Ann. J?ev. Comput. Sci. 1987. 2:37-68
Copyright © 1987 by Annual Reviews Inc. All rights reserved

USING REASONING ABOUT
KNOWLEDGE TO ANALYZE
DISTRIBUTED SYSTEMS

Joseph Y. Halpern

IBM Almaden Research Center, San Jose, CA 95120

1. INTRODUCTION

Designing, understanding, and reasoning about distributed systems can
be complicated. The major complexities arise from the uncertainties
inherent in the system, particularly with regard to message delivery and
possible faulty or unexpected behavior of processors. A protocol must be
designed (and proved!) to function correctly even if it is possible for
messages to be lost, for messages to arrive out of order, or for some
processor to fail. The difficulty of this task can be viewed as stemming
from a lack of global knowledge in a system. To quote Gray (1979):

The main problem unique to a distributed system is a lack of (global) knowledge. It is
difficult (probably impossible) for one node to know everything about the rest of the
network. Yet global knowledge seems to be required to answer questions such as *“Where
is the file A7", “Is there a deadlock?”, [or] “What is the best way to answer the
question...?”

As this quotation suggests, analyzing distributed protocols often
involves reasoning about processors’ “‘states of knowledge™” at various
points in the protocol. One often hears informal arguments of the form
“Once the sender receives the acknowledgment, it knows that the current
packet has been delivered; it can then safely discard the current packet
and send the next packet.” Although notions of knowledge have frequently
been used in informal descriptions, traditional formal analyses of dis-
tributed protocols avoided any explicit mention of knowledge. Recent
work has shown that these informal arguments can be completely forma-
lized, using ideas for formalizing knowledge that go back to work of
philosophers in the late 1950s and early 1960s.

In this survey I explain how the notion of knowledge in distributed

37
8756-7016/87/1115-0037802.00

38 HALPERN

systems can be ff)rma]ized. give some examples from the literature showing
that this formalization is indeed useful for analyzing distributed systems,
discuss related current work, and present some important open problems.
Although the focus of our discussion is mainly distributed systems of
processors, the “processors” could also be people or robots. Thus the ideas
presented apply perfectly well to the analysis of a system of communicating
Fobots, a bargaining session, or a conversation. Not surprisingly, interest
in knowledge has been rising recently in such areas as distributed Al
economics, and linguistics.

The model used by philosophers for capturing knowledge is called the
possible-worlds model (cf Hintikka 1962). The intuition here is that besides
the true state of affairs, an agent considers a number of other worlds or
states of affairs possible. An agent is said to know a fact ¢ if @ is true at
all the worlds he considers possible. In a situation such as a poker game,
these possible worlds have a concrete interpretation: They are simply all
the possible ways the cards could have been distributed among the players.
Players may acquire additional information in the course of the play of
the game. This additional information allows them to eliminate some of
the worlds they consider possible. At some point Alice might know that
Bob holds the ace of spades, since in all worlds (distributions of cards
among players) that she currently considers possible, Bob holds the ace of
spades. Note here that possibility is viewed as the dual of knowledge.
Intuitively, the more worlds an agent considers possible, the greater her
uncertainty, and the less she knows.

In distributed systems we can also give a concrete interpretation to the
notion of possible worlds. We identify a system with a set of possible runs,
where a run is a complete description of what happens in the system over
time. For example, the fact that a given message may not arrive is captured
by having one run in which it does arrive and another in which it does
not. We define a point to be a pair (r, t) consisting of a run r and time .
We can view the points of a system as possible worlds. At any point, the
system is in some global state, which we can just view as a tuple consisting
of each processor’s local state. At one point a processor will consider
another point possible if the processor has the same local state in the
global states corresponding to the two points. Thus processor i is said to
know a fact ¢ at a point (r, 1) if @ is true at all points (1, ') that it cannot
distinguish from (r,) (because it is in the same local state in the global
states corresponding to these points). As Gray observes, a processor will
in general not know everything about the global state of the system, but
it will usually have some information about the global state.

This definition of knowledge in distributed systems is an external defi-
nition. The system designer ascribes knowledge to processors in each

REASONING ABOUT KNOWLEDGE 39

global state. A processor does not compute this knowledge in any sense,
nor can a processor necessarily answer questions based on its knowledge.
As we shall show, this definition of knowledge turns out to be useful
for many applications. However, there are clearly others for which it is
important to take into account the difficulty of computing knowledge.
(This issue is discussed in more detail in Section 7.)

In our analysis of distributed systems, certain states of *‘group knowl-
edge” are shown to be relevant. We are often interested in situations in
which everyone in a group (or every processor in a network) knows a
certain fact. For example, a society certainly wants all drivers to know
that a red light means “stop” and a green light means “go.” But even if
we assume that every driver knows this fact and follows the rules, this is
not enough to ensure that traffic flows smoothly. A driver will not feel safe
going when he sees a green light unless he knows that everyone else knows
and follows the rules. Thus for traffic to flow smoothly it is also necessary
that everyone know that everyone knows the rules. (Notice that a number
of implicit assumptions about the relationship between knowledge and
action are being made here.)

Even the state of knowledge in which everyone knows that everyone
knows does not suffice for a number of applications. In some cases we also
need to consider the state in which simultaneously everyone knows a fact
@, everyone knows that everyone knows ¢, everyone knows that everyone
knows that everyone knows ¢, and so on. In this case we say that the
group has common knowledge of @. This key notion has been studied by
philosophers (Lewis 1979), linguists (Clark & Marshall 1981; Perrault &
Cohen 1981), economists (Aumann 1976; Milgrom 1981), researchers in
Al (McCarthy et al 1978), and researchers in distributed systems (Halpern
& Moses 1984; Lehmann 1984; Moses 1986; Dwork & Moses 1986; Moses
& Tuttle 1986). It will be of particular interest to us here because, as is
shown in Section 4, common knowledge is a prerequisite for simultaneous
agreement and coordinated action.

At the other end of the spectrum from common knowledge is implicit
knowledge. A group has implicit knowledge of a fact ¢ if, by pooling their
knowledge together, the members of the group could deduce ¢, even
though it may be the case that no member of the group individually knows
@. For example, if Alice knows that Bob is in love with either Carol or
Susan, and Charlie knows that Bob is not in love with Carol, then together
they implicitly know that Bob is in love with Susan, although neither Alice
nor Charlie individually has this knowledge. Common knowledge and
implicit knowledge turn out to be useful tools in helping us analyze com-
plicated group situations.

The remainder of this survey is organized as follows. The possible-

40 HALPERN

worlds model for knowledge is reviewed in Section 2 and is related to
distributed systems in Section 3. The following three sections give examples
of using reasoning about knowledge to analyze distributed systems. In
Section 4 there is a knowledge-based analysis of the coordinated attack
problem (Gray 1978), taken from Halpern & Moses (1984). The impor-
tance of common knowledge and the relationship between common knowl-
edge and agreement is brought out by this and related examples. Section
5 describes results from Chandy & Misra (1986) on how knowledge can
be gained and lost in asynchronous systems. Such results can be used to
provide lower bounds on the number of messages required in certain
protocols. Section 6 describes results from Dwork & Moses (1986) and
Moses & Tuttle (1986) on using knowledge to analyze Simultaneous Byzan-
tine Agreement (Pease et al 1980). Knowledge-based protocols, ones in
which the actions of a processor depend explicitly on tests for knowledge,
turn out to be a useful tool in this analysis. In Section 7 there is a discussion
of some attempts to take into account the difficulty of computing knowl-
edge. The survey concludes in Section 8 with a discussion of related work
and a number of problems deserving further investigation.

2. THE POSSIBLE-WORLDS MODEL

In order to reason formally about knowledge, we need a language that
allows us to express notions of knowledge in a straightforward way.
Suppose we have a group consisting of » agents (or processors or robots),
creatively named 1,...,n For simplicity, we assume these agents wish to
reason about a world that can be described in terms of a set @ of primitive
propositions, which we label p,p’,q,¢’,.... In distributed systems, these
primitive propositions will typically represent statements such as “the
value of variable x is 0"’ or “processor 3 is faulty.” In order to express a
statement like “processor 1 knows that processor 3 is faulty,” we augment
the language by modal operators K,,.. ., K, (one for each agent). A state-
ment like K¢ is then read “agent 1 knows @.”

Formally, we start with the primitive propositions in © and form more
complicated formulas by closing off under negation, conjunction, and the
modal operators K,..., K,. Thus, if ¢ and y are formulas, then so are
~@, @ AW, and Ky, fori=1,...,n. We also use standard abbreviations
from propositional logic, such as ¢ v § for ~(~¢ A ~), @ = for
~(@ A ~y),and ¢ =y for (p =) A (V = ¢).

We can express quite complicated statements in a straightforward way
using this language. For example, the formula K,K,p A ~K,K,K,p says
that agent 1 knows that agent 2 knows p, but agent 2 does not know that
agent 1 knows that agent 2 knows p. However, as it stands, the language

REASONING ABOUT KNOWLEDGE 41

does not allow us to express the notions of common knowledge and implicit
knowledge discussed in the introduction. In order to express these notions,
we augment the language with modal operators E; (“‘everyone in the group
G knows”™), C; (*it is common knowledge among the agents in G**) and
I (*it is implicitly known among the agents in G”) for every subset G of
{1,...,n}. Thus, if ¢ is a formula, then so are Ezp, Cso, and Izp. We
often omit the subscript G if G is clear from context. In this augmented
language we can make statements like Ky ~ Cyy 5 p (“agent 3 knows that
p is not common knowledge among agents 1 and 2”) and Ig A ~Cq (*'q
is implicitly known but is not common knowledge™).

We next want to formalize the notion of possible worlds, as discussed
in the introduction. One way of doing so is by using Kripke struc-
tures (Kripke 1963). A Kripke structure M for »n agents is a tuple
(S,m, A, ..., A,), where S is a set of states or possible worlds, m is an
assignment of truth values to the primitive propositions of ® for each
state se S (i.e. n(s, p) € {true, false} for each state se S and each primitive
proposition pe®), and X is an equivalence relation on S. [As usual, an
equivalence relation " on § is a binary relation that is reflexive, which
means that for all se S, we have (s,s5) € #, symmetric, which means that
for all 5,78, we have (s,t)e s if and only if (z,5)e X, and transitive,
which means that for all s, ¢, ue S, we have that if (s, /)e X and (t,u) € ¥,
then (s, u)e X"

The truth assignment 7 tell us, for each state s and each primitive
proposition p, whether p is true or false at state s. Thus, if p denotes the
fact “processor 3 is faulty,” then n(s, p) = true captures the situation in
which processor 3 is indeed faulty in the state s. 2 is intended to capture
the possibility relation according to agent i; (s,f) €, if agent i cannot
distinguish the possible worlds s and 7 in structure M.

We are now ready to assign truth values to formulas. A formula will be
true or false at a possible world. It is quite possible that a formula will be
true at one world but false at another. For example, in one world (global
state of the system) processor 1 may know that processor 3 is faulty, in
another it may not. To capture this, we define the notion “¢ is true at
(M, s)” or “(M,s) satisfies ¢,” written (M, s)F ¢, by induction on the
structure of ¢:

(M, 5) E p (for a primitive proposition p e ®) if n(s, p) = true
(M,s)Eo A if (M,s)E@and (M,s)Ey
(M,s)E ~opif (M,5)Eo

(M. s)E K if (M, 1) E ¢ for all ¢ such that (s, {Je 5.

42 HALPERN

The first three clauses in this definition are the same as the corresponding
clauses for propositional logic. The last clause captures the intuition that
agent i knows ¢ in world s of structure M exactly if ¢ is true at all worlds
that i considers possible when in s.

These definitions are perhaps best illustrated by a simple example. One
of the advantages of a Kripke structure is that it can be viewed as a labeled
directed graph, where the nodes are the states of S, each node is labeled
by the primitive propositions that are true and false at that state, and there
is an edge between s and ¢ labeled i exactly if (s,)€ ;. For example,
suppose @ = {p} and n = 2, so that our language only has one primitive
proposition p and there are only two agents. Further suppose that
M = (S, n, X, A3), where S = {s,t,u}, p is true at states s and u, but false
at t (so that zn(s,p) = n(u, p) = true and =n(t, p) = false), agent 1 cannot
distinguish s and ¢ (so that X; = {(s,s), (s, 1), (1, 5), (1, 1), (u, #)}), and agent
2 cannot distinguish s and u (so that X3 = {(s, s), (s, w) (1, 1) (1, 5) (, W) }).
This situation can be captured by the graph in Figure 1. If we view p as
standing for “it is sunny in San Francisco,” then in state s it is sunny in
San Francisco but agent 1 does not know it (since agent 1 considers both
sand 7 possible). On the other hand, agent 1 does know that agent 2 knows
whether or not it is sunny in San Francisco (since in both worlds agent 1
considers possible, agent 2 knows what the weather in San Francisco is).
Agent 2 knows that it is sunny in San Francisco, but does not know that
agent 1 does not know this fact (since agent 2 considers the world u
possible, and in this world agent 1 does know that it is sunny in San
Francisco). Formally, we have

(M,s5)Ep A ~K,\p A K\(Kyp v Ky~p) A Kap A ~Ky~K,p.

Note that in both s and u, the primitive proposition p (the only primitive
proposition in our language) gets the same truth value. One might think,
therefore, that s and u are the same and that one of them can be eliminated.
This is not true! A state is not completely characterized by the truth values
that the primitive propositions get there. The possibility relation is also
crucial. For example, in world s agent 1 considers ¢ possible, while in u he

Figure 1

REASONING ABOUT KNOWLEDGE 43

does not. As a consequence, agent 1 does not know p in s, while in u he
does.

We can easily extend the definition of truth to handle common knowl-
edge and implicit knowledge. Since Eg¢ is true exactly if everyone in the
group G knows ¢, we have:

(M, s)E Egp if (M, s5)F K forall ieG.

Cgp is true if everyone in G knows ¢, everyone knows that everyone
knows ¢, etc. Let Ejp be an abbreviation for Egop, and let E" 'p be an
abbreviation for EgELe for k > 1. Then we have

(M,s)E Cgo if (M,s)EEtp fork=1,2,....

Our definition of common knowledge has an interesting graph-theor-
etical interpretation which is useful in many applications. Define a state 1
to be G-reachable from state s in k steps (k > 0) if there exist states
S0sS15-.-,8 such that so=3s, s, =1, and, if kK > 1, then for all j with
0 <j<k—1, there exists ie G such that (s;,5,,,)eX,. We say t is G-
reachable from s if t is G-reachable from s in k steps for some k > 0. Thus,
t is G-reachable from s if there is a path in the graph from s to ¢ all of
whose edges are labeled by members of G.

Lemma 2.1
1. (M, s)E E&o if and only if (M, t) k @ for all t that are G-reachable
from s in at most k steps.
2. (M,5)ECg if and only if (M, 1)k @ for all t that are G-reachable
from s.
Proof Part (1) follows from a straightforward induction on k, while
part (2) is immediate from part (1). H

A group has implicit knowledge of ¢ if someone who could “combine”
the knowledge of the members of G would know ¢. How can we capture the
idea of combining knowledge in our framework? In the Kripke structure
illustrated above, in state s agent 1 considers both s and ¢ possible, but
does not consider u possible, while agent 2 considers s and u possible, but
not 7. Someone who could combine their knowledge would know that only
5 was possible: agent 1 has enough knowledge to eliminate » and agent 2
has enough knowledge to eliminate #. In general, we combine knowledge
of the agents in a group by intersecting the sets of worlds that each of the
agents in the group considers possible. Thus we have

(M, 5) F I iff (M, 1) F @ for all £ such that (s, 1) € Ve X

The notion of knowledge defined here has a number of important
properties. One way of characterizing its propetties is by characterizing

44 HALPERN

the formulas that are always true. More formally, given a structure
M= (S,nHA,...,X,), we say a formula ¢ is valid in M if (M, s)F ¢ for
every state seS; we say ¢ is valid if it is valid in every structure M. It
turns out that the validity problem for the logic we have presented is
decidable, and its complexity has been well studied. It is known that if we
have common knowledge in the language with n > 2 agents, then the
problem of deciding whether a formula is valid is complete for exponential
time; without common knowledge the validity problem is complete for
polynomial space, and if we just consider the one-agent case, it is co-NP-
complete; see Ladner (1977) and Halpern & Moses (1985). It is also known
that we can find a sound and complete axiomatization that completely
characterizes the valid formulas in this logic. [This logic is essentially
a multi-agent version of the logic S5, which has long been studied by
philosophers; our notion of knowledge inherits all the properties of S5.
See Halpern & Moses (1985) for details.]

Rather than discuss the full complete axiomatization, I will focus here
on three particular properties of our definition of knowledge. The first

property says that agents know only true facts. Thus, all instances of the
following axiom are valid:

Ko = o.

This property has been taken by philosophers to be the major one dis-
tinguishing knowledge from belief. Although you may have false beliefs,
you cannot know something that is false. This property holds because the
actual world is always one of the worlds that an agent considers possible
(i.e. X is reflexive). If K holds at a particular world s of structure M,
then ¢ must be true at all worlds that i considers possible, so in particular
it is true at (M, s).

The second property says that each agent knows all the logical conse-
quences of his knowledge. If an agent knows ¢ and knows that ¢ implies
Y, then he also knows . This is so because if ¢ and ¢ = s are both true
at all worlds the agent considers possible, then i must also be true at all
worlds the agent considers possible. Thus, all instances of the following
axiom are valid:

(Kip A K{p=¥)) =K.

The last property says that an agent knows all valid formulas. If ¢ is
true at all the possible worlds of a structure M, then ¢ must be true at all
the worlds that an agent considers possible in‘any given world in M, so it
must be the case that K¢ is true at all possible worlds of M. Thus we have

If ¢ is valid in M, then so is K. .

REASONING ABOUT KNOWLEDGE 45

No_te that this is a somewhat stronger statement than “If @ is valid, then
50 ss.K,-go.” It is quite different from the formula ¢ = K., which says that
if @ is true then i knows it. This formula is not valid. It is quite possible
that Alice has the ace of spades but Bob does not know it.

Th_c latter two properties emphasize the fact that our definition does not
take into account the difficulty of computing knowledge. In some sense, it
assumes that agents are logically omniscient: They know all the logical
consequences of their knowledge and know all formulas that are valid in
a given model. This observation has sparked many attempts to get
notions of knowledge that do not have these properties. As we mentioned
in the introduction, the way we ascribe knowledge to processors in dis-
tributed systems makes no attempt to take computation into account, so
it is perhaps not surprising that it has these properties, nor should it be
bothersome on philosophical grounds. The next few sections focus on this
definition of knowledge and its applications to distributed systems; some
attempts at modifying the model to get a definition of knowledge that does
take computation into account are discussed in Section 7.

3. ASCRIBING KNOWLEDGE TO PROCESSORS IN
A DISTRIBUTED SYSTEM

Recently there have been a number of papers that attempt to define the
notion of knowledge in distributed systems (Halpern & Moses 1984; Parikh
& Ramanujam 1985; Chandy & Misra 1985; Halpern & Fagin 1985;
Dwork & Moses 1986: Fischer & Immerman 1986; Ladner & Reif 1986;
Moses & Tuttle 1986). All of the definitions have essentially the same
features, which we briefly outline below. Interestingly, Rosenschein and
Kaelbling have used the same definition of knowledge to analyze synchron-
ous digital machines, viewing the components of the machine as agents
(Rosenschein & Kaelbling 1986).

A distributed system consists of a collection of processors, say 1,...,n,
connected by a communication network. The processors communicate
with each other over the links in the network. Intuitively, a run r of a
distributed system is a complete description of the execution of that system
over time. Thus, a run includes a description of which messages a processor
sent and received and when it received them; if processors have local
clocks, it will also include the local time that each message was sent and
received. If there are faulty processors, the run will include which pro-
cessors were faulty, when they were faulty, and a description of their faulty
behavior.

We identify a distributed system with a set of runs. Most often, we shall
be considering the set of runs of a particular protocol implemented in an

46 HALPERN

environment with certain properties (for example, an environment in which
communication is guaranteed, or one in which there are at most f faulty
processors). Various properties of the environment can be captured by
taking a suitable set of runs. For example, we can capture the property of
communication being guaranteed by taking the system to consist only of
runs in which every message that is sent is later received. If we want to
capture the assumption that at most f processors ever fail, we take the
system to consist only of runs in which at most f processors fail. We
can capture the property of all local clocks being synchronized by only
considering runs in which the local clocks of processors have the same
reading at all times. By viewing the set of runs as a measure space, we
can capture probabilistic properties of runs, such as certain events being
independent or having probability one.

At a time 7 in a run r, each processor has some history, which intuitively
consists of its initial state and the sequence of events observed by the
processor in run r up to time ¢. These events include the messages sent and
received by the processor, perhaps some local internal events, and, if there
are clocks in the system, the times at which these events took place.

In general a processor will not “remember” all of its history. Thus we
can assign to each processor at every point in a run some /local state, which
will be a function of its history. This local state intuitively describes all
that the processor remembers of what it has seen so far. If we consider
“ideal” processors that have unbounded memory, then this local state
might encode the processor’s entire history, including all the messages it
has sent and received and its internal transitions. In general, of course, the
local state would encode only a portion of the processor’s history. A
protocolis simply a function from local states to actions. We focus attention
here on deterministic protocols, although our definitions can be modified
to deal with probabilistic and nondeterministic protocols.

Recall that we define a point to be a pair (r, ¢) consisting of a run and
a time. To capture these intuitions formally, we associate with each point
(r,t) a global state g(r,1) of the system, which is simply an n-tuple
{ly,...,1,> describing each processor’s local state at that point.! We say
two points (r, #) and (¢, t") are indistinguishable to processor i, and write
(r,1) ~,(r', 1), if processor i's local state is the same in both g(r, ¢) and
g(r',t"). The crucial point here is that since a processor’s actions when

' In @ more general model, we might also want one more component in the tuple to describe
the environment, which intuitively consists of all the relevant features of the system not
described by the processors’ local states, such as messages in transit but not yet delivered,
and so on (cf Fagin et al 1986). For ease of exposition, the environment component is omitted
here.

REASONING ABOUT KNOWLEDGE 47

it runs a protocol are a function of its local state, if two points are
indistinguishable to processor i, then processor i will perform the same
actions at both these points.

We can now view a distributed system (i.e. a set of runs R, together with
an assignment g of global states to points) as a Kripke structure. The
possible worlds are the points, and the indistinguishability relation ~,
defines the equivalence relation ;. We take the primitive propositions to
be basic facts about the system (such as which processors are faulty and
what the values are of certain variables), and assume that for each such
basic fact p and each point (r, r), we have some way of deciding whether
or not p is true at (r,£). All the definitions for knowledge given in the
previous section apply immediately. In particular, processor i knows a fact
@ at point (7, ?) in a set of runs R if ¢ is true at all the points that i cannot
distinguish from (r, r). We write (R, r,) F ¢ if ¢ is true at the point (r, 1),
where re R.

We might question whether this definition of knowledge is reasonable.
One argument that it is reasonable is that it does capture one way the
word “know’" has been used informally. For example, when someone says
“processor 2 does not know that processor 3 is faulty at the end of round
5 in this run,” denoting “‘this run” by r, what is often meant is that there
18 a point indistinguishable to processor 2 from the point (r,5) where
processor 3 is not faulty. More importantly, as we shall now see, this
notion of knowledge is useful for analyzing protocols.

4, COMMON KNOWLEDGE AND THE
“COORDINATED ATTACK” PROBLEM

A good example of using knowledge to analyze a protocol is provided by
the coordinated attack problem, from the distributed systems folklore
(Gray 1978). The version of the story given here, and its analysis, is taken
from Halpern & Moses (1984):

Two divisions of an army are camped on two hilltops overlooking a common valley. In
the valley awaits the enemy. It is clear that if both divisions attack the enemy sim-
ultaneously they will win the battle, whereas if only one division attacks it will be
defeated. The divisions do not initially have plans for launching an attack on the enemy,
and the commanding general of the first division wishes to coordinate a simultaneous
attack (at some time the next day). Neither general will decide to attack unless he is sure
that the other will attack with him. The generals can only communicate by means of a
messenger. Normally, it takes the messenger one hour to get from one encampment to
the other, However, it is possible that he will get lost in the dark or, worse yet, be
captured by the enemy. Fortunately, on this particular night, everything goes smoothly.
How long will it take them to coordinate an attack? "

48 HALPERN

Suppose the messenger sent by General A makes it to General B with
a message saying “‘Attack at dawn.” Will B attack? No, since 4 does not
know B got the message, and thus may not attack. So B sends the
messenger back with an acknowledgment. Suppose the messenger makes
it. Will 4 attack? No, because now A is worried that B does not know A
got the message, so that B thinks A4 may think that B did not get the
original message, and thus not attack. So 4 sends the messenger back with
an acknowledgment. But of course, this is not enough either.

In terms of knowledge, each time the messenger makes a transit, the
depth of the generals’ knowledge increases by one. If we let the primitive
proposition m stand for “‘a message saying ‘Attack at dawn’ was sent by
A" then when B gets the message, we have Kym. When A gets B's
acknowledgment, 4 knows that B knows m; i.e. K,Kzm holds. The next
acknowledgment brings us to Kz K, Kzm. Although more acknowledgments
keep increasing the depth of knowledge, it is not hard to show that by
following this protocol, the generals never attain common knowledge that
the attack is to be held at dawn.

We can directly prove this result, but in fact it is a corollary of a more
general result. Since the messenger may get captured or lost, com-
munication between the generals is not guaranteed. We want to capture
this in our formal model. Recall that we are identifying a system with a
set of runs. Roughly speaking, we say that communication is not guaranteed
in a system R if for every run r in R and time ¢, there is another run r" in
R that looks just like r up to time ¢, except that an arbitrary subset of the
messages delivered in r at time ¢ is not delivered in run r’, and after time ¢
no messages are delivered in ’. This definition is meant to capture the
intuition that it is always possible that no messages from a certain time on
will arrive. We say a fact ¢ is initially undetermined if for every run r there
is another run r* such that the initial global states at (r,0) and (r’,0) are
identical (i.e. g(r,0) = g(r’,0)) and ¢ never holds in r’. For example, the
fact “the generals are attacking” is initially undetermined in the coor-
dinated attack problem, since if no messages are ever delivered the generals
will never attack.

Theorem 4.1 Let R be a system in which communication is not
guaranteed. If |G| = 2 and @ is initially undetermined, then for all runs
re R and all times t, we have (R,r,t)E ~ Cgp.

This result tells us that in a system in which communication is not
guaranteed, common knowledge of initially- undetermined facts is not
attainable in any run of any protocol. Now the description of the coor-
dinated attack problem guarantees that the set of runs of any protocol run
by the generals will be a system where communication is not guaranteed.

REASONING ABOUT KNOWLEDGE 49

It thus follows that the generals cannot attain common knowledge of a
fact such as “the generals are both attacking” in any run of any protocol.

It may seem to the reader that we have still not dealt with our original
problem. The generals are not interested in attaining common knowledge;
they are interested in coordinating an attack. However, as we are about
to see, common knowledge is a prerequisite for agreement. In order to
agree to attack, the generals must have common knowledge of the attack.
For suppose the generals are running some protocol P that achieves
coordinated attack. Let R be the set of runs of protocol P. As we noted
above, R is a set of runs in which communication is not guaranteed. Let
p be a formula that denotes “the generals are both attacking,” and suppose
p holds at time ¢ in some run r of P. Suppose (r/, ') is indistinguishable
by A from (r,) (see Figure 2). For example, it may be the case that in
(r',1") A's last message to B was not received, while in (r, 7) it was. (If the
generals have access to a global clock, then we would have 7 = . Our
analysis goes through whether or not we make this assumption.) Since A
attacks in (r, 7), and A has the same local state at both (r, 7) and (', t'), A
must also attack in (¢, t"). Here we are using our crucial observation that
an agent’s or processor’s actions can only depend on his local state. (Note
that this intuitively says that a processor’s actions can only depend on its
knowledge.) Since protocol P achieves coordinated attack, if 4 attacks in
(r, 1), then both generals attack at (+/, t');1.e. p holds at (', t'). Now suppose
that (r”, t”) is indistinguishable by B from (+',"). A similar argument
shows that B must attack in (r”,t"), and hence both generals attack in
(7, 1), and so p holds at (", 1) as well. An easy induction can be used to
show that in fact p holds at every point reachable from (r, r). By Lemma
2.1, it follows that p is common knowledge at (r, ?); i.e. (R, r, 1) F Cp. This
is a formal statement of the fact that when the generals attack, it must be
common knowledge that they are attacking. But p is a fact that is initially
undetermined. Thus, Theorem 4.1 implies that p can never become com-
mon knowledge in R. We have now proved

(‘ ‘) B (rll’tll) A .
r ,t."/p p
2t '
(r,t)e
p‘B\k. ® a's s
p A P

Figure 2

50 HALPERN

Corollary 4.2 Any protocol that guarantees that if one of the generals
attacks then the other does so at the same time, is a protocol where
necessarily neither general attacks.

These results can be extended to show that not only is common knowl-
edge not attainable in systems in which communication is not guaranteed,
it is also not attainable in systems in which communication is guaranteed,
as long as there is some uncertainty in message delivery time. Thus, in
practical distributed systems, common knowledge is not attainable. This
remark holds for systems involving interactions among people as well.

These results may seem paradoxical. We have seen that common knowl-
edge is a prerequisite for coordinated action; similar arguments can be
used to show that it is a prerequisite for agreement. We also showed that
common knowledge is not attainable in practical distributed systems.
Yet we often do seem to attain common knowledge, and tasks involving
agreement and coordination certainly are carried out routinely in dis-
tributed systems.

This apparent paradox is examined carefully in Halpern & Moses (1984),
where two approaches to resolving it are suggested. One approach is
motivated by the observation that common knowledge is attainable in
“idealized” models of reality where we assume, for example, that events
can be guaranteed to happen simultaneously. There are times, both when
carrying out a theoretical analysis of a situation and when considering
what actions to perform, that it is useful to assume that this idealized model
really does describe reality. Indeed, there are times that this assumption can
never be contradicted by observations [see Halpern & Moses (1984) for
details]. A second approach involves considering variants of common
knowledge that are attainable under more reasonable assumptions. Such
variants may prove a useful tool for specifying and analyzing different
assumptions on communication in distributed systems.

Two variants that are of particular relevance in the analysis of the
coordinated attack problem are eventual common knowledge and likely
common knowledge. To understand how they are defined, it is best to first
consider an alternative definition of common knowledge. C¢ can be viewed
as the greatest fixpoint of the equation X = E(¢ A X). This equation says
that the situation X in which C¢ holds is exactly one where everyone
knows both that ¢ holds and that X is the situation. Eventual common
knowledge of ¢, written C © ¢, is the greatest fixpoint of a slightly modified
equation, X = QO E(¢ A X), where { ¢ says that ¢ eventually holds [{ is
the eventuality operator from temporal logic (cf Rescher & Urquhart
1971)]. Thus, C©¢ implies that eventually everyone knows both that ¢
holds and that eventual common knowledge of ¢ holds. Eventual common

REASONING ABOUT KNOWLEDGE 51

knowledge is attainable in systems in which messages are guaranteed to
arrive eventually, even though there may be no upper bound on message
delivery time. However, a result essentially analogous to Theorem 4.1 can
be proved which says that in systems in which communication is not
guaranteed, eventual common knowledge cannot be attained. From this
result we can obtain a corollary analogous to Corollary 4.2, which says
that the only protocol that guarantees that if one general attacks then the
other general eventually attacks, is the protocol where necessarily neither
general attacks.

Likely common knowledge of ¢, written C*¢, is the fixpoint of the
equation X = LE(¢ A X), where Lo says that ¢ is likely to hold [L is the
likelihood operator from Halpern & Rabin (1983)]. Thus ¢ is likely com-
mon knowledge if it is likely that everyone knows both that ¢ holds
and that ¢ is likely common knowledge. Although eventual common
knowledge cannot be attained if communication is not guaranteed, if
any given message is likely to arrive, then likely common knowledge is
attainable. Likely common knowledge and related notions of probabilistic
common knowledge do seem to describe what is attained in practice in
a situation such as the coordinated attack problem, and often are the
prerequisites for action in such circumstances. The reader should refer

to Halpern & Moses (1984) for more details on variants of common
knowledge.

5. KNOWLEDGE IN ASYNCHRONOUS SYSTEMS?

In an asynchronous system, processors have no access to clocks. They can
only keep track of events that have occurred, and have no way of measuring
the time between events. As a result, knowledge in asynchronous systems
has a number of additional properties. For simplicity in the following
discussion, we restrict attention here to three types of events: a send (of a
message by one processor to another), receive (of a message by one
processor from another), or an internal event. Moreover, we assume that
all events and messages are unique, and that time ranges over the natural
numbers. At each time 7 in a run, a (possibly empty) set of events occurs.
Again for simplicity, we assume that there is no more than one event per
unit of time. Processor i’s local state at the point (r,n) is its history: its
initial state, and the sequence consisting of the messages that i sent and
received and the internal events that took place locally, in the order they
happened. Note that there is no “forgetting” here. As is already implicit

?The material in this section is taken from Chandy & Misra (1986), although it has been
slightly modified to conform to the definitions used here. *

52 HALPERN

in our intuition behind events, we assume that no event is in the history
of more than one processor.

We restrict attention here to systems R that can be characterized in the
following way: For each processor i there is a set V; of histories such that
a run ris in R iff (1) at all times n and for all processors i, we have that
i’s local state at (r,n) is in V, (2) for every receive event in (r,n) of a
message m by i from j, there is a corresponding send event where m is sent
to i by j that occurs earlier in the run, and (3) processor i’s history at (r, 0)
is the empty sequence, and for all n, its history at (r, n) is a (not necessarily
strict) prefix of its history at (r,n+ 1). Note that the first property can be
viewed as a richness condition on the set of runs. It will allow us to create
a new run by “pasting together” the histories of processors in a number
of runs, as long as we can guarantee that the other properties are still
satisfied. These properties are meant to capture (among other things) the
intuition that time is meaningless in asynchronous systems. For example,
suppose ris a run in R and r’ is the run in which the same event occurs at
time 27 in 7’ as occurs at time » in r, and no event occurs at odd times in
r’. It is easy to check that r* has properties (1), (2), and (3) (since r does),
so ¢’ must also be in R. Similarly, any run that is like r except that there
are arbitrarily long “silent intervals” between the events of r is also in R.
It follows from these properties that an asynchronous system is one in
which communication is not guaranteed; thus the results of the previous
section on the unattainability of common knowledge apply immediately
here.

Although time is meaningless in an asynchronous system, we can define
a notion of potential causality between events, along the lines suggested in
Lamport (1978). We want to capture the intuition that event e may have
caused event e¢’. For events e and ¢’ in a run r, we write e — ¢’ if either:

1. ¢’ is a receive and e is the corresponding send,

2. for some processor i, events e and ¢’ are both in i’s history at some
point (r, n) and e precedes ¢, or

3. for some event ¢” we have e — ¢" and ¢" — ¢'.

A run r has a processor chain {iy,...,i,» if there exist events e|,....e, in
run r such that event ¢, is in processor i’s history and e, = ‘- — e,
Suppose that event e, takes place at time #, in run r. It is easy to see from
the definition of — that if i, # i;, ,, there must be a nonempty sequence of
messages my, ..., my in r such that m, is sent by j at or after time n;, m,, ,
is sent by the processor that received m, and is.sent after m, is received for
I=1,...,k—1, and m, is received by i, , at or before n,, ,. In particular,
this means that if there is a processor chain {iy,..., i, in r with §; # i,
forj=1,...,m—1, then at least m— 1 messages-are sent in r.

REASONING ABOUT KNOWLEDGE 53

We write (r,n)[iy, ..., 0, (r',n") if there exist points (ro, 7g), . .« s (Fos M)
such that (r,n) = (rg,ng), (*’,n") = (r,, Ny, and for j=1,...,m we have
(rj—ys1-1) ~ (). Thus (r,n) [iy, ...,] (¢, n’) if at the point (r,n) pro-
cessor i; considers it possible that i, considers it possible...that i, con-
siders it possible that (', n") is the case; i.e. (r',n’) is reachable from (r, n)
by a sequence of edges labeled i\,...,i,.

There is a close relationship between processor chains and reachability,
as shown in the following theorem. If ris a run and n < ', let (r,n..n")
denote the sequence of events in r from n+ 1 to n’. The following theorem
tells us that either (r,n") is reachable from (r,7) by a sequence of edges
labeled i,,...,i,, or there must be a causal sequence of events ¢, =+ —
e,, such that e; is in processor i;’s history.

Lemma 5.1 Let rbearunandn < n'. Then either (r,n)[iy,...,i,)(r,n")
or there is a processor chain (i\,..., i,y in(r,n..n").

Lemma 5.1 will allow us to relate message passing to knowledge in
asynchronous systems. One direct consequence is stated in the following
theorem, which essentially says that processors can only gain or lose
knowledge by sending and receiving messages.

Theorem 5.2 Letrbearunandn <n'.

1. If (R,r,n)F ~K, @ and (R,r,n')FK, ...K, @, then there is a
processor chain {ip, ..., i) in(r,n..n").

2. If (Rr,m)FK, ...K, ¢ and (R,r,n')F ~ K, @, then there is a
processor chain {iy, ... 0,y in(r,n..n").

Proof We prove (2) here; the proof of (1) is similar. Suppose, in order
to obtain a contradiction, that there is no processor chain {i,...,I,» in
(r,n..n"). By Lemma 5.1, we have (r,n)[i},..., i) (r,n"). Thus, by defi-
nition, there exist points (rg,#g),...,(rmn,) such that (r,n) = (rq, ng),
(r,n") = (rps 1), and for j=1,...,m we have (r,_,,n,_,) ~;(r,n). We
can now easily show, by a straightforward induction on j, that
(R, 1y, n,-)kK,r...K,-mfp for j=1,...,m. In particular, it follows that
(R,r,n")F K, @, acontradiction. ll

Using Theorem 5.2, we can prove a number of lower bounds on the
number of messages required to solve certain problems. Consider the
problem of mutual exclusion. Intuitively, the situation here is that from
time to time a processor tries to access some sharéd resource that must
only be accessed by one processor at a time. (For example, the processor
may try to change the value of a shared variable.) We say the processor is
in its critical section when it has access to the shared resource. A protocol
solves the mutual exclusion problem if in every run of the protocol, no
two processors are simultaneously in their critical-sections. If R is the set

54 HALPERN

of runs of a protocol that solves the mutual exclusion problem and r is a
run in R in which i,,i5...,4, (i, # i;,) enter their critical section in
sequence, then it is easy to see that we must have a processor chain
{iyyia ..., By in r. For suppose that i, enters its critical section at time »,
inr,j=1,...,m. Letcs, j=1,...,m, be primitive propositions denoting
that i, is in its critical section. By the assumption that R is the set of runs
of a protocol solving the mutual exclusion problem, we must have that
cs;=> ~cs;, is valid in R. Moreover, since the fact that is or is not in
its critical section is determined by i;'s local state, we must have that both
csy= Ki(es)) and ~cs;= K, (~cs)) are valid in R. Since by assumption we
have (R, r,n) F cs;, it follows from the previous observations and the gen-
eral properties of knowledge discussed in Section 2 that

(R, Y. ﬂj)k K;,K§+1~C3}+ 1 and (R, ' nj_;]) E ~Kf1+”"cs‘.‘+ 1s

for j=1,....m—1.

Thus, by Theorem 5.2, there is a process chain (i, i;, ;> in (r,n;..n;,). It
immediately follows that we have a processor chain {i, i,,...,i,»inr. As
we have already observed, the existence of this process chain in r implies
that at least m— 1 messages are sent in r.

A protocol for termination detection runs “on top of” another protocol
and detects that it has terminated, where we say a protocol has terminated
at (r, f) if no processor takes any more steps from that point on. Theorem
5.2 can also be used to show that a protocol for termination detection
requires in general as many messages to do the detection as there are
messages in the underlying computation. The reader is referred to Chandy
& Misra (1986) for details of the proof.

6. SIMULTANEOUS BYZANTINE AGREEMENT

An important problem in distributed systems is that of reaching agreement
in the presence of faults. This has been abstracted as the Byzantine agree-
ment problem, which has been the focus of much study recently (see Fischer
1983). We consider here a variant of the Byzantine agreement problem
called the Simultaneous Byzantine Agreement problem (SBA). Assume that
each of the processors in a system starts out with a value, either 0 or 1.
There may be some faulty processors in the system, although we do not
know in advance which these are. The problem is to design a protocol that
guarantees that all the nonfaulty processors agree on some value, again
either 0 or 1, and do so at the same time. We assume for ease of exposition
that we are working in a system in which communication proceeds in
rounds and all messages sent in round k are received by processors before

REASONING ABOUT KNOWLEDGE 55

the beginning of round k+1. We further assume that the network is

completely connected, so that each processor has a direct link to all other
processors.

The formal problem statement is:

Given n processors, up to f of which may be faulty, we want a protocol
that guarantees that if each processor i starts out with some initial value
x;€{0, 1}, then

1. Each nonfaulty processor eventually “decides” on some value
y,€{0,1}.

2. The nonfaulty processors all decide on the same value (*“‘agree-
ment”’).

3. The nonfaulty processors all decide simultaneously (i.e. in the same
round).

4. If all the initial bits x; are identical, all the nonfaulty processors
decide x; (“validity™).

The third clause is the one that guarantees simultaneous agreement. The
fourth clause prevents the trivial solution where everyone always decides
on 0 (or always decides on 1).

The problem is sensitive to the type of behavior we assume on the part
of the faulty processors. The literature has concentrated on three failure
modes:

1. Crash failures: a faulty processor may crash, after which it sends no
messages.

2. Omission failures: a faulty processor may fail to send messages
to some processors on any given round (but otherwise follows its
protocol).

3. By:zantine failures: a faulty processor may exhibit arbitrary behavior.
In particular, it may “lie,” by sending messages that it was not
supposed to send according to the protocol.

Note that crash failures are a special case of omission failures, where the
faulty processor fails to send all messages to all processors after the round
in which it first fails. Of course, omission failures-are a special case of
Byzantine failures. .

There exist deterministic protocols that attain SBA for each of the three
failure modes, although in the case of Byzantine failures, we require that
n = 3f+ 1. [This is a tight bound. However, if we assume that processors
can “‘sign” messages with “unforgeable signatures,” there are protocols
that attain SBA in the presence of arbitrarily many Byzantine failures. See
Fischer (1983) or Strong & Dolev (1983) for details.] In all cases, the

56 HALPERN

known protocols require f+ 1 rounds to reach agreement in all runs (recall
/f is an upper bound on the number of faulty processors). Moreover, in
runs in which there are no faults, /41 rounds are required to reach
agreement, even if we consider only crash failures. Nevertheless, the ques-
tion arises whether there are runs in which agreement can be reached in
fewer than f+ 1 rounds. This question is investigated in Dwork & Moses
(1986) for the case of crash failures and Moses & Tuttle (1986) for the case
of omission failures. We now discuss these results.

An argument similar to that used in the case of coordinated attack can
be used to show that when the nonfaulty processors decide on a value, it
must be common knowledge among the nonfaulty processors that they
are deciding on that value. However, we must be somewhat careful when
defining the notion “it is common knowledge among the nonfaulty pro-
cessors.” The problem is that the set of nonfaulty processors is an indexical
set: its members vary from point to point. We proceed as follows.

Let N be the set of nonfaulty processors (formally, N is a function from
points to subsets of processors). We define Eyp to be A, yK(ie N= ¢).
Thus, Eye says that every nonfaulty processor knows that if it is nonfaulty,
then @ holds.” We can now define Cyg as Eyp A EyEyg A It is easy
to check from these definitions that C satisfies the fixpoint property:

Cyo = Ex(@ A Cyp).

Thus, a fact ¢ is common knowledge among the nonfaulty processors if
and only if every nonfaulty processor knows that if it is nonfaulty, then ¢
holds and ¢ is common knowledge among the nonfaulty processors.

It can now be shown:

Theorem 6.1 If R is the set of runs of a protocol for SBA and a
nonfaulty processor decides on the value v at the point (r, 1), then
1. (R, r, t) E Cy (all nonfaulty processors are deciding v) and
2. (R,r, 1)k Cy (at least one processor had v as its initial value).

Thus, if 2 nonfaulty processor decides v, then it must be common knowl-
edge that all the nonfaulty processors decide v at the same time, and that
at least one of them had v as an initial value.

This result establishes a tight relationship between SBA and common
knowledge, which is exploited in the following protocol:

For round [= 0,1,2,... processor i does the following:

11 turns out that this definition of Eyg is more useful than the more obvious A, yK@.
While these definitions are equivalent for nonindexical sets, they differ in situations where a
nonfaulty processor does not know that it is nonfaulty. See Moses & Tuttle (1986) for further
discussion. -

REASONING ABOUT KNOWLEDGE 57

if K{ie N = Cy (some initial value was 0))
then decide 0
elseif K(ie N = Cy (some initial value was 1))
then decide 1
else send complete history to every processor.

This is an example of a knowledge-based protocol (Halpern & Fagin
1985): a processor’s actions explicitly depend on tests for knowledge. A
knowledge-based protocol may often be a very useful high-level way of
describing the right actions to take in the case of SBA or other problems.
Indeed, if we assume for now that this protocol terminates (so that the
nonfaulty processors eventually attain common knowledge that some
initial value was 0 or attain common knowledge that some initial value
was 1), it is easy to see that it does attain SBA. When some nonfaulty
processor knows that if it is not faulty then it is common knowledge among
the nonfaulty processors that some initial value was 0 (respectively 1), then
all the nonfaulty processors know this fact. Thus, all nonfaulty processors
decide on the same value simultaneously.*

This protocol is in fact an optimal protocol for SBA in the case of crash
failures and omission failures. In order to make this precise, for crash
failures and omission failures, we define the failure pattern of a run to be
a description of which processors fail, in what round they fail, and which
processors they do not send messages to. (In the case of Byzantine failures,
we can no longer characterize a processor’s faulty behavior by simply
describing which processors it fails to send to; faulty processors may send
arbitrary messages at any round. This makes the analysis of Byzantine
failures much more difficult.) Note that a run of a protocol is completely
determined by the initial configuration (the initial states of the processors)
and the failure pattern. A protocol P is optimal for SBA if, for every initial
configuration C and failure pattern F, protocol P achieves SBA in the run
determined by C and F at least as soon as any other protocol O achieves
SBA in the corresponding run of Q.

A full-information protocol is one where at each round, a processor
sends its complete history to all the other processors. Note that the know-
ledge-based protocol described above is a full-information protocol. Intu-
itively, processors gain knowledge as quickly as possible using the full-
information protocol. This intuition is made precise in Dwork & Moses
(1986) and Moses & Tuttle (1986), where it is shown that in the case of
crash failures and omission failures, full-information protocols are optimal

* As it stands, the protocol is biased towards 0, since if it is common knowledge both that
some initial value was 0 and that some initial value was 1, the decision value will be 0. The
protocol can easily be modified to be less biased.

58 HALPERN

{ z;ocr?::g (c:: k:c;wlecii ge; l:.e. facts become common knowledge using a full-
using any olt)hgrocc:o:‘; B?St;s soon as they become common knowledge
Theorem 6.1, we Ean s:: t'h i A g toggther }v:th

.1, at out knowledge-based protocol is optimal
for SBA, since the nonfaulty processors cannot decide on a value 0 (resp.
1) before it becomes common knowledge that some initial value was 0
(resp. 1), and the full-information protocol makes this fact common
knowledge at least as soon as any other protocol.

Given that the knowledge-based protocol is optimal, we would like to
convert it to a standard protocol by removing the tests for knowledge. It
18 not too hard to show that we can in fact do this. If we restrict our
attention to crash failures or omission failures, there are only finitely many
possible global states at any time, so that we can calculate the truth of a
fact at any point simply by applying the definition of F given in Section 2.
(Even if we allow Byzantine failures, we can again show that there are
only finitely many “relevant” global states, so we can again compute what
is common knowledge at a given point.)

Of course, we do not want to know only whether or not we can compute
what is common knowledge. We would also like to know if this com-
putation can be done efficiently. Moreover, we would like to characterize
when facts become common knowledge. This will tell us, for example, how
many rounds are required to reach SBA as a function of the failure pattern
in the optimal protocol given above.

We first focus on the case of crash failures. Let R be the set of runs
defined by the full-information protocol in the case of crash failures. Let
F(r, k) be the number of processors that fail by round & in run re R and
let F’(r, k) be the maximum number of processors implicitly known by the
nonfaulty processors to have failed by round k in run r. Finally, define
W(r,l) to be the maximum of F'(r,k)—k for k < I, and define W(r), the
wastefulness of run r, to be the maximum of W(r,/) for I/ < f+1.

To understand these notions, consider a run r in which no processor
fails in round 1 and processors 1, 2, and 3 fail in round 2. Assume that the
only processor to which processor 1 (resp. 2, 3) fails to send a message in
round 2 is processor 4 (resp. 5, 1). Thus, processor 4 knows of processor

1’s failure and processor 5 knows of processor 2's failure, but no nonfaulty
processor knows of processor 3's failure. At the end of round 2, the
nonfaulty processors implicitly know of two failures. Hence, F(r,2) = 3,
but F’(r,2) = 2 and W(r,2) =0.

Intuitively, we can imagine there is an “adversary” trying to prevent us
from achieving Byzantine agreement. This adversary is initially provided
with f tokens (one for each fault). The adversary spends a token by
making a processor faulty. As we shall see, the-adversary’s best strategy

REASONING ABOUT KNOWLEDGE 59

is to spend as few tokens as possible, and in particular, not to spend more
than k tokens by round k. The wastefulness of a run measures how far off
the optimal strategy the adversary has been in that run, The worst thing
the adversary can do is make f processors faulty in round 1. As soon as
the nonfaulty processors discover the f faults (which will happen by round
2 in the crash failure model), all their uncertainty about the run has been
removed and they can quickly reach agreement. By limiting the number
of faults, the adversary can increase the nonfaulty processors’ uncertainty!

The following theorem characterizes when common knowledge of facts
about the initial state (i.e. facts describing the processors’ initial values)
arises in terms of the wastefulness of the run. The key point is that if
! = f+1— W(r), then by round / there must have been a clean round, one
in which no processor fails. It turns out that the existence of a clean round
is a prerequisite for common knowledge.

Theorem 6.2 Let R consist of the runs of the full-information protocol
in the case of crash failures. Initially undetermined facts about the initial
state become common knowledge in run re R at round f+1— W(r) and no
earlier. Moreover,

L I=f+1—=W(r)iff (R, r,1)E Cy(l = f+1— W(the current run)), and
2.If I=f+1—W(r) and ¢ is a fact about the initial state, then
(R,r,) F Iy iff (R, 1, 1) F Crop.

With this theorem in hand, it turns out we can eliminate the tests for
common knowledge in the previous protocol as follows:
Forround /= 0,1,2,..., processor i does the following:

if K(/= f+1— W(the current run))
thenif K.(some initial value was 0)
then decide 0 else decide |
else send complete history to every processor.

We must first show that this protocol attains SBA. Given a run r,
suppose [= f+1—W(r). From part 1 of Theorem 6.2, the fact that
I = f+1— W(r) will be common knowledge in round / of run r, so that in
particular every nonfaulty processor knows this fact. Thus all nonfaulty
processors will decide (simultaneously) in round / of run r. If some non-
faulty processor i decides 0, then it must be because i knew at round / that
some initial value was 0. Thus this fact is implicit knowledge among the
nonfaulty processors at round /, and by part (2) of Theorem 6.2 (since it
is a fact about the initial state), it is common knowledge among the
nonfaulty processors. In particular, every nonfaulty processor knows that
some initial value was 0, and so decides 0 at round /. Since we have already

60 HALPERN

shown that all processors decide at round /, it follows that they reach the
same decision, and thus SBA is attained.

This is still a knowledge-based protocol, but now it is easy to get rid of
the tests for knowledge. A processor knows that / > f+ 1 — W(the current
run) iff it knows at round / that at some round j < / there were at least
[+ 1—1+j faulty processors. It can obtain this information by observing
which processors did not send it messages at round j and by hearing from
other processors about processors that did not send messages at round 3
Similarly, it knows that some initial value was 0 iff either its own initial
value was 0 or it received this information from some processor.

This protocol is an implementation of our original knowledge-based
protocol, and it attains SBA in run r in f+1— W(r) rounds, which is
optimal [see Dwork & Moses (1986) for more details]. Note that if 7 is a
run with no failures, then W(r) = 0, so it takes f4 1 rounds to achieve
agreement. On the other hand, if r’ is a run in which f processors fail in
round 1 and their failure is implicit knowledge among the nonfaulty
processors in round 1, then W(r’') = f— 1, so this protocol attains SBA in
2 rounds in 1.

These results are extended in Moses & Tuttle (1986) to the case of
omission failures. Our original knowledge-based protocol (with tests for
common knowledge) is still optimal in this case. It is shown in Moses &
Tuttle (1986) that we can again find a polynomial-time algorithm for
computing what is common knowledge, and thus convert the knowledge-
based protocol described above to an optimal standard protocol. We might
also hope to extend these results to Byzantine failures. However, results
of Moses & Tuttle (1986) suggest that it is unlikely that we will be able to
do this. Define a generalized omission failure to be one where a processor
may be faulty either because it fails to send a message or fails to receive
one. Again it can be shown that our original knowledge-based protocol is
optimal for SBA in the case of generalized omission failures, and a full-
information protocol is optimal for attaining common knowledge.
However, the following resuit is proved in Moses & Tuttle (1986):

Theorem 6.3 Let R be the set of runs defined by the full-information
protocol in the case of generalized omission failures. Computing whether an
initially undetermined fact about the initial state is common knowledge at
any given point in the network in NP-hard (in the size of the network).

As a corollary to this theorem, it follows that NP-hard computations
will be required in any optimal protocol for SBA in the case of generalized
omission failures. Since generalized omission failures are a special case of
Byzantine failures, this suggests that the same will be true for Byzantine
failures as well. (The result for Byzantine failures does not immediately

REASONING ABOUT KNOWLEDGE 61

follow, since, for example, it may be that initiall
become common knowledge at round
to compute.)

The e?.nalysis given here for SBA applies equally to other problems in
which simultaneous actions are required. Such problems include the firing
squad problem (Burns & Lynch 1985; Coan et al 1985), where processors
must “fire” simultaneously at some point after the first nonfaulty processor
receives a “'start” message from an external source, and weak Byzantine
agreement (see Fischer 1983), which is like Byzantine agreement except
that agreement is only required if all the processors are nonfaulty. Since
these problems also involve attaining common knowledge, lower bounds
for attaining common knowledge immediately give lower bounds for the
running time of protocols that solve these problems. Moreover, we can
get optimal protocols for these problems along very much the same lines
as the optimal protocol described for SBA [see Moses & Tuttle (1986) for
details]. These observations show the generality and power of a knowledge-
based approach to protocols.

y undetermined facts only
S+ 1, at which time they are easy

7. TAKING COMPUTATION INTO ACCOUNT

As we observed in Section 2, our definition of knowledge does not take
into account the difficulty in computing knowledge. In particular, it follows
from our definition that agents know all logical consequences of their
knowledge, and know all formulas valid in a given system. The analysis
of Byzantine agreement done in the previous section shows both the
strengths and weaknesses of this definition.

By reducing SBA to common knowledge we gain a deeper understanding
of the problem and derive protocols that stop in an optimal number of
rounds as a function of the failure pattern, at least in the case of crash
failures and omission failures. However, computing common knowledge
is likely to be very difficult in the case of generalized omission failures.
While the knowledge-based protocol described in the previous section does
give us some insight, it cannot be translated efficiently to a standard
protocol in the case of generalized omission failures. Clearly, it would be
useful to have a notion of knowledge that somehow took into account the
difficulty of computation. Such a notion of knowledge might also be more
appropriate for numerous other applications involving both human agents
and computers.

Much effort has gone into dealing with the more general logical
omniscience problem, and notions of knowledge have been defined for
which an agent’s knowledge is no longer closed under deduction and/or
agents no longer know all valid formulas. Unfortunately, most of these

62 HALPERN

approaches do not directly deal with the problem of computing knowledge
and none seems completely appropriate for the type of analysis required
in distributed systems. We briefly review the major trends in this section.

One approach that has frequently been suggested is the syntactic
approach: what an agent knows is simply represented by a set of formulas
(cf Eberle 1974; Moore & Hendrix 1979). Of course, this set need not be
constrained to be closed under logical consequence or to contain all
instances of a given axiom scheme. While this does allow us to define a
notion of knowledge that does not suffer from the logical omniscience
problem, it is a notion that is difficult to analyze, and certainly does not
approach the problem of computation at all.

A somewhat more sophisticated approach is taken by Konolige (1984),
who considers starting with a set of base facts and then closing off under
a (possibly incomplete) set of deduction rules. Similar ideas were recently
proposed in Nguyen & Perry (1986), where, instead of starting off with a
fixed set of base facts, the closure (under some possibly incomplete set of
deduction rules) of the information that a processor has received via
messages is considered.

The emphasis in these approaches is on limiting deduction in some way.
The implicit assumption is that agents try to compute which formulas are
valid (and may fail to do so due to limited resources). However, in many
cases, a better paradigm than that of computing validity might be that of
model checking: computing what formulas are true at a certain point in a
given system. Techniques similar to those used in branching time temporal
logic (Clarke et al 1986) can be used to show that the problem of checking
whether a formula is true at a given point in the system is polynomial in
the size of the system (i.e. the number of possible global states) and the
size of the formula. Given a network of size n and a protocol for all the
processors, the number of possible global states can be very large and even
infinite. In the case of the SBA protocols considered in the last section, it
is not hard to show that in the case of crash failures, there are exponentially
many (<2 possible global states at the end of round k. The analysis of
Dwork & Moses (1986) shows that despite the exponential number of
global states, it is still possible to determine whether a fact about the initial
state is common knowledge in time polynomial in n. Moses & Tuttle (1986)
show that this still holds true in the case of omission failures but fails in the
case of generalized omission failures (unless P = NP). These observations
suggest that a good theory of computational knowledge will have to have
a large semantic component, rather than just taking a proof-theoretic
approach and limiting deduction. '

One semantic approach that has been taken is to augment the standard
possible worlds by “impossible” worlds, where the customary rules of logic

REASONING ABOUT KNOWLEDGE 63

do not hold (cf Cresswell 1973; Rantala 1982; Rescher & Urquhart 1971).
Thus, in these models there may be inconsistent worlds, where a primitive
proposition is both true and false, and partial worlds, where a primitive
proposition may be neither true nor false. The semantics of conjunction,
disjunction, and implication may also vary from the usual semantics of
these operators in classical logic. In general, the construction of these
models was not motivated by computational issues (in fact, the motivation
was often only to find a model that satisfied a certain set of axioms).

One impossible-worlds model that is motivated by computational issues
is that of Levesque (1984), who attempts to find a tractable (i.e. polynomial-
time computable) notion of knowledge. He distinguishes between explicit
and implicit knowledge, where explicit knowledge consists of those facts
of which you are explicitly aware, while implicit knowledge consists, intu-
itively, of all the logical consequences of explicit knowledge. (This notion
of implicit knowledge is different from the notion presented in Section 2,
although they can be shown to be closely related.) Of course, an agent
may not be aware of all his implicit knowledge. While implicit knowledge
has the properties of logical omniscience, explicit knowledge does not.” As
far as tractability goes, if we take Be to represent “‘the agent explicitly
knows ¢,” then Levesque shows that for formulas of the form Bo = By
where ¢ and are propositional formulas in conjunctive normal form,
the validity problem can be decided in polynomial time.

This result can still be viewed as describing a way of restricting the
validity problem in order to make it tractable, so it does not seem applicable
to the distributed systems problems we have been discussing. [The language
is also restricted to the case of one agent and depth one formulas (so
that formulas of the form BB¢ are not dealt with), which also limits its
applicability to distributed systems problems.] Nevertheless, this particular
type of tractability does suggest that the logic might be useful for providing
semantics for knowledge-base queries. Suppose ¢ is a description of (the
facts known to) a knowledge base and i is a query to the knowledge base;
then Bp = B exactly if the knowledge base should answer yes to the
query. It does not seem unreasonable to insist that ¢ be in CNF; a
knowledge base can be viewed as a collection (i.e. conjunction) of facts,
each of which is a disjunction. While the query y will in general not be in
CNF, we would expect y to be a small formula in comparison to ¢, so
that converting it to CNF (which might entail an exponential blowup in
its size) would be relatively inexpensive.

We close this section with a discussion of the logic of general awareness

*Levesque actually considers belief rather than knowledge, but his results apply equally
well to knowledge. -

64 HALPERN

of Fagin & Halpern (1985). In this model, the standard Kripke structure
for knowledge of Section 2 is augmented with an awareness function, which
assigns to each agent at each possible world a set of formulas that the
agent is “aware” of at that state. Implicit knowledge is defined just as
knowledge was before. Explicit knowledge consists of implicit knowledge
plus awareness. Thus an agent explicitly knows ¢ in a given global state
if (1) o is true at all the global states the agent considers possible and (2)
¢ is in the agent’s awareness set for that global state. If we take the
formulas that a processor is aware of to be those that it can compute (at
that global state) within some prespecified time or space bound, then
explicit knowledge becomes a computational notion. Of course, this just
pushes all the difficulty into the awareness function, but it does present a
possibly useful framework for studying the problem.

8. RELATED WORK AND FUTURE DIRECTIONS

The idea of using knowledge to analyze distributed systems is fairly recent,
but the area has seen a great deal of activity in the past two years.
Many important open problems remain, some of which have already been
mentioned in this survey. Some of these problems, and a brief account of
the work already done on them, are listed below.

\. Further analysis of protocols using knowledge: In this survey we have seen
how the coordinated attack problem and the simultaneous Byzantine
agreement problem can be analyzed using knowledge. Recently, knowl-
edge has also been used to analyze the atomic commit protocol (Had-
zilacos 1987) and a family of data communication protocols (Halpern
& Zuck 1987); in both cases the analysis seems to lead to a better
understanding of the problem and the properties that any solution to
it must have. Many other protocols should be amenable to this sort of
analysis. It would be useful to have a larger body of examples on which
we can test and develop our intuitions. :

2. Specifying, synthesizing, and verifying protocols: Knowledge also seems
to be a useful tool for specifying the properties a protocol should
have. Once we specify a protocol’s properties using the language of
knowledge, we can try to synthesize a protocol having those properties.
Temporal logic has already proved somewhat successful in this regard
(cf Emerson & Clarke 1982; Manna & Wolper 1984). Preliminary work
using knowledge in this way seems promising (cf Afrati et al 1986).
Much work has already been done on developing proof techniques for
verifying correctness of distributed protocols using temporal logic or
other logics. It seems that many of these ideas can also be applied to

REASONING ABOUT KNOWLEDGE 65

proving knowledge-based properties of programs, although Katz &
Taubenfeld (1986) is the only work done thus far in this area.

. Programming with knowledge-based protocols: As we have seen in the
analysis of Byzantine agreement, knowledge-based protocols provide a
high-level way to describe the relationship between knowledge and
action. It may often be easier first to give a knowledge-based protocol
that solves a problem, and then to convert it to a standard protocol. A
more detailed understanding of the relationship between knowledge-
based protocols and standard protocols would be useful. Ultimately we
can imagine programming directly in a language that allows tests for
knowledge, where the details of how that knowledge is computed are
invisible to the programmer. Of course, we are currently a long way
from that point.

. Resource-bounded reasoning: We have already mentioned much of the
work that has gone on in finding models of knowledge that capture the
difficulty in computing knowledge. However, none of these models
seems completely adequate; in particular, none of them gives a notion
of knowledge appropriate for analyzing knowledge-based protocols
that use only tests for computable knowledge. It would be particularly
interesting to investigate the relationship between resource-bounded
reasoning and the work of Goldwasser et al (1985), and others on
knowledge complexity, which attempts to quantify the information
released during an interaction in terms of computational complexity
theory.

. Incorporating probability: Dealing with probabilistic knowledge is
clearly of interest, especially when analyzing randomized protocols.
The work by economists on reasoning about knowledge incorporated
probability right from the start (cf Aumann 1976). As was mentioned
before, there is no difficulty in adding probability to the abstract
model by viewing the set of possible worlds as a probability space. Can
we usefully analyze randomized protocols by doing this?

. Properties of knowledge in distributed systems: What are the intrinsic
properties of our notion of knowledge in distributed systems? As was
mentioned in Section 2, our definition of knowledge satisfies all the
properties of the classical modal logic S5, but there may be some
additional properties that arise when we restrict attention to distributed
systems. Some work on this issue appears in Fagin & Vardi (1986) and
Fagin et al (1986), where it is shown that the properties of knowledge
depend heavily on assumptions we make about the distributed system,
such as whether or not processors have unbounded memory. Precisely
the same issues arise when we add time to the picture. The properties
and the complexity of reasoning about knowledge and time may change

66 HALPERN

drastically depending on the assumptions we make about the system
(see Halpern & Vardi 1986). It would be interesting to do a more
thorough investigation of how properties of knowledge change with the
communication medium. For example, one could try to characterize
properties such as whether or not communication is guaranteed in terms
of how the knowledge of processors in the system changes over time.

In summary, the recent progress in the field gives us reason to hope that
reasoning about knowledge will prove to be an extremely useful tool in
designing, analyzing, and understanding distributed systems. However, as
the list above [and the list of problems given in Halpern (1986) in the

general area of reasoning about knowledge] shows, there is much more
work to be done.

ACKNOWLEDGMENTS

Yoram Moses corrected some errors in a previous draft of this paper, and
Moshe Vardi suggested the focus on computing knowledge rather than
logical omniscience in Section 7. Yoram, Moshe, Cynthia Dwork, Ron
Fagin, Vassos Hadzilacos, Jay Misra, and Ed Wimmers all made useful
comments on previous drafts of this paper.

Literature Cited

Afrati, F., Papadimitriou, C. H., Papa-
georgiou, G. 1986. The s}gmlhwis of com-
munication protocols. Proc. Fifth Ann.

approach. Proc. 10th ACM Symp. Prin-
?‘iu_;esz of Programming Languages, pp.
26

ACM Symp. Principles of Distributed
Computi girﬁp. 263-71

Aho, A, V., Ullman, J. D., Yannakakis, M.
1979. Modelling communication proto-
cols bﬁ automata. Proc. 20th Ann. Symp.
;‘3 tions of Computer Science, pp. 267—

Aumann, R. J. 1976. Agreeing to disagree.
Ann. Stat. 4(6): 1236-39

Burns, J., Lynch, N. A. 1985. The Byzantine
ﬁriln_lg § problem, MIT Tech. Rep.

/LCS/TM-275

Chandy, M., Misra, J. 1986. How processes
learn. Distrib. Comput. 1(1): 40-52; a pre-
liminary version appears in Proc. 4th
ACM Symp. Principles of Distributed
Computing, 1985, pp. 20414

Clark, H. H., Marshall, C. R. 1981. Definite
reference and mutual knowledge. In
Elements of Discourse Understanding, ed.
A. K. Joshi, B. L. Webber, I. A, Sag. Cam-
bridge: Cambridge Univ. Press

Clarke, E. M., Emerson, E. A., Sistla, A,
P. 1983. Automatic verification of finite
state concurrent programs: a practical

Coan, B., Dolev, D., Dwork, C., Stock-
meyer, L. 1985. The distributed firing
squad]r:;:b]cm. Proc. 17th Ann. ACM
Symp. Theary of Computing, pp. 335-45

Cresswell, M. I, 1973, Logics and Languages.
London: Methuen

Dwork, C., Moses, Y. 1986. Knowledge and
common knowledge in a Byzantine
environment I: crash failures. In Theor-
etical Aspects of Reasoning About Knowl-
edge: Proceedings of the 1986 Conference,
ed. J. Y. Halpern, pp. 149-70. Los Altos,
Calif: Morgan Ka . A revised ver-
sion willa in Information and Control

Eberle, R. 1974. A logic of believing,
lsuztlowing and inferring. Synthese 26: 356—

Emerson, E. A., Clarke, E. M. 1982, Using
branching time temporal logic to syn-
thesize synchronization skeletons. Sei.
Ci (. Program. 2: 241-66

Fagin, E., Halpern, J. Y. 1985, Belief, aware-
ness, and limited reasoning. Proc. Ninth

Int. Joint Conf. Artif. Intell., pp. 491-501
Fagin, R., Halpern, J. Y., Vardi, M. Y.

REASONING ABOUT KNOWLEDGE 67

1986. What can machines know? On the

epistemic properties of machines. Proc.

AAAI-SG \Pp 42834

Fagin, R., Vardi, M. Y. 1986. Knowledge
and :mphcu knowledge in a distributed
environment. In Theoretical Aspects of
Reasoning About Knowledge: Proceedings
of the 1986 Conference, ed. J. Y. Halpern,
pp. 187-206. Los Altos, Calif: Morgan
Kaufmann. A revised version will appear
in Artificial Intelligence

Fischer, M. J. 1983. The consensus problem
in unreliable distributed systems (a brief
survey). Tech. Rep. 273, Yyaaje Univ.

Fischer, M. J., Immerman, N. 1986. Foun-
dations of knowledj: for distributed
systems. In Theoretical Aspects of Reason-

About Knowledge: Proceedings of the

l’?86 Conference, ed. J. Y. Halpern, pp.
171-85. Los Altos, Calif: Morgan Kauf-

mann

Goldwasser, S., Micali, S., Rackoff, C. 1985.
The knowledge complexity of interactive
proof-systems. Proc. 17th Symp. Theory
of Computing, pp. 291-304

Gray, J. 1978. Notes on data base operating
systems, In Operating Systems: An
Advanced Course. e.gprfnger Lect. Nore.r
Comput. Sei. 60, R. Bayer, R. M.
Graham, G. Seegmuﬂer, pp. 393-481.
New York: Springer-Verlag

Gray, J. 1979. A discussion of distributed
systems. Proc. Assoc. Ital. Calc. Automat.,

. 204-11

Hadzilacos, V. 1987. A knowledge-theoretic
analysis of atomic commitment protocol.
Proc. Sixth ACM Symp. Principle of Data-
base Systems, pp. 129-34

Halpern, J. Y. 1986. Reasoning about
knowledge: an overview. In Theoretical
Aspects of Reasoning About Knowledge:
Proceedings of the 1986 Conference, ed. J.
Y. Halpern, pp. 1-17. Los Altos, Calif:
Morgan Kaufmann

Halpern, J. Y., Fagin, R. 1985. A formal
model of knowledge, action, and com-
munication in distributed systems: pre-
liminary report. Proc. 4th ACM Symp.
Principles of Distributed Computing, pp.
224-36

Halpern, J. Y., Moses, Y. O. 1984, Knowl-

ge and common knowledge in a dis-

tributed environment. Proc. 3rd ACM
Conf. Principles of Distributed Computing,
Fp 50-61. A revised version appears as
BM Res. Rep. RJ4421, 1986

Halpern, J. Y., Moses, Y. O. 1985. A guide to
the ncdal logics of knowledge and belief:

report. Proc. Ninth Int. Joint
Couf Art lz!meﬂ pp. 480-90
Halpern, J Rabin, M. O. 1983, A logic

to reason about likelihood. Proc. Fifteenth
Ann. ACM Symp. Theory of Computing,

310-
e s Y Vardi, M. Y. 1986. The com-
p ty of reasoning about knowledge and
time. Proc. Eighteenth Ann. ACM Symp.
Theary of Computing, pp. 304-15
egvcm 1. Y., Zuck, L, 1987. A little knowl-

ge goes along way: a simple knowled%_c-
based analysis of a simple protocol

in Proc. Sixth Ann. ACM Symp.

Principles of Distributed Computing

Hintikka, J. 1962. Knowledge and Belief.
Ithaca; Cornell Univ.

Katz, S., Taubenfeld, G. 1986. What pro-
cesses know: definitions and proof
methods. Proc. Fifth Ann. ACM Symp.
ﬁgicggks of Distributed Computing, pp.

Konolige, K. 1984. Belief and Incom-
pleteness. SRI Artif. Intell. Note 319, SR1
Int., Menlo Park, Calif.

Kripke, S. 1963. Semantical analysis of
modal logic. Z. Math. Logik Grundlagen
Math. 9: 67-96

Ladner, R. E. 1977. The computational com-
plexity of provability in systems of modal
propositional logic. SIAM J. Compui.
6(3): 467-80

Ladner, R. E., Reif, J. H. 1986. The logic

of distributed protocols. In Theoretical

Aspects of Reasoning About Knowledge:
Proceedings of the 1986 Conference, ed. J.
Y. Halpern, pp. 207-22. Los Altos, Calif:
Morgan Kaufmann

Lamport, L. 1978. Time, clocks, and the
orderings of events in a distributed system.
Commun. ACM 21(7): 558-64

Lehmann, D. J. 1984. Knowledge, common
knowledge, and related puzzles. Proc.
Third Ann. ACM Conf. Prmlple.r of Dis-
tributed Computing, p f

Levesque, H. J. 1984. A logic oflrnphm and

hc:t belief. Proc. AAAI-84, pp. 198-
20 A revised version appears as R
Tech. Rep. 32, 1984

Lewis, D. 1969. Convention, A Philosophical

Study. Cambridge, Mass: Harvard Univ.

Manna, Z., Wolper, P, 1984. Synthesis of
communicating processes from temporal
logac specifications. ACM Trans. Pro-

la? Syst, 6(1): 68-93

MoCarthy. Sato, M., Hayashi, T., Iga-
rishi, S. 1978. On the model Lheory of
knowledge. Stanford Com%ml. Sci. Dept.
Rep. No. STAN-CS-78-65

Milgrom, P. 1981. An axiomatic charac-
terization of common knowledge. Econo-
metrica 49(1): 219-22

Moore, R. C., Hendrix, G. 1979. Com-
putational Models of Beliefs and the Se-
mantics of Belief Sentences. Tech. Note
187, SRI Int., Menlo Park, Calif.

Moses, Y.-0. 1986. Knowledge in a dis-

68 HALPERN

{Eibu:ed environment. PhD thesis, Stanford

niv

Moses, Y. O,, Tuttle, M. 1986. Programming
simultaneous actions using common
knowledge. Proc. 27th Ann. Symp. Foun-
dations of Computer Science, pp. 208-21

Nguyen, V., Perry, K. 1986. Do we really
know what knowledge is? IBM Res. Rep.
RC 11830

Parikh, R., Ramanujam, R. 1985. Dis-
tributed processing and the logic of knowl-
edge. Proc. Brooklyn College Work. Logics
of Programs, ed. R. Parikh, pp. 2 6—63

Pease, M., Shostak, R Lamport, L. 1980,
Reaching agreement in the presence of
faults. J. ACM 27(2): 228-34

Perrault, C. R., Cohen, P. R. 1981. It's for
your own good: a note on inaccurate ref-
erence. In Elements of Discourse Under-
standing, ed. A. K. Joshi, B. L. Webber, 1.

A. Sag. NY: Cambridge Univ. Press

Rantala, V. 1982. Impossible worlds se-
mantics and logical omniscience. Acta
Philos. Fenn. 35: 106-15

Rescher, N., Brandom, R. 1979. The Logic
of Inconsistency. Totowa, NJ: Rowman
and Littlefield

Rescher, N., Urquhart, A. 1971. Temporal
Logic. NY: Springer-Verlag

Resenschem, 8. 1., Kaelbling, L. P. 1986,

thesis of digital machines with

provague epistemic properties. In Theor-
etical Aspects of Reasoning About Knowl-
edge Proceedings of the 1986 Conference,
ed. J. Y. Halpern, ?p 83-98. Los Altos,
Calif: Morgan Kaufmann

Strong, H. R., Dolev, D. 1983. Byzantine
agreement. COMPCONS3: Digest of
Papers, pp. 77-82. San Francisco: IEEE

