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Perhaps the most prominent current definition of (actual) causality is due to Halpern and Pearl. It is
defined using causal models (also known as structural equations models). We abstract the definition,
extracting its key features, so that it can be applied to any other model where counterfactuals are
defined. By abstracting the definition, we gain a number of benefits. Not only can we apply the
definition in a wider range of models, including ones that allow, for example, backtracking, but we
can apply the definition to determine if A is a cause of B even if A and B are formulas involving
disjunctions, negations, beliefs, and nested counterfactuals (none of which can be handled by the
Halpern-Pearl definition). Moreover, we can extend the ideas to getting an abstract definition of
explanation that can be applied beyond causal models. Finally, we gain a deeper understanding of
features of the definition even in causal models.

1 Introduction

Perhaps the most prominent current definition of (actual) causality is due to Halpern and Pearl [7, 8]
(HP from now on). It is defined using causal models (also known as structural equations models).
The fact that the definition is so tied to causal models has benefits—for example, the fact that causal
models can be represented graphically makes them relatively easy to work with—but also leads to a
number of limitations; specifically, the language in which we can express counterfactuals is limited (so
we cannot express causal statements that involve more complex counterfactuals), and we cannot deal
with backtracking. (See below for further discussion.) The goal of this paper is to abstract the definition
of causality in causal models, extracting its key features, so that it can be applied to any other model
where counterfactuals are defined.

Doing so lets us get around these limitations. For one thing, it lets us consider more general causal
statements. The HP definition of “A is a cause of B” in causal models can be applied only when A is a
conjunction of primitive events X = x, where X is a variable and x is a value in the range of X , and B is
a Boolean combination of primitive events. It cannot be applied if A is a disjunction, or if either A or B
involves modalities like belief or nested counterfactuals. But such statements are important in practice!
For example, Sartorio [19] gives examples where disjunctive causes play a significant role; Soloviev and
Halpern [20] give examples where nested counterfactuals are critical for expressing security properties.
And we clearly want to be able to reason about (and intervene on) agent’s beliefs. For example, we might
want to say “If were to intervene on Alice’s beliefs so that she believed that the vaccine was effective,
then she would take it”.

Causal models have been extended to allow counterfactuals that involve disjunctions and nested
counterfactuals [2], and reasoning about both knowledge/belief and causality [1] (although not interventions
on beliefs). These extensions involving disjunction and nested counterfactuals are not at all straightforward,
and lead to some arguably unreasonable axioms. For example, the axiom given by Briggs that characterizes
interventions involving disjunctions is [A∨A′]B⇔ ([A]B∧ [A′]B∧ [A∧A′]B). It is not clear why this is
appropriate. Briggs does not try to justify it and, indeed, admits that the axiom validates “the controversial
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rule Simplification of Disjunctive Antecedents . . . [which] most authors reject”. Dealing with interventions
on beliefs also seems quite nontrivial. All this means that a definition of causality involving these
constructs may well be controversial. The advantage of the approach that we are suggesting here is that,
as long as we start with a framework that has a definition of counterfactuals that a user is comfortable
with and supports these constructs, we can essentially import the HP definition to that framework. In
particular, we get a definition of causality in the counterfactual structures considered by Stalnaker [21]
and Lewis [14] that are standard in the philosophy literature. Moreover, we can show that this definition
generalizes that in causal models: as shown by Halpern [6], causal models correspond to a subset of
counterfactuals; we show here (see Theorem 4.5) that, in a causal model M, the original definition of
causality agrees with the new definition in the counterfactual structures M′ corresponding to M.

As we said above, the second key limitation of defining causality in causal models is that we cannot
deal with backtracking. As has often been observed, when considering the effect of an intervention
such as X = x in a causal model, no variables “upstream” of X in the causal graph are affected; only
descendants of X can be affected. This is referred to as “no backtracking”.

The argument for no backtracking is not hard to explain. If we intervene to set, say X = 2, then,
intuitively, all that should change are the values of variables that are descendants of X , since these are
the only ones that can be affected by the intervention. But, as argued by von Kügelen et al. [13], there
are cases where we want to ascribe causality but do not want to consider counterfactuals that result from
interventions. Intuitively, these are cases where the causal laws, not the background conditions, are
shared between the actual and counterfactual worlds. Consequently, the “upstream” variables must be
allowed to differ to accommodate possibly contradictory facts. As discussed by von Kügelen et al. (who
also give references to work in the cognitive psychology literature on the topic), people certainly consider
backtracking counterfactuals when evaluating causality. This makes it useful to have a definition of
causality that allows them. Causal models have been extended so as to deal with backtracking [13, 16],
but the definitions of causality used are quite different from the HP definition. Our approach lets us
import the HP definition “for free”, so to speak, as long as we start with a definition of counterfactual
that allows backtracking (again, as do the standard definitions of Stalnaker [21] and Lewis [14]).

This approach can be further extended to give an abstract definition of explanation. There are many
definitions of explanations in the literature. The modern literature goes back to the work of Hempel [10]
and Salmon [17], but this work is well known to have problems because it does not take causality into
account. Here we focus on causal explanations, again taking as our basis the work of Halpern and Pearl
[7, 9]. The definition is based on the defintion of causality (which is what will allow us to apply the
approach of this paper), but it also takes into account the well-known observation that what counts as an
explanation is relative to what an agent knows [3, 18]. As Gärdenfors [3] observes, an agent seeking an
explanation of why Mr. Johansson has been taken ill with lung cancer will not consider the fact that he
worked for years in asbestos manufacturing an explanation if he already knew this fact. It is relatively
straightforward to take an agent’s knowledge into account in our abstract approach. Doing so gives us
the tools we need to handle explanation as well.

Our Definition in a Nutshell The key intuition for the definition is the classic notion of but-for
causality used in the law literature: A is a cause of B if, but for A, B would not have happened. As
is well known (see Example 2.2), but-for causality does not suffice to give a definition of causality.
There are times we would like to call A a cause of B even if A is not a but-for cause of B. The definition
of actual causality in causal models and our new abstract definition can both be viewed as essentially
saying that A is a cause of B if, conditional on some appropriate C, A is a but-for cause of B. Like the
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definition of [7], we just require C to be a formula that is true (in the current state of the world).
In more detail, our notion says that A is an actual cause of B with respect to a language L if, roughly

speaking, the following three conditions (which are formalized in Section 4) hold:

AC1′. A and B both hold (in the true state of the world);

AC2′. There is a formula C ∈L such that C holds (in the true state of the world), and if ¬A∧C were to
hold (counterfactually) then ¬B would hold.

AC3′. A is minimal; that is, there is no formula A′ that implies A yet is not implied by A that also satisfies
AC2′.

Note that the definition above is parametrized by a language L . As we show, in case this language
L consists only of conjunctions of primitive events (and A,B are also restricted to this language),
then our definition collapses down to the HP definition of causality (see Theorem 4.2). Furthermore,
if the language is slightly richer, then the same is true even in recursive counterfactual structures,
counterfactual structures that essentially capture causal models (see Theorem 4.5).

Paper Outline The rest of the paper is organized as follows. In Section 2, we review the HP definition
of actual causality, as modified by Halpern [7]. In Section 3, we discuss causal-counterfactual families
(of models)—ccfs, a general class of frameworks to which our abstract definition applies. We show that
causal models and the counterfactual structures considered in the philosophy literature are instances of
ccfs. In Section 4, we give our abstract definition of causality, show that the HP definition is a special case
of it, and consider its implications in counterfactual structures. We consider backtracking in Section 5,
and explanation in Section ??. Proofs are deferred to the appendix.

2 Actual causality in causal models

Here we briefly review the definition of causal models introduced by Halpern and Pearl [8], and the
definition of actual causality in causal models. In fact, three variants of the definition have been proposed,
called the “original”, “updated”, and “modified” definitions [7]. We focus here on the modified definition,
both because it is the simplest to state and, as shown by Halpern [7], the easiest to work with, and because
it lends itself naturally to generalization. The material in the first three subsections of this section is
largely taken from [7]. While there are a number of other definitions of causality in causal models
(e.g., [4, 5, 11, 12, 22]), we focus on the HP definition here because our generalization is based on it
and because it has been the most influential (judging by Google scholar citations). We believe that our
approach should be applicable to other ways of defining causality, but we have not checked details.

2.1 Causal models

We assume that the state is described in terms of variables and their values. Some variables may have a
causal influence on others. This influence is modeled by a set of structural equations. It is conceptually
useful to split the variables into two sets: the exogenous variables, whose values are determined by
factors outside the model, and the endogenous variables, whose values are ultimately determined by the
exogenous variables. The structural equations describe how the latter values are determined.

Formally, a causal model M is a pair (S ,F ), where S is a signature, which explicitly lists the
endogenous and exogenous variables and characterizes their possible values, and F defines a set of
(modifiable) structural equations, relating the values of the variables. A signature S is a tuple (U ,V ,R),
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where U is a set of exogenous variables, V is a set of endogenous variables, and R associates with every
variable X ∈U ∪V a nonempty set R(X) of possible values for X (i.e., the set of values over which X
ranges). For simplicity, we assume here that V is finite, as is R(X) for every endogenous variable X ∈V .
F associates with each endogenous variable X ∈ V a function denoted FX (i.e., FX = F (X)) such that
FX : (×U∈U R(U))× (×Y∈V −{X}R(Y ))→ R(X). This mathematical notation just makes precise the
fact that FX determines the value of X , given the values of all the other variables in U ∪V . If there is
one exogenous variable U and three endogenous variables, X , Y , and Z, then FX defines the values of X
in terms of the values of Y , Z, and U . For example, we might have FX(u,y,z) = u+ y, which is usually
written as X =U +Y . Thus, if Y = 3 and U = 2, then X = 5, regardless of how Z is set.

The structural equations define what happens in the presence of external interventions. Setting the
value of some variables X⃗ to x⃗ in a causal model M = (S ,F ) results in a new causal model, denoted
MX⃗←x⃗, which is identical to M, except that, for each X ∈ X⃗ , the equation in F for X is replaced by X = x,
where x is the component of X in x⃗.

The dependencies between variables in a causal model M = ((U ,V ,R),F ) can be described using
a causal network (or causal graph), whose nodes are labeled by the endogenous and exogenous variables
in M, with one node for each variable in U ∪V . The roots of the graph are (labeled by) the exogenous
variables. There is a directed edge from variable X to Y if Y depends on X ; this is the case if there is
some setting of all the variables in U ∪V other than X and Y such that varying the value of X in that
setting results in a variation in the value of Y ; that is, there is a setting z⃗ of the variables other than X and
Y and values x and x′ of X such that FY (x,⃗z) ̸= FY (x′ ,⃗z). A causal model M is recursive (or acyclic) if
its causal graph is acyclic. If M is an acyclic causal model, then given a context, that is, a setting u⃗ for
the exogenous variables in U , the values of all the other variables are determined (i.e., there is a unique
solution to all the equations). We can determine these values by starting at the top of the graph and
working our way down. In this paper, following most of the literature, we restrict to recursive models.

2.2 Reasoning about causality

Given a signature S = (U ,V ,R), a primitive event is a formula of the form X = x, for X ∈ V and
x ∈ R(X). A basic causal formula (over S ) is one of the form [Y1 ← y1, . . . ,Yk ← yk]ϕ , where ϕ is
a Boolean combination of primitive events, Y1, . . . ,Yk are distinct variables in V , and yi ∈R(Yi). Such
a formula is abbreviated as [⃗Y ← y⃗]ϕ . The special case where k = 0 is abbreviated as ϕ . Intuitively,
[Y1 ← y1, . . . ,Yk ← yk]ϕ says that ϕ would hold if Yi were set to yi, for i = 1, . . . ,k. A causal formula
is a Boolean combination of basic causal formulas. Let L (S ) consist of all causal formulas over the
signature S . (We typically omit S when it is clear from context.)

A pair (M, u⃗) consisting of a causal model M and a context u⃗ is a (causal) setting. A causal formula
ψ is true or false in a setting. We write (M, u⃗) |= ψ if the causal formula ψ is true in the setting (M, u⃗).
The |= relation is defined inductively. (M, u⃗) |= X = x if the variable X has value x in the unique (since
we are dealing with acyclic models) solution to the equations in M in context u⃗ (i.e., the unique vector of
values for the variables that simultaneously satisfies all equations in M with the variables in U set to u⃗);
(M, u⃗) |= [⃗Y ← y⃗]ϕ if (MY⃗ =⃗y, u⃗) |= ϕ; and Boolean combinations are defined in the standard way.

2.3 The modified definition of actual causality

We are now in a position to state the (modified) definition of actual causality in causal models.

Definition 2.1: X⃗ = x⃗ is an actual cause of ϕ in the causal setting (M, u⃗) if the following three conditions
hold:
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AC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= ϕ .

AC2. There is a set W⃗ of variables in V disjoint from X⃗ , w⃗∗ ∈R(W⃗ ), and x⃗ ∈R(X⃗) such that (M, u⃗) |=
W⃗ = w⃗∗ and (M, u⃗) |= [X⃗ ← x⃗′,W⃗ ← w⃗∗]¬ϕ .1

AC3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′ satisfies condition AC2, where x⃗′

is the restriction of x⃗ to the variables in X⃗ .2

2.4 The role of AC2

The motivation for AC2 was to be able to deal with examples like the following, due to Lewis [15]. (The
following analysis is largely taken from [7].)

Example 2.2: Suzy and Billy both pick up rocks and throw them at a bottle. Suzy’s rock gets there first,
shattering the bottle. Because both throws are perfectly accurate, Billy’s would have shattered the bottle
had it not been preempted by Suzy’s throw.

We would like to call Suzy’s throw the cause of the bottle shattering. This is the case in an appropriate
causal model. The following causal model Mrt does the job. There are five endogenous variables:

• ST for “Suzy throws”, with values 0 (Suzy does not throw) and 1 (she does);

• BT for “Billy throws”, with values 0 (he doesn’t) and 1 (he does);

• BS for “bottle shatters”, with values 0 (it doesn’t shatter) and 1 (it does).

• BH for “Billy’s rock hits the (intact) bottle”, with values 0 (it doesn’t) and 1 (it does); and

• SH for “Suzy’s rock hits the bottle”, again with values 0 and 1.
For simplicity, assume that there is one exogenous variable U , with values i j, i, j ∈ {0,1}, which
determines whether Billy and Suzy throw.

We consider the following equations for the variables:
• ST = 1 iff U ∈ {10,11};
• BT = 1 iff U ∈ {01,11};
• SH = 1 iff ST = 1;

• BH = 1 iff BT = 1 and SH = 0 (this builds into the equation the fact that Billy rock does not hit
the intact bottle if Suzy’s rock already hit it);

• BS = 1 iff SH = 1 or BH = 1.
Now consider the context U = 11, where both Suzy and Billy throw rocks. In this context, most

people want to view ST = 1 as a cause of the bottle shattering, while BT = 1 is not. But ST = 1 is not
a but-for cause of the bottle shattering; had Suzy not thrown, the bottle would have shattered anyway
(Billy’s rock would have hit it). Nevertheless, it is a cause. To show that ST = 1 is a cause, we take W in
AC2 to be {BH}, and fix BH at its actual value of 0 (in fact, Billy ’s throw does not hit the bottle). Note
that (M,11) |= [ST← 0,BH← 0]BS = 0, so AC2 holds for ST = 0; clearly AC1 and AC3 hold as well.
Thus, ST = 1 is a cause of BS = 1 in the context U = 11. It is easy to see that the symmetric argument
does not show that BT = 1 is a cause. We cannot fix SH = 0, because in the actual state, SH is 1, not 0.
We can think of ST = 1 as a but-for cause of BS = 1, conditional on BH = 0.

1Although the definition in [7] does not explicitly say that W⃗ is disjoint from X⃗ , since interventions are performed on distinct
variables, this follows from the notation.

2Note that X⃗ ′ = x⃗′ is guaranteed to satisfy AC1, which is why only AC2 is mentioned here.
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The idea of fixing some variables at their actual values, as embodied by AC2, seems at first somewhat
ad hoc. While it does give us the “right” answer in the example above, why should we want to do it in
general? The idea of keeping some variables fixed at their actual value turns out to be quite a powerful
one. This is perhaps best seen if we consider causality along a path. To take a simple example, suppose
that someone’s gender affects the outcome of a loan decision in two ways. First, gender affects salary,
which in turns affects the decision. Second, gender affects how reliable someone is viewed as being (say,
for example, that men are viewed as less likely to repay loans, even fixing everything else). That is, we
have a simple causal graph with variables G (gender) that affects both S (salary) and R (reliability), while
S and R both affect L (loan repayment).

We might decide that it is legitimate to take salary into account when considering loan repayment,
but not the perception of reliability. That is, we might decide that it is legitimate to consider the effect of
gender along the path G−S−L, but not along the path G−R−L. We can model causality along a path
by simply fixing the values of variables at their actual values off the path. In this case, since we do not
want to consider the impact of perception of reliability, we fix R at its actual value, which allows us to
consider the impact of changing G along the path G−S−L.3

Fixing the values of some variables W⃗ is useful beyond being able to capture path causality. It allows
us to consider causality conditional on certain features of the state being kept fixed—the key feature of
our more abstract generalized definition.

3 Causal-counterfactual families

We want to define causality for all families of structures that satisfy certain minimal conditions. To that
end, we consider (for lack of a better name) causal-counterfactual families (ccfs). A ccf M is a family
of models or structures (we use the latter two words more or less interchangeably) such that each model
M ∈M has a set of possible states or worlds, and there is a semantics that allows us to define (M,w) |= ϕ

for all formulas in a language L M . We require that L M include primitive events in some signature S ,
and be closed under conjunction and negation (so contains L (S )) and basic counterfactuals, so that if
ϕ and ψ are in L (S ), then ϕ → ψ ∈L M . But L M may also be far more expressive and include, for
example, nested counterfactuals, and modalities such as belief and time. The richness of L M is exactly
what will allow our abstract definition of causality to apply to quite expressive languages.

3.1 Causal models as a ccf

We can almost view causal models (over S ) as a ccf M . The states are the contexts. Let the language
L +(S ) be the minimal language allowed, namely, the result of starting with L (S ) and then extending
it to include formulas of the form ϕ → ψ , where ϕ and ψ are in L (S ). (Thus, L +(S ) has nested
counterfactuals, while L (S ) does not.) We take L M = L +(S ).

We might hope to identify ϕ → ψ with [ϕ]ψ . This works fine as long as ϕ is a conjunction of
primitive events. But [ϕ]ψ is not defined in causal models for an arbitrary Boolean combination ϕ of
primitive events. So, in order to view causal models as a ccf, we have to define the semantics of ϕ → ψ

for an arbitrary Boolean combination ϕ of primitive events. To give semantics to a counterfactual of
the form ϕ → ψ ∈L +(S ), we proceed as follows: Let Y⃗ be the endogenous variables that appear in
ϕ . Then we take (M, u⃗) |= ϕ → ψ iff there exists a vector y⃗ of values such that ϕ ∧ Y⃗ = y⃗ is consistent
(when viewed as a propositional formula) and (M, u⃗) |= [⃗Y ← y⃗]ψ . It is easy to check that ϕ→ ψ agrees

3Thanks to Sander Beckers for pointing this out to us.
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with [ϕ]ψ if ϕ is a conjunction of primitive events, so this is a generalization of the standard definition of
counterfactuals in causal models. This definition seems somewhat ad hoc and, indeed, has some counter-
intuitive properties (see Example 4.4). For example, why restrict Y⃗ to consisting only of variables that
appear in ϕ? Indeed, there are other definitions of counterfactuals in causal models that agree with [ϕ]ψ
if ϕ is a conjunction of primitive propositions. For example, we could take ϕ → ψ to be [ϕ]ψ if ϕ is
a conjunction of primitive propositions, and false otherwise. The current definition has the benefit of
allowing us to prove that the generalized definition of causality agrees with the HP definition in causal
models (see Theorem 4.2).

3.2 Counterfactual structures as a ccf

For our purposes, a (Lewis-style) counterfactual structure M over S is a tuple (S,R,π), where S is a
finite set of states, π is an interpretation that maps each state to a truth assignment on the primitive events
over S , and R is a ternary relation over S. Intuitively, (s, t,u) ∈ R if t is at least as close to s as u is.4 Let
t ⪯s u be an abbreviation for (s, t,u) ∈ R. Define t ≺s u if t ⪯s u and u ̸⪯s t. For simplicity, we require
that ⪯s be reflexive and transitive and assume that s≺s t for all t ̸= s ∈ S (so, intuitively, s is the unique
state closest to itself according to ⪯s). These are standard assumptions in the literature.

As for the language, we again fix a signature S . Taking M c(S ) to be the counterfactual structures
over signature S (so that the interpretation π in these structures gives semantics to primitive events over
S ), we assume that L M c(S ) includes L (S ) and is closed under conjunction, negation, counterfactuals
(so that if ϕ,ψ ∈L M c(S ), then so is ϕ → ψ , which means that we have nested counterfactuals). As
usual, given a counterfactual structure M ∈M c(S ) and state s, we define (M,s) |= ϕ → ψ if for all
states t such that (M, t) |= ϕ and there is no state t ′ such that (M, t ′) |= ϕ and t ′ ≺s t, we also have
(M, t) |= ψ . That is, (M,s) |= ϕ→ψ if in all the closest states to s satisfying ϕ , ψ also holds. (It follows
that (M,s) |= ϕ → ψ vacuously if there are no states t such that (M, t) |= ϕ .)

The careful reader will have noticed that this means we are treating formulas with negations differently
in counterfactual structures and in causal models. For example, in the former case, the formula (X ̸= x)→
ψ is taken to be true at a state s if at the closest state to s such that X ̸= x, ψ is true. In the latter case,
the formula is true if, roughly speaking, there exists some value x′ such that at the closest state where
X = x′, ψ is true. If X is a binary variable and takes on only two values, say x and x′, at the closest state
where where X ̸= x, we must have X = x′, and the two approaches agree. But if X is not binary, the two
approaches may not agree. As we shall see, this distinction disappears given how we deal with causality.

4 A more general abstract definition of actual causality

We now define actual causality in arbitrary ccfs. While the focus of this paper is on causal models and
counterfactual structures, we stress that the definition applies far more broadly. For example, rather than
Lewis-style counterfactual structures, we could consider Stalnaker-style counterfactual structures [21],
where there is a function f that associates with each state s and formula ϕ a unique state f (s,ϕ) closest
to s that satisfies ϕ . We can also apply the definition to subclasses of counterfactual structures (and do),
alternate definitions of causal models, and the extended causal models of Lucas and Kemp [16]. In the
definition, the set of possible witnesses is a parameter. As we shall see, this provides useful flexibility.

4The presentation here follows that of Halpern [6], with some simplifications for ease of exposition. Although we focus on
Lewis’s definition [14], largely the same approach handles that of Stalnaker [21], who assumes that there is a unique closest
state, while Lewis allows for a set of closest states.
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Definition 4.1: Given a ccf M and set CX ⊆L M of formulas, ϕ is an actual cause of ψ with respect
to CX in a model M ∈M and state s if the following three conditions hold:

AC1′. (M,s) |= ϕ ∧ψ;

AC2′. There is a formula τ ∈ CX such that (M,s) |= τ and (M,s) |= (¬ϕ ∧ τ)→¬ψ .

AC3′. ϕ is minimal; there is no formula ϕ ′ ∈ CX such that |= ϕ ⇒ ϕ ′ and ̸|= ϕ ′⇒ ϕ such that AC2′

holds with ϕ replaced by ϕ ′.

4.1 Applying the abstract definition in actual causal models

This definition is, by design, quite similar to the definition of actual causality in causal models, but more
general. Causes no longer have to have the form X⃗ = x⃗, and we allow the witnesses in W⃗ to come from
some arbitrary set CX⃗ of formulas that may depend on X⃗ . But, as we observed above, there is a nontrivial
difference in how negation is dealt with. As we hinted above, despite this difference, in causal models,
we defined→ so that AC2 and AC2′ lead to identical conclusions (with the appropriate choice of CX⃗ ).

Theorem 4.2: Let CX⃗ consist of all formulas τ such that τ is a conjunction of arbitrary (non-negated)
primitive events (so CX⃗ is in fact independent of X⃗). Then X⃗ = x⃗ is a cause of ψ in a (recursive) causal
setting (M, u⃗) according to AC1-3 iff X⃗ = x⃗ is a cause of ψ with respect to CX⃗ in (M, u⃗) according to
AC1′-3′.

The choice of CX⃗ in Theorem 4.2 ensures that, just as in AC2, in whatever corresponds to the “closest
states s′ to s where X⃗ ̸= x⃗∧ τ is true, a formula of the form X⃗ = x′∧ τ is true, where τ is the conjunction
of all the primitive events in τ (but does not involve the negations of primitive events in τ). It easily
follows that (M,s) |= τ , which shows that AC2′ ends up with a formula much like that in AC2.

It is also worth noting that if C ′
X⃗
⊇ CX⃗ , then the forward direction of Theorem 4.2 holds, but the

converse may not. Theorem 4.2 does continue to hold if we allow negated primitive events as conjuncts,
but once we allow disjunctions of primitive events, the converse fails in general. For example, if τ is
SH = 0∨BH = 0 in Example 2.2, then clearly (Mrt ,U11) |= τ . Moreover, BT = 0∧SH = 0∧BH = 0 is
consistent with BT ̸= 1∧τ , and (Mrt ,U11) |= [BT← 0,SH← 0,BH← 0](BS = 0), so with this choice of
C ′X , BT = 1 would be a cause of BS = 1.

This example (and Theorem 4.2, for that matter) very much depend on the fact that Y⃗ consists
precisely of the variables that appear on the left of the→.

4.2 Applying the abstract definition of causality in recursive counterfactual structures

As we now show, the abstract definition of causality, when applied to a subfamily of counterfactual
structures, can be viewed as generalizing the definition in causal structures. The subfamily of counterfactual
structures corresponds in a precise sense to recursive causal models. Formally, a counterfactual structure
M′ corresponds to a causal model M if M and M′ agree on all the equations; more precisely, for each
endogenous variable Y , if SY = (U ∪V )−{Y}, then for each setting s⃗Y of the variables in SY , and
each state s, in the closest states to s such that SY = s⃗Y holds, we have that Y = FY (⃗sY ). M′ strongly
corresponds to M if (a) M′ corresponds to M, (b) for each assignment v of values to variables, there is a
state in M′ where v is the assignment, and (c) for each state s, if (M′,s) |=U = u⃗ and ψ is a propositional
formula such that U = u⃗∧ψ is consistent, then in the closest states to s such that ψ holds, we have that
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U = u⃗.5 Roughly speaking, U = u⃗ continues to hold in the closest states to s unless some value in U
is explicitly changed. (M′,s) is (strongly) consistent with (M, u⃗) if M′ (strongly) corresponds to M and
(M′,s) |= U = u⃗.

A counterfactual structure is recursive if it strongly corresponds to a recursive causal model. In
general, there may be many recursive counterfactual structures that strongly correspond to a given
recursive causal model; the definition of strong consistency does not specify how the closest-state relation
R in the counterfactual structure should work for formulas that are not structural equations. Nevertheless,
as the following result shows, recursive counterfactual structures are closely related to (recursive) causal
models, at least as far as counterfactual reasoning is concerned. We say that (M′,s) is a recursive setting
if M′ is a recursive counterfactual structure and s is a state in M′.

Proposition 4.3: [6, Theorem 3.4] If (M, u⃗) is a recursive causal setting and (M′,s) is a recursive setting
that is strongly consistent with (M, u⃗), then for all formulas ϕ ∈ L (S ), (M, u⃗) |= ϕ iff (M′,s) |= ϕ

(where we identify ψ → ψ ′ with [ψ]ψ ′).

The restriction to L (S ) is critical here, as the following example shows.

Example 4.4: Consider a recursive causal model M with two endogenous variables, X and Y , and one
exogenous variable U , such that R(U) =R(X) =R(Y ) = {0,1,2}. Suppose that U is the unique parent
of X , and X is the parent of Y ; the equation for X is X = U , and the equation for Y is Y = X . Let ψ be
the formula (X ̸= 0→ Y = 1)∧ (X ̸= 0→ Y = 2). Note that ψ /∈L (S ) due to the antecedent X ̸= 0. It
is easy to see that (M,U = 0) |= ψ , but there can be no counterfactual structure M′ and state s such that
(M′,s) |= ψ .

Despite this example, we have the following result (whose proof is deferred to the appendix).

Theorem 4.5: Let X⃗ be a set of endogenous variables, and let CX⃗ consist of all formulas τ such that τ

is a conjunction of (a) arbitrary (non-negated) primitive events, and (b) a disjunction of the form X⃗ =
x⃗∨ X⃗ = x⃗∗, where x⃗∗ ̸= x⃗. If (M, u⃗) is a recursive causal setting and (M′,s) is a recursive counterfactual
structure that is strongly consistent with (M, u⃗) then X⃗ = x⃗ is a cause of ψ in (M, u⃗) according to AC1-3
iff X⃗ = x⃗ is a cause of ψ with respect to CX⃗ in (M′,s) according to AC1′-3′.

Note that CX⃗ differs in Theorems 4.2 and 4.5. These results show the power of allowing CX⃗ as a
parameter.

On the Role of the Language: We emphasize that for Theorem 4.5 to hold, we must allow the set
CX⃗ of formulas that we condition on to contain (a quite restricted form of) disjunctions. If we were to
allow arbitrary disjunctions, in particular, disjunctions that contain ¬ψ , then any formula would become
a cause of ψ , and the definition becomes trivial. This issue can be dealt with by disallowing CX⃗ to
contain formulas τ such that ¬ϕ ∧ τ implies ψ in all possible states, yet ¬ϕ alone does not imply ψ

in all possible states. (Indeed, the disjunction from Theorem 4.5 satisfies this condition if the model is
sufficiently rich.)

An even easier, and arguably more natural, way of dealing with this issue is to simply restrict CX⃗ to
contain only a conjunction of primitive events. Then, however, our definition and the HP definition would
diverge: Suppose that Bob is placed in a room with a ticking bomb, which can be defused by entering a
secret 100-digit combination. Bob can decide to run away, or try pushing in a number combination. If

5Although formulas of the form U = u⃗ are not in the language L (S ), for the purposes of this discussion, we assume that
we have extended the language to include them, with the obvious semantics.
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Bob runs away and the bomb explodes, should his action of running away be considered the cause of it?
According to the HP definition, it would (since if Bob had just entered the right combination, then the
bomb would be defused). According to our definition (and disallowing disjunctions and negations in CX⃗ ),
it would depend on what number combination Bob would enter in the closest world where he does not
run away. For instance, if Bob knows the right combination, then him running away would be considered
a cause, but if he does not, then it would not. Arguably, the new definition (without disjunctions) gives
the more reasonable answer in this situation. On the other hand, if the number combination is short (say,
1 digit), then arguably the HP definition would give the right answer whereas for ours it depends on what
number combination Bob would enter in the closest world where he stays (and on how many trials he
gets).

5 Backtracking

As has often been observed, when considering the effect of an intervention such as X = x in a causal
model, no variables “upstream” of X in the causal network (more precisely, no variables that are not
descendants of X) are affected; only descendants of X can be affected. By way of contrast, even in
recursive counterfactual structures, in the state(s) closest to (M,s) where X = x is true, it may well
be the case that ancestors of X have changed their value. Such backtracking is allowed in Lewis-style
models, when considering closest states. Kügelgen et al. [13] introduced a whole mechanism for allowing
backtracking counterfactuals in causal models that involved changing the values of exogenous variables.
Note that changing the values of an exogenous variable is not viewed as an intervention; rather, it is
assumed that the agent considering whether X⃗ = x⃗ is a cause of ϕ is uncertain about the value of the
exogenous variable, and is considering what would happen to ϕ if the value of the exogenous variable
were different. Here we show that our abstract definition of causality allows backtracking in a natural
way, without having to introduce a special mechanism for it. Indeed, we can move smoothly from
allowing backtracking to forbidding it, just by fixing an appropriate set of variables.

It follows from Proposition 4.5 that we have no backtracking in recursive counterfactual structures
that strongly correspond to causal models. But once we allow the context to change when considering
causality, we can get backtracking. This is exactly what happens when we move from counterfactual
structures that strongly correspond to a causal model to ones that just correspond to a causal model.

Example 5.1: Recall the causal setting (Mrt ,U = 11) for Example 2.2, the rock-throwing example. Let
M′ = (S,R,π) be consistent with Mrt . Let s be a state such that (M′,s) is consistent with (Mrt ,U = 11);
in particular, (M′,s) |= ST = BT = SH = BS = 1∧BH = 0. Define R so that the closest state s′ to s is
such that (M′,s′) |= U = 00, so that (M′,s′) |= ST = BT = SH = BH = BS = 0. With these choices, M′

does not strongly correspond to M. It is easy to see that (M′,s) |= BT = 0→ BS = 0, so BT = 1 is a cause
of BS = 1 in (M′,s). By allowing the context to change in the closest state to s, we get backtracking.

By working with a counterfactual setting (M′,s) that corresponds to a causal setting (M, u⃗), we can
capture causality with and without backtracking in (M, u⃗), simply by adding the appropriate conjuncts to
the formula τ in AC2′. For example, if we want capture why X⃗ = x⃗ is a cause of ϕ without backtracking,
we simply add the conjunct U = u⃗ to ψ . If we want to allow some backtracking, we may want to fix the
values of some ancestors of X⃗ to their actual value, without fixing U . This makes it clear that whether
or not we have backtracking depends on the set of formulas CX from which τ is drawn.
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6 An Abstract Definition of Explanation

Our approach can be extended to deal with causal explanation, using the HP definition [7, 9]. We start
by reviewing the HP definition of explanation; for more details and intuition, see [7]. As noted in the
introduction, the HP definition of causality is relative to an agent and, specifically, what the agent knows.
In causal models, an agent’s knowledge is captured by the agent’s epistemic state K , where K is a set of
contexts settings with a fixed causal model M.6 Intuitively, the contexts in K are the ones that the agent
considers possible, and reflects the agent’s uncertainty regarding how the world works (represented by the
equations involving context u⃗) and what is currently true (represented by the context u⃗). As is standard,
we say that an agent knows ϕ if ϕ is true at all the settings in K .

We next give the formal definition of explanation in causal models, and then give intuition for the
clauses, particularly EX1(a).

Definition 6.1: X⃗ = x⃗ is an explanation of ψ in a model M relative to a set K of contexts in M if the
following conditions hold:

EX1(a). If u⃗ ∈K and (M, u⃗) |= X⃗ = x⃗∧ψ , then there exists a conjunct X = x of X⃗ = x⃗ and a (possibly
empty) conjunction Y⃗ = y⃗ such that X = x∧ Y⃗ = y⃗ is a cause of ψ in (M, u⃗).

EX1(b). (M, u⃗′) |= [X⃗ ← x⃗]ψ for all contexts u⃗′ ∈K .

EX2. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′ satisfies EX1(a) and EX1(b), where
x⃗′ is the restriction of x⃗ to the variables in X⃗ .

EX3. For some u⃗∈K , we have that (M, u⃗)) |= X⃗ = x⃗∧ψ . (The agent considers possible a setting where
the explanation and explanandum both hold.)

The explanation is nontrivial if it also satisfies

EX4. (M, u⃗′) |= ¬(X⃗ = x⃗) ∧ψ for some u⃗′ ∈ K (The explanation is not already known given the
observation of ψ .)

The key part of the definition is EX1(b). Roughly speaking, it says that the explanation X⃗ = x⃗ is a
sufficient cause for ψ: for all settings that the agent considers possible, intervening to set X⃗ to x⃗ results in
ψ . (See [7, Chapter 2.6] for a formal definition of sufficient cause.) EX2 and EX3 should be fairly clear.
EX4 is meant to capture the intuition (discussed in the introduction) that what counts as an explanation
depends on what the agent knows. In the formal model, this is captured by the set K . That leaves
EX1(a). Roughly speaking, it says that the explanation causes the explanandum. But there is a tension
between EX1(a) and EX1(b) here: we may need to add conjuncts to the explanation to ensure that it
suffices to make ψ true in all contexts (as required by EX1(b)). But these extra conjuncts may not be
necessary to get causality in all contexts. At least one of the conjuncts of X⃗ = x⃗ must be part of a cause of
ψ , but the cause can include extra conjuncts. To understand why, it is perhaps best to look at an example.

Example 6.2: Consider a version of the rock-throwing example where now in the causal model M it is
possible that (a) Suzy’s rock gets to the bottle first, (b) Billy’s rock gets to the bottle first, or (c) both rocks
arrive simultaneously. We capture this using 12 contexts of the form ui jk where, as before i = 1 if Suzy

6In [7] there is also assumed to be a probability on K ; for simplicity, we ignore the probability here. Also, in [7], an agent
may be uncertain about the model as well as the context. Assuming that the model is fixed, as we are doing here, is without
loss of generality. If an agent is uncertain about the model, that uncertainty can be encoded into the context by having a special
exogenous variable u∗ that determines the model; that is, the value of u∗ gives the model. Given a model M, the equations in M
can be encoded using equations that hold when u∗ = M.
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throws and j = 1 if Billy throws. If k = 1 (resp., k = 2, k = 3) and both Billy and Suzy throw, then Suzy’s
rock gets to the bottle first (resp., Billy’s rock gets to the bottle first; the rocks arrive simultaneously). In
all cases, just one rock hitting the bottle suffices for the bottle to shatter.

Consider K1 = {u111,u112,u101}. An explanation for the bottle shattering relative to K1 is ST =
1∧BT = 1. Each of ST = 1 and BT = 1 satisfies EX1(b). But while ST = 1 is a cause of the bottle
shattering in (M, u⃗111) and (M, u⃗101), it is not a cause of the bottle shattering in (M, u⃗111), while BT = 1
is. On the other hand, BT = 1 is not a cause of the bottle shattering in (M, u⃗112). Thus, EX1(a) holds
for ST = 1∧BT = 1, taking ST = 1 to be the relevant conjunct in (M, u⃗111) and (M, u⃗111) and BT = 1 to
be the relevant conjunct in (M, u⃗111). (Note that we do not have to take u101 into account for EX1(a),
because (M, u⃗111) ̸|= ST = 1∧BT = 1.) It is easy to see that EX2, EX3, and EX4 hold in this case.

Next consider K2 = {u111,u112}. In this case, ST = 1∧ BT = 1 is an explanation of the bottle
shattering relative to K2, but a trivial one; it was already known.

Finally, consider K3 = {u003,u103,u013,u113}. In this case, each of ST= 1 and BT= 1 is an explanation
of the bottle shattering relative to K3. However, note that in the context (M,u113), ST = 1 is not a cause
of the bottle shattering; if Suzy doesn’t throw, then the bottle still shatters (since Billy’s rock hit the
bottle). However, ST = 1∧BT = 1 is a cause, and EX1(a) allows adding a conjunct Y = y (in this case,
BT = 1) to get a cause. Note that ST = 1∧BT = 1 is not an explanation of the bottle shattering; it violates
the minimality condition EX2.

We now show how to translate each of these conditions to our more abstract framework. To start
with, the obvious analogue of K is just a set of worlds in some model in a ccf.

Definition 6.3: Given a ccf M and set CX ⊆L M of formulas, ϕ is an explanation of ψ with respect to
CX in a model M ∈M and state s relative to a set K of states in M if the following three conditions
hold:

EX1(a)′. If s∈K and (M,s) |= ϕ∧ψ , then there exist formulas τ1,τ2 ∈CX such that (i) τ1 is not valid,
(ii) |= ϕ ⇒ τ1, (iii) |= τ2⇒ τ1, and (iv) τ2 is a cause of ψ with respect to CX in (M,s) (according
to Definition 4.1).

EX1(b)′. (M,s′) |= ϕ → ψ for all states s′ ∈K .

EX2′. ϕ is minimal; there is no formula ϕ ′ such that |= ϕ ⇒ ϕ ′ and ̸|= ϕ ′ ⇒ ϕ such that EX1(a) and
EX1(b) hold with ϕ replaced by ϕ ′.

EX3′. For some s ∈K , we have that (M,s) |= ϕ ∧ψ .

Again, the explanation is nontrivial if

EX4′. (M,s′) |= ¬ϕ ∧ψ for some s′ ∈K .

All the primed conditions except for EX1(a)′ are fairly direct translations of their unprimed counterparts.
For EX1(a)′, note that the effect of adding a conjunction Y⃗ = y⃗ to X = x in EX1(a) is to get a formula
that implies X = x; that is why we have |= τ2⇒ τ1 in part (iii) or EX1(a)′. Similarly, the conjunct X = x
in EX1(a) (which corresponds to τ1 in EX1(a)′) is implied by X⃗ = x⃗ (which correspond to ϕ in EX1(a)′).
To understand the requirement that τ1 not be valid, note that if it were valid, then conditions (ii) and (iii)
would hold vacuously, so (iv) would hold as long as we can find a formula that causes ψ with respect
to CX in (M,s). We want τ1 to have a nontrivial connection to ϕ . In EX1(a), this is accomplished by
making it a conjunct of ϕ . In EX1(a)′, this is accomplished by having it be a nonvalid formula that is
implied by ϕ .

In any case, we now get the analogue of Theorem 4.2. showing that the abstract definition of
explanation generalizes the original HP definition.
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Theorem 6.4: Let CX⃗ consist of all formulas τ such that τ is a conjunction of arbitrary (non-negated)
primitive events, and let K be a set of contexts in a causal model M. Then X⃗ = x⃗ is an explanation of ψ

in a causal setting (M, u⃗) relative to K according to EX1–3 (resp., EX1–4) iff X⃗ = x⃗ is an explanation
of ψ with respect to CX⃗ relative to K in (M, u⃗) according to EX1′-3′ (resp., EX1′-4′).

We also get an analogue of Theorem 4.5, but to get this we need an even tighter connection between
recursive counterfactual structures and recursive causal models. A recursive causal model M and a
recursive counterfactual structure M′ are compatible if for every context u⃗ in M there is a state s in M′

such that (M, u⃗) is strongly consistent with (M,s), and for every state s in M′ there is a context u⃗ in M
such that (M, u⃗) is strongly consistent with (M,s). A set K of contexts in M and a set K ′ of states in M′

are compatible if for every context u⃗ in K there is a state s in K ′ such that (M, u⃗) is strongly consistent
with (M,s), and for every state s in K ′ there is a context u⃗ in K such that (M, u⃗) is strongly consistent
with (M,s). Finally, a structure M is acceptable if (M,s) is acceptable for all states s in M.

Theorem 6.5: Let X⃗ be a set of endogenous variables, and let CX⃗ consist of all formulas τ such that
τ is a conjunction of (a) arbitrary (non-negated) primitive events, and (b) a disjunction of the form
X⃗ = x⃗∨ X⃗ = x⃗∗, where x⃗∗ ̸= x⃗. Given a recursive causal model M and a recursive counterfactual structure
M′ such that M and M′ are compatible, and compatible sets K of contexts in M and K ′ of states in
M′, if (M, u⃗) is a recursive causal setting and (M′,s) is strongly consistent with (M, u⃗), then X⃗ = x⃗ is an
explanation of ψ relative to K in (M, u⃗) according to EX1–3 (resp., EX1-4) iff X⃗ = x⃗ is an explanation
of ψ with respect to CX⃗ relative to K ′ in (M′,s) according to EX1′-3′ (resp., EX1′-4′).

7 Conclusions

We have given an abstract definition of causality that applies to arbitrary ccfs. In particular, it applies
to causal models (where it agrees with the standard HP definition) and to Lewis-style counterfactual
structures (where it generalizes the HP definition). As we have observed, having such a general definition
lets us apply the definition far more broadly, and to richer, more expressive languages.

Roughly speaking, the abstract definition says that A is a cause of B if, conditional on C, A is a but-for
cause of B. We have restricted C to come from some set that we denoted CX⃗ . We are currently trying to
understand the impact of CX⃗ on the definition. While in causal models it sufficed to require that CX⃗ be
a conjunction of primitive events to capture the HP notion of causality, in counterfactual structures we
also required CX⃗ to contain (restricted) disjunctions.

What happens if we were to restrict CX⃗ to contain only a conjunction of primitive events? As
discussed above, at this point, the two definitions would diverge: Recall again the scenario where
Bob is placed in a room with a ticking bomb, which can be defused by entering a secret 100-digit
combination. Bob can decide to run away, or try pushing in a number combination. If Bob runs away
and the bomb explodes, should his action of running away be considered the cause of it? According to
the HP definition, it would (since if Bob had just entered the right combination, then the bomb would
be defused). According to our definition (and disallowing disjunctions and negations in CX⃗ ), it would
depend on what number combination Bob would enter in the closest world where he does not run away.
For instance, if Bob knows the right combination, then him running away would be considered a cause,
but if he does not, then it would not. Arguably, the new definition (without disjunctions) gives the more
reasonable answer in this situation.

We can, to some extent, deal with the problem by considering normality [7], where, intuitively, we
want to consider X⃗ = x⃗ a cause of ϕ only if the formula X⃗ = x⃗′ ∧W⃗ = w⃗∗ in AC2 is not abnormal. As
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argued in [7], this restriction leads to an arguably more reasonable notion of causality. We are currently
exploring the possibility of capturing normality by allowing disjunctions in CX , but restricting all the
disjuncts to be normal, in some appropriate sense, or by restricting to formulas using a small number of
disjunctions. Again, this would show that by conditioning on the appropriate set of formulas, we can
capture important intuitions.

A Proofs

For the reader’s convenience, we repeat the statement of the results.

Theorem 4.2: Let CX⃗ consist of all formulas τ such that τ is a conjunction of arbitrary (non-negated)
primitive events (so CX⃗ is in fact independent of X⃗). Then X⃗ = x⃗ is a cause of ψ in a causal setting (M, u⃗)
according to AC1-3 iff X⃗ = x⃗ is a cause of ψ with respect to CX⃗ in (M, u⃗) according to AC1′-3′.

Proof: Suppose that X⃗ = x⃗ is a cause of ψ in (M, u⃗) according to AC1-3. Clearly AC1′ and AC3′ are
essentially equivalent to AC1 and AC3, so to show that X⃗ = x⃗ is a cause of ψ with respect to CX⃗ according
to AC1′-3′, it suffices to show that AC2′ holds.

Since AC2 holds, there exist a set W⃗ of endogenous variables, w⃗∗ ∈R(W⃗ ), and x⃗′ ∈R(X⃗) such that
(M, u⃗) |= W⃗ = w⃗∗ and (M, u⃗) |= [X⃗← x⃗′,W⃗ ← w⃗∗]¬ψ. We must have x⃗′ ̸= x⃗, since (M, u⃗) |= [X⃗← x⃗,W⃗ ←
w⃗∗]ψ . Let τ be W⃗ = w⃗∗. Clearly, τ ∈ CX⃗ ; by assumption, (M, u⃗) |= τ . Moreover, X⃗ = x⃗′ ∧W⃗ = w⃗∗ is
consistent with X⃗ ̸= x⃗∧ τ (since W⃗ and X⃗ are disjoint). Let Y⃗ consist of the endogenous variables
in ¬(X⃗ = x)∧ τ; note that Y⃗ = W⃗ ∪ X⃗ . Choose y⃗ ∈ R (⃗Y ) so that Y⃗ = y⃗ is X⃗ = x⃗′ ∧ W⃗ = w⃗∗. Thus,
X⃗ ̸= x⃗∧ τ ∧ Y⃗ = y⃗ is consistent. By assumption, (M, u⃗) |= [⃗Y = y⃗]¬ψ . By definition, (M, u⃗) |= (X⃗ ̸=
x⃗∧ τ)→¬ψ , so AC2′ holds, as desired.

For the converse, suppose that X⃗ = x⃗ is a cause of ϕ with respect to CX⃗ in (M, u⃗) according to AC1′-
3′. Again, it suffices to show that AC2 holds in (M, u⃗). Since AC2′ holds, there must exist a formula
τ ∈ CX⃗ such that (M, u⃗) |= τ and (M, u⃗) |= (X⃗ ̸= x⃗∧ τ)→¬ψ. Let Y⃗ be the endogenous variables that
appear in X⃗ ̸= x⃗∧ τ . By definition, there must be a vector y⃗ of values such that τ ∧ (⃗Y = y⃗) is consistent
and (M, u⃗) |= [⃗Y = y⃗]¬ψ. Y⃗ must include X⃗ . Let x⃗′ be the restriction of y⃗ to the variables in X⃗ .

For each variable Y ∈ Y⃗ ′ = Y⃗ − X⃗ , there is a value y such that Y = y is a conjunct of τ; Y = y must
also be a conjunct of Y⃗ = y⃗, since Y⃗ = y⃗ is consistent with τ . Thus, (M, u⃗) |= Y = y and, more generally,
if y⃗′ is the restriction of the values in y⃗ to the variables in Y⃗ ′, we have that (M, u⃗) |= Y⃗ ′ = y⃗′. It follows
that AC2 holds, taking W⃗ = Y⃗ ′ and x⃗′ as defined above.

Theorem 4.5: Let CX⃗ consist of all formulas τ such that τ is a conjunction of (a) arbitrary (non-
negated) primitive events, and (b) a disjunction of the form X⃗ = x⃗∨ X⃗ = x⃗∗, where x⃗∗ ̸= x⃗. If (M, u⃗) is
a recursive causal setting and (M′,s) is strongly consistent with (M, u⃗), then X⃗ = x⃗ is a cause of ψ in
(M, u⃗) according to AC1-3 iff X⃗ = x⃗ is a cause of ψ with respect to CX⃗ in (M′,s) according to AC1′-3′.

Proof: Suppose that X⃗ = x⃗ is a cause of ψ in a causal setting (M, u⃗) (according to AC1-3), and (M′,s)
is a recursive counterfactual structure strongly consistent with (M, u⃗). We want to show that X⃗ = x⃗ is a
cause of ψ in (M′,s). The argument is similar in spirit to the first half of the proof of Theorem 4.2.

Again, AC1′ and AC3′ are immediate; we need to show that AC2′ holds. Since AC2 holds, there
is a set W⃗ of endogenous variables, a setting w⃗∗ such that (M, u⃗) |= W⃗ = w⃗∗, and a setting x⃗′ of the
variables in X⃗ such that (M, u⃗) |= [X⃗ ← x⃗′,W⃗ ← w∗]¬ψ . Let τ be W⃗ = w⃗∗∧ (X⃗ = x⃗∨ X⃗ = x⃗′). Clearly,
τ ∈ CX⃗ and (M, u⃗)) |= τ . Since (M′,s) is strongly consistent with (M, u⃗), by Proposition 4.3, we have
that (M′,s) |= τ . Moreover, (M′,s) |= (X⃗ ̸= x⃗∧ τ)→¬ψ . The result follows.
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For the converse, suppose that X⃗ = x⃗ is a cause of ψ with respect to CX⃗ in (M′,s). To show that X⃗ = x⃗
is a cause of ψ in (M, u⃗), yet again, it suffices to show that AC2 holds. Since AC2′ holds, there must
exist a formula τ ∈ CX⃗ such that (M′,s) |= τ , and (M′,s) |= (X⃗ ̸= x⃗∧ τ)→¬ψ . There is a conjunction
of the form τ ′ ∧ X⃗ = x⃗∗ of non-negated primitive events that is equivalent to X⃗ ̸= x⃗∧ τ , where τ ′ does
not mention any variable in X⃗ ′. Thus, (M′,s) |= (X⃗ = x⃗∗ ∧ τ ′)→ ¬ψ . By Proposition 4.3, it follows
that (M, u⃗) |= [X⃗ = x⃗∗ ∧ τ ′]¬ψ . Since (M′,s) |= τ , we must have (M′,s) |= τ ′, so by Proposition 4.3,
(M, u⃗) |= τ ′. Thus, taking W⃗ = w⃗∗ in AC2 to be τ ′, it follows that AC2 holds, as desired.
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