended to
a Λ-algebra A′′. In particular, A is a ((KD45)B +(S5)K +{L1,L2})-algebra.
But this contradicts Theorem 5.4.

Corollary 5.6: Let Λ be a logic in L(B, J,K) such that Λ ∩ L(B, J) =
KD45B + ΛJ , where ΛJ ⊆ S5J . Then K is not reducible to B and J in Λ.

Proof: It is easy to show that every (KD45)B-algebra A′ can be extended
to a ((KD45)B + ΛJ)-algebra, simply by defining an operator J on A′ by
taking J(1) = 1 and J(x) = 0 if x 6= 1. This makes the resulting algebra an
(S5)J -algebra. The result now follows from Theorem 5.5.
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