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Abstract

Computation plays a major role in decision making. Even if
an agent is willing to ascribe a probability to all states and
a utility to all outcomes, and maximize expected utility, do-
ing so might present serious computational problems. More-
over, computing the outcome of a given act might be diffi-
cult. In a companion paper we develop a framework for game
theory with costly computation, where the objects of choice
are Turing machines. Here we apply that framework to de-
cision theory. We show how well-known phenomena like
first-impression-matters biases (i.e., people tend to put more
weight on evidence they hear early on), belief polarization
(two people with different prior beliefs, hearing the same ev-
idence, can end up with diametrically opposed conclusions),
and the status quo bias (people are much more likely to stick
with what they already have) can be easily captured in that
framework. Finally, we use the framework to define some
new notions: value of computational information (a compu-
tational variant of value of information) and computational
value of conversation.

1 Introduction
Computation plays a major role in decision making. Even if
an agent is willing to ascribe a probability to all states and a
utility to all outcomes, and maximize expected utility—that
is, to follow the standard prescription of rationality as rec-
ommended by Savage [1954], doing so might present seri-
ous computational problems. Computing the relevant prob-
abilities might be difficult, as might computing the relevant
utilities. Work on Bayesian networks [Pearl 1988] and other
representations of probability, and related work on repre-
senting utilities [Bacchus and Grove 1995; Boutilier, Braf-
man, Domshlak, Hoos, and Poole 2004] can be viewed as
attempts to ameliorate these computational problems. Our
focus is on the complexity of computing the outcome of an
act in a given state. Consider the following simple example,
taken from [Halpern and Pass 2010].
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Suppose that a decision maker (DM) is given an input n,
and is asked whether it is prime. The DM gets a payoff of
$1,000 if he gives the correct answer and loses $1,000 if he
gives the wrong answer. However, he also has the option
of playing safe, and saying “pass”, in which case he gets a
payoff of $1. Clearly, many DMs would say “pass” on all but
simple inputs, where the answer is obvious, although what
counts as a “simple” input may depend on the DM.1

In [Halpern and Pass 2010], we introduced a model of
game theory with costly computation. Here we apply that
framework to decision theory. We assume that the DM can
be viewed as choosing an algorithm (i.e., a Turing machine);
with each Turing machine (TM) M and input, we associate
its complexity. The complexity can represent, for example,
the running time of M on that input, the space used, the
complexity of M (e.g., how many states it has), or the diffi-
culty of finding M (some algorithms are more obvious than
others). We deliberately keep the complexity function ab-
stract, to allow for the possibility of representing a number
of different intuitions. The DM’s utility can then depend,
not just on the payoff, but on the complexity.

The DM’s goal is to choose the “best” TM; the one that
will give him the greatest expected utility, taking both the
payoff and complexity into account. To make this choice,
the DM must have beliefs about the TM’s running time and
the “goodness” of the TM’s output. For example, if the TM
outputs “prime” on some input n, then TM must have be-
liefs about how likely n is to actually be prime. As this
example suggests, we actually need here to deal with what
philosophers have called “impossible” possible worlds [Hin-
tikka 1975; Rantala 1982]. If n is a prime, then this is
a mathematical fact; there can be no state where n is not
prime; nevertheless, since we want to allow for DMs that are
resource-bounded and cannot compute whether n is prime,
we want it to be possible for the DM to believe that n is
not prime. Similarly, if the complexity function is supposed
to measure running time, then the actual running time of a
TM M on input t is a fact of mathematics; nevertheless, we
want to allow the DM to have false beliefs about M ’s run-

1While primality testing is now known to be in polynomial time
[Agrawal, Keyal, and Saxena 2004], and there are computationally-
efficient randomized algorithms that that give the correct answer
with extremely high probability [Rabin 1980; Solovay and Strassen
1977], we can assume that the DM has no access to a computer.



ning time. We capture such false beliefs by having both the
utility function and the complexity function depend on the
state of nature.

As we show here, using these simple ideas leads to quite
a powerful framework. For example, many concerns ex-
pressed by the emerging field of behavioral economics (pio-
neered by Kahneman and Tversky [Kahneman, Slovic, and
Tversky 1982]) can be accounted for by simple assumptions
about players’ cost of computation. To illustrate this point,
we show that first-impression-matters biases [Rabin 1998],
that is, that people tend to put more weight on evidence they
hear early on, can be easily captured using computational
assumptions. We can similarly explain belief polarization
[Lord, Ross, and Lepper 1979]—that two people, hearing
the same information (but with possibly different prior be-
liefs) can end up with diametrically opposed conclusions.
Finally, we can also use the framework to formalize one of
the intuitions for the well-known status quo bias [Samuelson
and Zeckhauser 1998]: people are much more likely to stick
with what they already have.

As a final application, we use the framework to define a
new notion: value of computational information. To explain
it, we first recall value of information, a standard notion in
decision analysis. Value of information is meant to be a mea-
sure of how much a DM should be willing to pay to receive
new information. The idea is that, before receiving the infor-
mation, the DM has a probability on a set of relevant events
and chooses the action that maximizes his expected utility,
given that probability. If he receives new information, he can
update his probabilities (by conditioning on the information)
and again choose the action that maximizes expected utility.
The difference between the expected utility before and after
receiving the information is the value of the information.

In many cases, a DM seems to be receiving valuable infor-
mation that is not about what seem to be the relevant events.
This means that we cannot do a value of computation calcu-
lation, at least not in the obvious way. For example, suppose
that the DM is interested in learning a secret, which we as-
sume for simplicity is a number between 1 and 1000. A
priori, suppose that the DM takes each number to be equally
likely, and so has probability .001. Learning the secret has
utility, say, $1,000,000; not learning it has utility 0. The
number is locked in a safe, whose combination is a 40-digit
binary numbers. What is the value to the DM of learning the
first 20 digits of the combination? As far as value of infor-
mation goes, it seems that the value is 0. The events relevant
to the expected utility are the possible values of the secret;
learning the combination does not change the probabilities
of the numbers at all. This is true even if we put the possi-
ble combinations of the lock into the sample space. On the
other hand, it is clear that people may well be willing to pay
for learning the first 20 digits. It converts an infeasible prob-
lem (trying 240 combinations by brute force) to a feasible
problem (trying 220 combinations).

Although this example is clearly contrived, there are many
far more realistic situations where people are clearly will-
ing to pay for information to improve computation. For ex-
ample, companies pay to learn about a manufacturing pro-
cess that will speed up production; people buy books on

speedreading; and faster algorithms for search clearly are
considered valuable. We show that we can use our compu-
tational framework to make the notion of value of computa-
tional information precise, in a way that makes it a special
case of value of information.2 In addition, we define a no-
tion of computational value of conversation, where the DM
can communicate interactively with an informed observer
before making a decision (as opposed to just getting some
information). Interestingly, the notion of zero knowledge
[Goldwasser, Micali, and Rackoff 1989] gets an elegant in-
terpretation in this framework. Roughly speaking, a zero-
knowledge algorithm for membership in a language L is one
where there is no added value of conversation in running the
algorithm beyond what there would be in learning whether
an input x is in L, no matter what random variable is of in-
terest to the DM.

In the next section we define our computational frame-
work carefully, and show how it delivers reasonable results
in a number of examples. In Section 3, we consider the value
of computational information. We conclude with a discus-
sion of related work in Section 4.

2 A computational framework
The framework we use here for adding computation to deci-
sion theory is essentially a single-agent version of what were
called in [Halpern and Pass 2010] Bayesian machine games.
In a standard Bayesian game, each player has a type in some
set T , and then makes a single move. Player i’s type can be
viewed as describing i’s initial information; some facts that
i knows about the world. In the number-in-the-safe exam-
ple, there is essentially only one type, since the DM gets no
information. In the case of the manufacturing process, the
type could be the configuration of the system; manufactur-
ing processes typically apply to a number of configurations.
We assume that an agent’s move consists of choosing a Tur-
ing machine. As we said in the introduction, associated with
each Turing machine and type is its complexity. Given as in-
put a type, the Turing machine outputs an action. The utility
of a player depends on the type profile (i.e., the types of all
the players), the action profile, and the complexity profile.
(While typically all that matters to player i is the complexity
of his algorithm, it may, for example, matter to him that his
algorithm is faster than that of player j.)

Turning to decision theory, we take a standard deci-
sion problem with types to be characterized by a tuple
(S, T,A,Pr, u), where S is a state space, T is a set of types,
A is a set of actions, Pr is a probability distribution on S×T
(there may be correlation between states and types), and
u : S × T × A → IR, where u(s, t, a) is the DM’s util-
ity if he performs action a in state s and has type t.3 (It is
not typical to consider a decision maker’s type in standard
decision theory, but it does not hurt to add it; it will prove

2Our notion of value of computational information is related
to, but not quite the same as, the notion of value of computation
introduced by Horvitz [1987, 2001]; see Section 4.

3In [Halpern and Pass 2010], we did not have a state space S,
but we assumed that nature had a type. Nature’s type can be iden-
tified with the state.



useful once we consider computation.) For each action a,
we can consider the random variable ua defined on S by
taking ua(s, t) = u(s, t, a). The expected utility of action
a, denoted EPr[ua], is just the expected value of the ran-
dom variable ua with respect to the probability distribution
Pr; that is, EPr[ua] =

∑
(s,t)∈S×T Pr(s, t)u(s, t, a). We

assume that the DM is an expected utility maximizer, so he
chooses an action a with the largest expected utility.

To combine the ideas of Bayesian machine games and de-
cision problems, we consider computational decision prob-
lems. In a computational decision problem, just like in a
computational Bayesian machine game, the DM chooses a
Turing machine. We assume that the action performed by
the TM depends on the type. We denote by M(t) the out-
put of the machine on input the type t. To capture the DM’s
uncertainty about the TM’s output, we use an output func-
tion O : M × S × T → IN , where M denotes the set of
Turing Machines; O(M, s, t) is used to describe what the
DM thinks the output of M(t) is in state s. To simplify the
presentation, we abuse notation and use M(s, t) to denote
O(M, s, t).

The DM’s utility will depend on the state s, his type t,
and the action M(s, t), as is standard; in addition, it will
depend on the “complexity” of M given input t. The com-
plexity of a machine can represent, for example, the run-
ning time or space usage of M , or the complexity of M
itself, or some combination of these factors. For example,
Rubinstein [1986] considers what can be viewed as special
case of our model, where the DM chooses a finite automa-
ton (and has no type); the complexity of M is the number
of states in the description of the automaton. To capture the
cost of computation formally, we use a complexity function
C : M × S × T → IN , to describe the complexity of a TM
given an input type and state. (As we shall see, by allowing
the state to be included as an argument to C, we can capture
the DM’s uncertainty about the complexity.)

We define a computational decision problem to be a tu-
ple D = (S, T,A,Pr,M, C,O, u), where S, T , A, and
Pr are as in the definition of a standard decision problem,
M ⊆ M is a set of TMs (intuitively, the set that the DM
can choose among), O is an output function, C is a com-
plexity measure, and u : S × T × A × IN → IR. The
expected utility of a TM M in the decision problem D is∑

s∈S,t∈T Pr(s, t)u(s, t,O(M, s, t), C(M, s, t)). Note that
now the utility function gets the complexity of M as an ar-
gument. For ease of exposition here, we restrict to deter-
ministic TMs for most of the paper; we need to consider
randomized TMs for our results on zero knowledge.

Example 2.1 Consider the primality-testing problem dis-
cussed in the introduction. Formally, suppose that the DM’s
type is just a natural number < 240, and the DM must deter-
mine whether the type is prime. The DM can choose either
0 (the number is not prime), 1 (the number is prime), or 2
(pass). IfM is a TM, thenM(s, t) isM ’s output in state s on
input t. The state s here is used to capture the DM’s uncer-
tainty about the output. So if the DM believes that the DM
will output pass with probability 2/3, then the set of states
such that M(s, t) = 2 has probability 2/3. Let C(s, t,M)

be 0 if M computes the answer within 220 steps on input t,
and 10 otherwise. (Think of 220 steps as representing repre-
senting a hard deadline.) Here the state s encodes the DM’s
uncertainty about the running time of M . For example, if
the DM does not know the running time of M , but ascribes
probability 2/3 toM finishing in less than 220 steps on input
t, then the set of states s such that C(s, t,M) = 0 has prob-
ability 2/3. Finally, let utility u(s, t, a, c) = 10 − c if a is
either 0 or 1, and this is the correct answer in state s (that is,
t is viewed as prime in state s and a = 1, or t is not viewed
as prime in state s and a = 0), and u(s, t, 2, c) = 1−c. Now
the state s is used to encode the DM’s uncertainty about the
correctness of M ’s answer. (Note that we are allowing “im-
possible” states, where t is viewed as prime in state s even
though it is in fact composite; this is needed to model the
DM’s uncertainty.) Thus, if the DM is sure that M always
gives the correct output, then u(s, t, a, c) = 10 − c for all
states s and a ∈ {0, 1}.

We can also consider a variant of this problem, where
the DM is given a specific input t and is asked if t is prime.
Although there is obviously a right answer (the number is
prime or it’s not), the DM might still have uncertainty re-
garding whether a particular TM M gives the right answer,
the running time of M , and the output of M .

Example 2.2 Consider the number-in-the-safe example
from the introduction. Here there is only a single type,
t0; we can think of the state space S as consisting of
pairs (s1, s2, s3), where s1 is the number in the safe,
s2 is the combination, and s3 encodes the DM’s beliefs
about the complexity and correctness of TMs. An al-
gorithm in this case is just a sequence of combinations
to try and a stopping rule. Suppose that the agent gets
utility 10 − C((s1, s2, s3), t0,M) if s2 (the actual com-
bination) is one of the numbers generated by M before
it halts, and 0 − C((s1, s2, s3), t0,M) otherwise, where
C((s1, s2, s3), t0,M) is 0 ifM halts within 220 steps in state
(s1, s2, s3), and 10 otherwise.

Example 2.3 (Biases in information processing)
Psychologists have observed many systematic biases
in the way that individuals update their beliefs as new
information is received (see [Rabin 1998] for a survey).
In particular, a “first-impressions-matter” bias has been
observed: individuals put too much weight on initial signals
and less weight on later signals. As they become more
convinced that their beliefs are correct, many individuals
even seem to simply ignore all information once they
reach a confidence threshold. Several papers in behavioral
economics have focused on identifying and modeling
some of these biases (see, e.g., [Rabin 1998] and the
references therein, [Mullainathan 2002], and [Rabin and
Schrag 1999]). In particular, Mullainathan [2002] makes a
potential connection between memory and biased informa-
tion processing, using a model that makes several explicit
(psychology-based) assumptions on the memory process
(e.g., that the agent’s ability to recall a past event depends
on how often he has recalled the event in the past). More
recently, Wilson [2002] has presented an elegant model of
bounded rationality, where agents are described by finite



automata, which (among other things) can explain why
agents eventually choose to ignore new information; her
analysis, however, is very complex and holds only in the
limit (specifically, in the limit as the probability ν that a
given round is the last round goes to 0).

As we now show, the first-impression-matters bias can be
easily explained if we assume that there is a small cost for
“absorbing” new information. Consider the following sim-
ple game (which is very similar to the one studied by Mul-
lainathan [2002] and Wilson [2002]). The state of nature is
a bit b that is 1 with probability 1/2. An agent receives as
his type a sequence of independent samples s1, s2, . . . , sn
where si = b with probability ρ > 1/2. The samples cor-
responds to signals the agents receive about b. An agent is
supposed to output a guess b′ for the bit b. If the guess is
correct, he receives 1 − mc as utility, and −mc otherwise,
where m is the number of bits of the type he read, and c is
the cost of reading a single bit (c should be thought of the
cost of absorbing/interpreting information). It seems rea-
sonable to assume that c > 0; signals usually require some
effort to decode (such as reading a newspaper article, or at-
tentively watching a movie). If c > 0, it easily follows by
the Chernoff bound that after reading a certain (fixed) num-
ber of signals s1, . . . , si, the agents will have a sufficiently
good estimate of ρ that the marginal cost of reading one ex-
tra signal si+1 is higher than the expected gain of finding out
the value of si+1. That is, after processing a certain number
of signals, agents will eventually disregard all future signals
and base their output guess only on the initial sequence. We
omit the straightforward details.

Essentially the same approach allows us to capture belief
polarization. Suppose for simplicity that two agents start out
with slightly different beliefs regarding the value of some
random variable X (think of X as representing something
like “O.J. Simpson is guilty”), and get the same sequence
s1, s2, . . . , sn of evidence regarding the value of X . (Thus,
now the type consists of the initial belief, which can for ex-
ample be modeled as a probability or a sequence of evidence
received earlier, and the new sequence of evidence). Both
agents update their beliefs by conditioning. As before, there
is a cost of processing a piece of evidence, so once a DM
gets sufficient evidence for either X = 0 or X = 1, he will
stop processing any further evidence. If the initial evidence
supportsX = 0, but the later evidence supportsX = 1 even
more strongly, the agent that was initially inclined towards
X = 0 may raise his beliefs to be above threshold, and thus
stop processing, believing that X = 0, while the agent ini-
tially inclined towards X = 1 will continue processing and
eventually believe that X = 1.

Example 2.4 (Status quo bias) The status quo bias is well
known. To take just one example, Samuelson and Zeck-
hauser [1998] observed that when Harvard University pro-
fessors were offered the possibility of enrolling in some new
health-care options, older faculty, who were already enrolled
in a plan, enrolled in the new option much less often than
new faculty. Assuming that all faculty evaluate the plans in
essentially the same way, this can be viewed as an instance
of a status quo bias. Samuelson and Zeckhauser suggested a

number of explanations for this phenomenon, one of which
was computational. As they point out, the choice to un-
dertake a careful analysis of the options is itself a decision.
Someone who is already enrolled in a plan and is relatively
happy with it can rationally decide that it is not worth the
cost of analysis (and thus just stick with her current plan),
while someone who is not yet enrolled is more likely to de-
cide that the analysis is worthwhile. This explanation can
be readily modeled in our framework. An agent’s type can
be taken to be a description of the alternatives. A TM de-
cides how many alternatives to analyze. There is a cost to
analyzing an alternative, and we require that the decision
made be among the alternatives analyzed or the status quo.
(We assume that the status quo has already been analyzed,
through experience.) If the status quo already offers an ac-
ceptable return, then a rational agent may well decide not to
analyze any new alternatives. Interestingly, Samuelson and
Zeckhauser found that, in some cases, the status quo bias is
even more pronounced when there are more alternatives. We
can capture this phenomenon if we assume that, for exam-
ple, that there is an initial cost to analyzing, and the initial
cost itself depends in part on how many alternatives there
are to analyze (so that it is more expensive to analyze only
three alternatives if there are five alternatives altogether than
if there only three alternatives). This would be reasonable if
there is some setup cost in order to start the analysis, and the
setup depends on the number of items to be analyzed.

3 Value of computational information
3.1 Value of information: a review
Before talking about value of computational information, we
briefly review value of information. Consider a standard de-
cision problem. To deal with value of information, we con-
sider a partition of the state space S. The question is what it
would be worth to the DM to find out which cell in the parti-
tion the true state is in. (Think of the cells in the partition as
corresponding to the possible realizations of a random vari-
ableX , and the value of information as corresponding to the
value of learning the actual realization of X .) Of course, the
value may depend on the DM’s type t. To compute the value
of information, we compute the expected expected utility of
the best action given type t conditional on receiving the in-
formation, and compare it to the expected utility of the best
action for type t before finding out the information. We talk
about “expected expected utility” here because we need to
take into account how likely the DM is to discover that he is
in a particular cell.

Example 3.1 Suppose that an investor can buy either a
stock or bond. There are two states of the world, s1 and
s2, and a single type t0. A priori, the investor thinks s1
has probability 2/3 and s2 has probability 1/3. Buying the
bond gives him a guaranteed utility of 1 (in both s1 and s2).
In state s1, buying the stock gives a utility of 3; in state
s2, buying the stock gives a utility of −4. Clearly, a priori,
buying the stock has an expected utility of 2/3, so buying
the bond has a higher expected utility. What is the value
of learning the true state (which corresponds to the partition
{{s1}, {s2}})? Clearly if the true state is s1, buying the



stock is the best action, and has (expected) utility 3; in state
s2, buying the bond is the best action, and has expected util-
ity 1. Thus, the expected expected utility of the information
is (2/3)3 + (1/3)1 = 7/3 (since with probability 2/3 the
DM expects to learn that it is state s1 and with probability
1/3 the DM expects to learn that it is s2), and so the value
of information is 7/3− 1 = 4/3.

We leave it to the reader to write the obvious formal defi-
nition of value of information in type t.

3.2 Value of computational information
In our framework, it is easy to model the value of com-
putational information: it is just a special case of value of
information. Formally, given a standard decision problem
(S, T,A,Pr, u), we must first extend it to a computa-
tional decision problem (S′, T, A,Pr,M, C,O, u′). M
is some appropriate set of TMs; each TM in M outputs
an action in A given an element of S′ × T . As discussed
in Section 2, we need a richer state space to capture the
DM’s uncertainty regarding the output of the TM and
the running time of the TM chosen. We can take S′ to
have the form S × S′′, where s′′ ∈ S′′ determines the
running time and output of each TM M ∈ M. Sim-
ilarly, u′((s, s′′), t0,M((s, s′′), t0), C((s, s′′), t0,M))
depends on u(s,M((s, s′′), t)) and C((s, s′′), t,M).
(For example, we can assume that
u′((s, s′′), t0,M

′((s, s′′), t0), C((s, s′′), t0,M)) =
u(s,M(s, t))−C((s, s′′), t,M), but we do not require this.)

In this setting, value of computational information essen-
tially becomes a special case of value of information. The
only difference is that since the machine set M might be
infinite, there might not exist a machine with maximal ex-
pected utility. So, instead of comparing the expected utilities
of the best machines (before and after receiving the informa-
tion), we compare the supremum of the expected utilities of
machine M ∈ M (before and after receiving the informa-
tion). More precisely, given a partition Q of the state of
nature, for every cell q ∈ Q, let Prq denote the distribution
Pr conditioned on event that the state of nature is part of the
cell q. and let the random variable q(s, t) denote the cell of
s. The value of computational information (of learning what
cell q ∈ Q the state of nature is in) is

EPr

[
sup

M∈M
EPrq [u

′
M ]

]
− sup

M∈M
EPr [u

′
M ] . (1)

That is, on the left-hand side, we compute the expected ex-
pected utility by summing Pr(s, t) supM∈MEPrq(s,t)

[u′M ]

over all pairs (s, t) ∈ S′ × T . Effectively, this means that
the DM chooses the best TM for each cell, after being in-
formed what the cell is. We discuss this issue in more detail
in Section 3.3.

Using this formalism, we can consider the value of learn-
ing that a particular TM M is a “good” algorithm for the
problem at hand (i.e., either learning that it always gives the
correct answer, or always runs quickly), since this is just an
event, just like learning the value of some random variable
X is an event in a standard decision problem. In a compu-
tational decision problem, the DM has a prior probability on

M being good, and can compute the expected increase in
utility resulting from learning that M is good.

Example 3.2 Consider the primality-testing problem from
Example 2.1, viewed as a computational decision problem
(S, T,A,Pr,M, C,O, u′). Given the utility function, for
simplicity, we restrict M to to be a finite set of TMs that
all halt within 220 steps. Thus, the DM is certain of the
complexity of all TMs inM, and it is 0. On the other hand,
the DM can still be uncertain about the output of a TM, and
of the “goodness” of the output. For example, if M is a
TM that halts after one step and outputs 0, the DM may be
certain thatM ’s output is 0, but be uncertain as to the “good-
ness” of its output. Of course, such an algorithm might still
be worth using: if the agent places a high prior probability
on the input not being prime (which would be the case if the
input was chosen uniformly at random among all numbers
less than 240), then the expected utility of answering 0 for
all inputs is quite high. A yet better algorithm would be to
use some naive test for primality, run it for 220 steps, and
return 0 unless the algorithm says that the number is prime.
The DM can then ask what the value is of learning whether
a specific TM M is good (i.e., returns the correct answer
for all inputs). This depends on the DM’s prior probabil-
ity that M is good; but if it is low, then the value of infor-
mation is also low. Finally, we can ask the value of being
told a good algorithm (assume that the DM is certain that
there is a good algorithm, which always returns the right an-
swer in less than 220 steps, but doesn’t know which it is).
This amounts to learning the value of a random variable X
whose range is a subset of M, where X = M only if M
is a good TM. Clearly, after learning this information, the
DM’s expected expected utility will be 10 (no matter what
he learns, his expected utility will be 10). The value of this
information depends on the expected utility of the DM’s best
current algorithm. Note that if the DM believes that the in-
put is chosen uniformly at random, then the expected utility
of even the simple algorithm that returns 0 no matter what is
close to 10. On the other hand, if the DM believes that the
input is chosen so that primes and non-primes are equally
likely, the best algorithm is unlikely to have expected util-
ity much higher than 1 (the best strategy is likely to involve
testing whether the number is prime, outputting the answer
if the tests reveal whether the number is prime within 220

steps, and outputting 2 otherwise). In this case, the value of
this information would be close to 9.

Example 3.3 Consider the number-in-the-safe example,
viewed as a computational decision problem D =
(S, T,A,Pr,M, C,O, u′). Recall that the state space S has
the form (s1, s2, s3), where s1 is the number in the safe,
s2 is the combination of the safe, and s3 models the DM’s
uncertainty regarding the output of TMs and their running
time. There is only a single type, so we can take T = {t0}.
We have the obvious uniform probability on the first two
components of S. Again, we restrictM to algorithms that
halt within 220 steps. If it takes one time unit to test a par-
ticular combination, and the DM believes that the best ap-
proach is to generate some sequence of 220 combinations
and test them, then it is clear that the DM believes that



the expected utility of this approach is 2−20(1, 000, 000).
Learning the first 20 digits makes the problem feasible, and
thus results in an expected expected utility of 1, 000, 000 (no
matter which 20 digits are the right ones, the expected utility
is 1, 000, 000), and so has a high value of information.

3.3 Value of conversation
Recall that, for value of information, we consider how much
it is worth for a DM to find out which cell (in some partition
of the state space S) the true state s is in. In other words, we
consider the question of how much it is worth for the DM
to learn the value of f(s) of some function f on input the
true state s. A more general setting considers how much it
is worth for a DM to interact with another TM I (for infor-
mant) that is running on input the true state s.

Example 3.4 Suppose a number between 1 and 100 is cho-
sen uniformly at random. If the DM guesses the number cor-
rectly, he receives a utility of 100; otherwise, he receives a
utility of 0. Without any further information, the DM clearly
cannot get more than 1 in expected utility. But if he can
sequentially ask 7 yes/no questions, he can learn the num-
ber by using binary search (i.e., first asking if the number is
greater than 50; if so, asking if it is greater than 75; etc.),
getting a utility of 100. Thus, the value of a conversation
with a machine that answers 7 yes/no questions is 99.

The value of conversation with (a TM) I for standard de-
cision problem can be formalized in exactly the same way
as value of information. Formalizing computational value
of conversation requires extending the notion of computa-
tional decision problems to allow the DM to choose among
interactive Turing machines M (this was already done in
[Halpern and Pass 2010]). We omit the formal definition
of an interactive Turing machine (see, for example, [Gol-
dreich 2001]); roughly speaking, the machines use a special
tape where the message to be sent is placed and another tape
where a message to be received is written. We assume that
the DM chooses a TM M . M then proceeds in two phases.
First there is a communication phase, where M converses
with the informant I; then, after the communication phase
is over, M chooses an action for the underlying decision
problem. Note that what an interactive TM does (that is,
the message it sends or the action it takes after the commu-
nication phase is over) can depend on its input, the history
of messages received, and the random coins it tosses (if it
randomizes).

When considering an interactive TM M , we assume that
the complexity function C depends not only on the machine
M and its type t, but also on the messages that the DM
receives, and its random coin tosses. More precisely, we
define the view of an interactive machine M to be a string
t;h; r in {0, 1}∗; {0, 1}∗; {0, 1}∗, where t is the part of the
type actually read by M , r is a finite bitstring representing
the string of random bits actually used, and h is a finite se-
quence of messages received and read. If v = t;h; r, we
take M(v) to be the output of M given the view. (Note
that M(v) is either a message or an action in the underly-
ing decision problem, if the conversation phase is over.) We
now consider output functions O : M× S × {0, 1}∗ → IN ,

where M denotes a set of (interactive) Turing Machines, and
let O(M, s, v) describe what the DM thinks the output of
the machine M is, given the view v, if the state of nature
is s. Analogously, we now consider complexity functions
C : M× S × {0, 1}∗ → IN , and let C(M, s, v) describe the
complexity of the machine M given the view v if the state
of nature is s.

When running with M , I gets as input the actual state
s (we want to allow for the possibility that I has access to
some featuers of the world that M does not). That means
that the state s is playing a double role here; it is used both
to capture the fact thatM is interacting (in part) with nature,
and may get some feedback from nature, and to model the
DM’s uncertainty about the world. To formalize the compu-
tational value of conversation with I , let the random variable
viewI,M (s, t, rI , rM ) denote the view of the DM in state s
at the end of the communication phase when communicating
with I (running on input s with random tape rI ) if the DM
uses the machine M (running on input t with random tape
rM ). We assume that viewI,M (s, t, rI , rM ) is generated by
computing the messages sent by M and I at each step us-
ingO; that is, M ’s first message isO(M, s, v0), where v0 is
M ’s initial view t; 〈 〉; r′M , where 〈 〉 denotes the empty his-
tory, and r′M is a prefix of rM , M ’s sequence of random bits
(however much randomness M used to determine its first
message); similarly, I’s first message is O(I, s, v1), where
v1 = s; 〈m0〉; r′I , r′I is a finite prefix of rI , and m0 is the
first message sent by M ; and so on. This means that M ’s
beliefs about the sequence of messages sent is determined
by his beliefs about the individual messages sent in all cir-
cumstances.4

Let Pr+ denote the distribution on S × T × ({0, 1}∞)2

that is the product of Pr and the uniform distribu-
tion on pairs of random strings. For each pair (I,M)
of interactive TMs, we consider the random variable
u′I,M defined on S × T × ({0, 1}∞)2) by taking
u′I,M (s, t, rI , rM ) = u′(s, t,O(M, s, v), C(M, s, v)),
where v = viewI,M (s, t, rI , rM ). That is,
u′I,M (s, t, rI , rM ) describes the utility of the actions
that result when M converses with I in state s given input
t and random tape rI for I and rM for M , taking the
complexity of the interaction into account. The expected
utility of M when communicating with I is EPr+ [u

′
I,M ].

The computational value of conversation with I is now
defined as

sup
M∈M

EPr+
[
u′I,M

]
− sup

M∈M
EPr+

[
u′⊥,M

]
, (2)

where ⊥ is the “silent” machine that sends no messages.
That is, we compare the expected utility of best machine
communicating with I and the expected utility of the best
machine that runs in isolation (i.e., is communicating with
⊥).

There is a subtlety in this definition that is worth em-
phasizing. In general, when defining determining the best

4We can allow for M ’s beliefs about the sequence of messages
sent to be independent of his beliefs about individual messages, at
the price of complicating the framework.



choice of TM, we must ask whether it is reasonable to as-
sume that the TM knows it’s input. That is, is the choice
of TM being made before the DM knows the input, or af-
ter? For example, in the primality-testing problem of Ex-
ample 2.1, does the DM choose a TM before knowing what
number is or after. The answer to this question has no im-
pact if we do not take complexity into account, but it has a
major impact if we do consider complexity. Clearly, if we
know what the input n is, we can choose a TM that is likely
to give the right answer for M . There is clearly a very effi-
cient TM that gives the right answer for a specific input n; it
is the constant-time TM that just says “yes” if n is prime, or
the constant-time TM that just says “no” if n is not prime.
Of course, if there is uncertainty as to the quality of the TM,
the DM may be uncertain as to what utility he gets with each
choice. But the complexity is guaranteed to be low. On the
other hand, if the choice of TM must be made before the TM
knows the input, even if the DM understands the quality of
the TM chosen, there may be no efficient TM that does well
for all possible inputs.

Whether it is appropriate to assume that the TM is cho-
sen before or after the DM knows the input depends on the
application. For the most part, in [Halpern and Pass 2010],
we implicitly assumed that the choice was made before the
DM knew the input; this seemed reasonable for the applica-
tions of that paper. Here, in the definition of value of com-
putational information, we implicitly assumed that the DM
chose the best TM after learning the cell q (but before learn-
ing the input t). We could also have computed the value
of computational information under the assumption that the
TM had to be chosen before discovering q. This would have
amounted to putting the sup outside the scope of the EPr in
Equation (1); this would have given

sup
M∈M

EPr

[
EPrq [u

′
M ]
]
− sup

M∈M
EPr [u

′
M ] . (3)

Here we are implicitly assuming that the TM M chosen
takes the cell q(s, t) as an input; moreover, the TM “under-
stands” that the “right” thing to do with q(s, t) is to con-
dition (and thus, to compute the expectation using Prq).
Again, it is possible to allow more generality—the TM does
not have to condition; the definition of computational value
of of conversation implicitly allows this. While (3) is a per-
fectly sensible definition, it seems less appropriate when
considering value of information, where a DM might be
willing and able to devote a great deal of computation to a
problem after getting information (although there may well
be cases where (3) is indeed more appropriate than (1)).

By way of contrast, in (2), we are implicitly assuming that
the DM must choose the interactive TM before learning the
conversation; he does not get to choose a different one for
each conversation. We are evaluating the value of conver-
sation with I , rather than the value of a particular conversa-
tion with I . This is why we do not consider the expected
expected utility of the best algorithm after receiving the in-
formation, but rather consider the expected utility of “com-
municating, interpreting, and finally acting”. Intuitively, we
are assuming that a DM must choose a TM to interpret and
make use of the information gleaned from the conversation;

we want to take the cost of doing this interpretation into ac-
count, by choosing a TM that is able to interpret all possible
computations.

We could in principle define a notion of value of partic-
ular conversations with I , rather than the value of convers-
ing with I , by assuming that the DM chooses one TM that
decides how to converse with I , and then, after the con-
versation, chooses the best TM to take advantage of that
particular conversation. Thus, at the second step, the TM
chosen would depend on the conversation. Formally, this
amounts to having another sup inside the scope of EPr+ , but
this seems less appropriate here.

If we do not take the cost of computation into account,
whether we learn the conversation before or after making
the choice of TM is irrelevant. Indeed, the value of conver-
sation can be viewed as a special case of value of informa-
tion: for each “conversation-strategy” σ for the DM, simply
consider the value of receiving a transcript of the conversa-
tion between I(s) and σ(t) (where t is the type of the DM).
The value of conversation with I is then simply the maxi-
mum value of information over all conversation strategies σ.
By way of contrast, we cannot reduce computational value
of conversation to value of information. If there is a com-
putational cost associated with computing the messages to
send to I , the value of a conversation is no longer just the
maximum value of information.

Example 3.5 Consider the guess-the-number decision
problem from Example 3.4 again. What is the value of
a conversation with an informant I that picks two large
primes p and q, and sends the product N = pq to the
DM? If the DM manages to factor N , I sends the DM the
number chosen; otherwise I simply aborts. Clearly, the
value of information in the “best” conversation is 99 (the
DM learns the number and gets a utility of 100). However,
to implement this conversation requires the DM to factor
large number. If computation is costly and factoring is hard
(as is widely believed), it might not be worth it for the
DM to attempt to factor the numbers. Thus, the value of
conversation with I would be 0 (or close to 0).

3.4 Value of conversation and zero knowledge

The notion of a zero-knowledge proof [Goldwasser, Micali,
and Rackoff 1989] is one of the central notions in cryptog-
raphy. Intuitively, a zero-knowledge proof allows an agent
(called the prover) to convince another agent (called the ver-
ifier) of the validity of some statement x, without reveal-
ing any additional information. For instance, using a zero-
knowledge proof, a prover can convince a verifier that a
number N is the product of 2 primes, without actually re-
vealing the primes. The zero-knowledge requirement is for-
malized using the so-called simulation paradigm. Roughly
speaking, a proof (P, V ) (consisting of a strategy P for the
prover, and a strategy V for the verifier) is said to be perfect
zero knowledge if, for every verifier strategy Ṽ , there exists a
simulator S that can reconstruct the verifier’s view of the in-
teraction with the prover with only a polynomial overhead in



runtime.5 Note that the simulator is running in isolation and,
in particular, is not allowed to interact with the prover. Thus,
intuitively, in a zero-knowledge proof, the verifier receives
only messages from the prover that it could have efficiently
generated on its own by running the simulator S. The no-
tion of precise zero-knowledge [Micali and Pass 2006] aims
at more precisely quantifying the knowledge gained by the
verifier. Intuitively, a zero-knowledge proof of a statement x
has precision p if any view that the verifier receives in time
t after talking to the prover can be reconstructed by the sim-
ulator (i.e., without the help of the prover) in time p(|x|, t).
(There is nothing special about time here; we can also con-
sider precision with respect more general complexity mea-
sures.)

As we now show, there is a tight connection between the
value of conversation for computational decision problems
and zero knowledge. To explain the ideas, we first need to
introduce a new notion, which should be of independent in-
terest: value of computational speedup.

Computers get faster and faster. How much is it worth for
a DM to get a faster computer? To formalize this, we say that
a complexity function C′ is at most a p-speedup of the com-
plexity function C if, for all machines M , types t, and states
s, C′(M, s, t) ≤ C(M, s, t) ≤ p(C′(M, s, t)). Intuitively, if
p is a constant, the value of a p-computational speedup for
a DM measures how much it is worth for the DM to change
to a machine that runs p times faster than his current ma-
chine. More precisely, the value of a p-speedup in a compu-
tational decision problem D = (S, T,A,Pr,M, C,O, u′) is
the difference between the maximum expected utility of the
DM in D and the maximum expected utility in any decision
problem D′ that is identical to D except that the complexity
function in D′ is C′, where C′ is at most a p-speedup of C.

We now sketch the connection between zero-knowledge
and value of conversation. Given a language L, an objective
complexity function C : M × T → IN (one that does not
depend on the state of nature), and length parameter n, let
DCL,n denote the class of computational decision problems
D = (S, T,A,Pr, C′,O,M, u), where M is the set of in-
teractive Turing machines, S ⊆ {0, 1}n, types in T have the
form x; t′, where x ∈ S and t′ ∈ {0, 1}∗, and Pr is such that
Pr(s, t) > 0 only if s = x, t = x; t′, and x ∈ L (so that the
DM knows x and that x ∈ L). We also require that (1) the
DM does not have any uncertainty about the output and the
complexity functions: for all M, s, t, O(M, s, t) = M(t)
(so the DM knows the correct outputs of all machines) and
C′(M, s, t) = C(M, t) (so the DM knows the complexities
of all machines); and (2) D is monotone in complexity: for
all types t ∈ T , actions a ∈ A, and complexities c ≤ c′,
u(t, a, c) ≥ u(t, a, c′); that is, the DM never prefers to com-
pute more. In the full paper we prove the following.

Theorem 3.6 If (P, V ) is a zero-knowledge proof system for
the language L with precision p(·, ·) with respect to the com-
plexity function C, then for all n ∈ N and all computational
decision problem D ∈ DCL,n, the value of conversation with

5Technically, what is reconstructed is a distribution over views,
since both the prover and the verifier may randomize.

P inD is no higher than the value of a p(n, ·)-computational
speedup in D.

Thus, intuitively, if the DM is not uncertain about the com-
plexities and the outputs of machines, the value of partic-
ipating in a zero-knowledge proof is never higher than the
value of (appropriately) upgrading computers.

4 Discussion and Related Work
We have introduced a formal framework for decision mak-
ing that explicitly takes into account the cost of computation.
Doing so requires taking into account the uncertainty that a
DM may have about the running time of an algorithm, and
the quality of its output. The framework allows us to provide
formal decision-theoretic solutions to well-known observa-
tions such as the status-quo bias and belief polarization.

Of course, we are far from the first to recognize that deci-
sion making requires computation—computation for knowl-
edge acquisition and for inference. Nor are we the first to
suggest that the costs for such computation should be ex-
plicitly reflected in the utility function. Horvitz [1987] cred-
its Good [1952] for being the first to explicitly integrate the
costs of computation into a framework of normative ratio-
nality. For example, Good points out that “less good meth-
ods may therefore sometimes be preferred” (for computa-
tional reasons). In a sequence of papers (see, for example,
[Horvitz 1987; Horvitz 2001] and the references therein),
Horvitz continues this theme, investigating various policies
that trade off deliberation and action, taking into account
computation costs. The framework presented here could be
used to provide formal underpinnings to Horvitz’s work.

In terms of next steps, we have considered only one-shot
decision problems here. It would be very interesting to ex-
tend this framework to sequential decision problems. More-
over, we have assumed that agents can compute the proba-
bility of (or, at least, are willing to assign a probability to)
events like “TM M will halt in 10,000 steps” or “the out-
put of TM M solves the problem I am interested in on this
input”. Of course, calculating such probabilities itself in-
volves computation. Similarly, calculating utilities may in-
volve computation; although the utility was easy to compute
in the simple examples we gave, this is certainly not the case
in general. It would be relatively straightforward to extend
our framework so that the TMs computed probabilities and
utilities, as well as actions. In this setting, it may make
sense to allow for a more general representation of uncer-
tainty. That is, an agent may start with a set of probabilities
rather than a single probability, and may then refine that set
(perhaps to a single probability) over time. Similarly, an
agent may start with a set of possible utilities, rather than a
single utility.

Once we allow sets of probabilities and utilities, we need
to reconsider how to define the notion of “optimal choice”.
We could, for example, use the maxmin expected utility ap-
proach of Gilboa and Schmeidler [1989], associating with
each action the worst-case expected utility (over all proba-
bility distributions and utility functions considered possible)
and choose the action with the best worst-case expected util-
ity; other approaches may also be reasonable. However,



once we do this, we need to think about what counts as an
“optimal” decision if the DM does not have a probability and
utility, or has a probability only on a coarse space. An alter-
native approach might be to allow the set of TMs that the
DM considers possible to increase (at some computational
cost), but assume that DM has all the relevant probabilistic
information about the TMs that it can choose among. As
this discussion should make clear, there is much fascinating
research to be done in this area.

Considering sequential decision-making also allows us to
examine consistency of decisions. Taking cost of computa-
tion into account may make decisions appear consistent that
are not consistent without taking cost of computation into
account. As this discussion should make clear, there is much
fascinating research to be done in this area.
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