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Abstract

Piccione and Rubinstein argue that a seemingly paradoxical form of time in-
consistency can arise in games of imperfect recall. Their argument depends on
calculating the expected value of a game from the standpoint of a player in the
middle of play. We claim that this concept is not well defined in games with ab-
sentmindedness (where two nodes on a path can be in the same information set)
without additional assumptions. We show that, under some reasonable assump-
tions, no time inconsistency arises. Different assumptions will validate Piccione
and Rubinstein’s calculations, but these are such as to remove the appearance of
paradox.
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1 Introduction

In a fascinating paper, Piccione and Rubinstein [1996] (PR from now on) argue that a
seemingly paradoxical form of time inconsistency can arise in games of imperfect recall.
That is, a player may be tempted to change his strategy, despite getting no new infor-
mation. To illustrate this problem, PR consider what they call the “absentminded driver
paradox”, which they describe as follows:

Example 1.1: An individual is sitting late at night in a bar planning his midnight trip
home. In order to get home he has to take the highway and get off at the second exit.
Turning at the first exit leads into a disastrous area (payoff 0). Turning at the second
exit yields the highest reward (payoff 4). If he continues beyond the second exit he will
reach the end of the highway and find a hotel where he can spend the night (payoff 1).
The driver is absentminded and is aware of this fact. When reaching an intersection he
cannot tell whether it is the first or the second intersection and he cannot remember how
many he has passed. 1

The situation is described by the game tree in Figure 1, in which F is the action of
turning at an exit, B is the action of continuing past an exit, and X, is the information
set consisting of the two exits. Since e; and e, are in the same information set, the driver
must perform the same (possibly randomized) action at each.

Figure 1: The absentminded driver game.

The only decision the driver has to make is whether to get off when he reaches an exit.
The optimal deterministic strategy is clearly never to exit; this gives him a payoff 1. He
can actually do better using a behavior strategy. A straightforward computation shows
that the driver’s optimal strategy ez ante is to exit with probability 1/3; this gives him
a payoff of 4/3. Throughout this paper, we refer to this strategy as bops. The interesting
question is whether the driver is tempted to depart from b, when he actually reaches
an exit.

The following argument could provide reason for this temptation. When the driver
is at an exit, he does not know whether he is at the first or second exit. So he might



calculate that his expected payoft following the optimal strategy if he is at the first exit
is 4/3, while his expected payoff if he is at the second exit is 2 (because a third of the
time he will exit, getting payoff 4, and otherwise he receives payoff 1). Now suppose he
ascribes subjective probability a to being at the first exit (and thus probability 1 — «
to being at the second exit). It then seems that his expected payoff when following the
strategy bopt 1S

4a/3+2(1 — ). (1)

Notice that this expected payoff is at least 4/3, and as long as « > 0, it is greater than
4/3. This seems paradoxical to us. The driver’s ez ante valuation of the game was 4/3,
but as soon as he reaches an exit (which he knew was certain to happen), he apparently
thinks the game is worth more. He would refuse an offer of 4/3 to quit the game once it
had started, yet at the bar would believe this to be a fair offer. We refer to this divergence
in expected utility as the expectation paradoz.

A calculation similar to that above shows that if the driver uses the strategy of exiting
with probability p (with p not necessarily 1/3), then his expected payoff is

a((1=p)*+4p(1=p)) + (1= a)((1 = p) +4p) =1+ (3 — a)p — 3ap”. (2)

Equation 2 is maximized when p = min(1, (3 — «)/6a) and (3 — «)/6a > 1/3, with
equality holding only if & = 1. Roughly speaking, what is going on is the following:
The driver’s expected payoff calculation for the first exit is identical to his calculation
while sitting at the bar. So if he is at the first exit the optimal strategy is just bopt, with
expected payoff 4/3. But if he is at the second exit, the optimal thing to do is exit (with
probability 1), which gives him expected payoff 4. Thus, as long as the driver places
positive probability on being at the second exit, it seems reasonable that he would want
to use a behavior strategy which places a higher probability on exiting than b.p, does.
Again, this is paradoxical because he doesn’t learn anything new about the game simply
because he is at an exit. He can confidently predict that, as soon as he starts his journey
(i.e., when he reaches an exit), he will prefer to do something other than follow bop:. We
call such an argument a strategy-change paradox.

PR discuss their calculations largely in terms of the implications for strategy change.
From our perspective, the difficulty with this is that it adds many extra complications
that may or may not get to the heart of the matter. In particular, to analyze the strategy-
change question carefully, one needs to address several issues that were left somewhat
implicit in PR’s paper, including the following: How often does the player get to think
about changing strategy? If he changes, does he remember his new strategy or is it a
one-off deviation? What information does the player have when he chooses? And so on.
([Halpern 1996] addresses the paradox in terms of precisely such questions.)

In contrast, this paper concentrates mostly on the expectation paradox, because it
has a much simpler structure. In particular, we hope to avoid clouding the discussion
too much with (perhaps controversial) questions about what it really means to choose a
new strategy. And yet, as we argued above, the expectation problem is no less a paradox



than the strategy-change question. It is also clearly relevant to the latter: after all, if
expectations change once one has started the game, then we should not be surprised
if bopt (chosen to have the highest ex ante expectation) no longer seems to be the best
possible strategy. Conversely, just as in the absentminded driver game, strategy-change
paradoxes tend to have a correspondingly puzzling expectation version. We discuss the
implications of our results to strategy choice at the end of the paper.

However one interprets the paradox, one might suspect that the introduction of sub-
jective probabilities is somehow to blame. After all, in general, the driver’s beliefs re-
garding whether he is at exit 1 or 2 could be arbitrary. PR discuss the question of these
beliefs very carefully. Although the beliefs are, in principle, unconstrained, PR are inter-
ested in the case where beliefs are “...related in a systematic way with the strategy to be
assessed.” They discuss two distinct notions of belief which appear, to them, to be rea-
sonable, both of which assign positive probability to being at the second exit. However,
as we have just seen, the paradoxical conclusions hold no matter how beliefs are assigned
(unless the driver is certain that he never gets to exit 2, which seems quite irrational).
So, provided we accept the calculation of expected utilities described above, the paradox
(in either form) remains.

In contrast to the careful consideration PR give to the question of appropriate choice
of beliefs, they appear to take the expected utility calculation for granted. This is indeed
a reasonable calculation in games without absentmindedness, that is, games where two
distinct nodes in an information set cannot lie in the same path. We show that the
notion of expected utility or value of a game at an information set is not well defined
in games with absentmindedness, such as the absentminded driver example. To make it
well defined, additional assumptions must be made. It is possible to make assumptions
that validate PR’s calculations. However, the nature of these assumptions is generally
such as to remove the appearance of paradox from the expectation calculation.

2 Expected Utility

We focus on single-player games here, just as PR do. Given a game I, a behavior strategy
b induces a probability distribution that we denote p, on the space of complete paths in
the game tree (or, equivalently, on the terminal nodes in the game tree) in the obvious
way. We can associate each node x in the game with an event in this probability space,
namely, with the event reach(x) consisting of all paths going through x. Similarly, given
a set X of nodes in the tree, we can consider the event of all paths going through some
node in X. Thus py(reach(z)) and py(reach(X)) are both well defined.

Utility can be viewed as a random variable on this space (where the utility of a path
is the utility associated with its terminal node), so we can compute expected utility in
the standard way. We can also compute expected utility conditioned on reaching node
x or reaching information set X with no difficulty. Let EU(b), EU(b; reach(x)), and
EU(b; reach(X)) denote the expected utility of b, the expected utility of b conditioned
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on reaching x, and the expected utility of b conditioned on reaching X, respectively.

The expectation EU (b; reach(X)) is determined by b, and does not depend on any
subjective probabilities. To compare this with Equation 1, which does use subjective
probabilities, we need to see how PR choose these probabilities. PR are quite explicit
that they are interested in the subjective belief of being at a node, not of reaching a
node x. To emphasize this issue, given a game I', let Np be the set of nodes in I', and
let Tt = {at(z) : € Nr}. (Although Tt is isomorphic to Np, we use the “at” notation
for events in Tt to emphasize the fact that we are considering being at a node x, rather
than reaching x.) If X C Nr, then we take at(X) to be the event {at(z): 2 € X} in Tr.
If b is a (behavior) strategy in the game I, let p;, be the probability distribution on Tt

defined as
s(at(z)) = py(reach(z))/ > po(reach(z")). (3)

T ENF

PR observe that pu,(at(z)|at(X)) is equal to the long-run proportion of times in which
one visits x € X if strategy b is being played repeatedly. More precisely, if the game is
played repeatedly using strategy b, and we compute the total amount of time spent at
any node in X (counting one time unit per node visited), then the fraction of this time
spent at x converges to uy(at(x)|at(X)). PR say that a belief assessment pu is consistent
with b precisely if p(at(x)|at(X)) = pp(at(x)|at(X)) for each information set X reached
with positive probability.! If p is consistent and there is no absentmindedness, PR’s
expected utility calculation gives exactly what we would expect, as formalized in the
following easy proposition:

Proposition 2.1: In games without absentmindedness, for every strateqy b and infor-
mation set X such that py(reach(X)) > 0, we have

EU(b; reach(X)) = > py(at(z)|at(X)) EU(b; reach(z)).

zeX

Proof: The proof is straightforward. In games without absentmindedness the events
reach(x), x € X, form a partition of the event reach(X), simply because no two nodes in X
lie on the same path. So, just from the definition of expectation, we have EU (b; reach(X))
= Y ex Po(reach(x)|reach(X))EU (b; reach(x)). However, using the disjointness of the
reach(z) events again, we have py(reach(X)) = ¥ e x po(reach(x’)). Thus

po(reach(x)|reach(X)) = py(reach(x))/ps(reach(X)) = pp(at(x)|at (X)),

from which the result follows. 1

L As is standard in the literature, PR do not assume that there is one belief assessment over all of
Tr. Rather, they allow a separate assessment u(-|at(X)) for each X, which (despite the notation) is not
necessarily obtained by conditioning on one distribution. Nevertheless, the definition of consistency we
give is equivalent to theirs.



Thus, in games without absentmindedness, it really is the case that the expected
utility of strategy b conditioned on reaching information set X can be computed by
taking the expected utility of the strategy conditioned on reaching each node z € X, and
weighting that according to the (consistent) subjective probability of being at x. This
computation (i.e., the expression occurring in Proposition 2.1) is our interpretation of the
expected utility computation that PR consider in their discussion of time (in-)consistency.
In particular, it reduces to Equation 1 in the absentminded driver example. Note that
PR’s notion of time consistency compares this expression (interpreted as the expected
payoff of the continuing with the current strategy) with a different calculation intended
to measure the expected payoff of changing to another strategy. This is because, unlike
us, they wished to address the strategy-change issue explicitly.

The argument we gave for Proposition 2.1 is not correct in games with absentminded-
ness, because the events of reaching nodes in an information set no longer define disjoint
events on the space of paths. Given an information set X, define the upper frontier of
X, denoted X , to consist of all those nodes x € X such that there is no node 2’ € X
that strictly precedes x on some path from the root. The notion of upper frontier was
introduced in [Halpern 1996], where it was argued that if a player switched strategies at
all, the switch had to occur at the upper frontier. The upper frontier also plays a role in
the computation of expected value. A similar proof to that of Proposition 2.1 shows:

Proposition 2.2: For every game, every strateqy b, and every information set X such
that py(reach(X)) > 0, we have

EU(b;reach(X)) = Y m(at(z)|at(X))EU(b; reach(z)).

z€X

This says that, in order to compute the expected utility of strategy b conditioned on
reaching information set X, we can focus on X compute the expected utility of b for
each node in z € X, and Welght that according to the subjective probability of being at
x conditioned on belng at X. Of course, X = X in games without absentmindedness. In
the absentminded driver example, if X, is the information set {e;, es}, then X, = {e1},
and the expected utility conditional on reaching an exit, according to this calculation, is
4/3, independent of the subjective probability the driver places on being at the first exit
and second exit.

Why does this calculation differ from what may seem to be the more intuitive calcu-
lation considered in the introduction, which took into account the possibility of being at
either exit? The most important difference is that Equation 1 includes terms for both
EU(b; reach(e1)) = 4/3 and EU(b; reach(es)) = 2, even though reach(e;) and reach(e;)
are not mutually exclusive events. Perhaps our natural inclination is to think of these
events as mutually exclusive (which is the case in games without absentmindedness)
because we are thinking of being at an exit rather than reaching one.



This suggests that we consider a different calculation that uses EU(b; at(e;)) instead
of EU(b; reach(e;)); that is,

> m(at(z)|at(X)) EU(b; at()).

zeX
This keeps the spirit of Equation 1 and Proposition 2.1, but always conditions on disjoint
events (i.e., at(z)), and does so consistently (rather than mixing reach(x) and at(x)).
However, EU(b; at(e;)) is not yet well defined. To define it, we need a space in which,
not only is “being at an exit” an event, but utility is a random variable.

There are many probability spaces that we might construct in which EU(b; at(e;))
is defined. The space Tt is not so convenient for defining utilities; we thus consider a
slightly more general construction. Given a game I', let St consist of all pairs (z, z) such
that z is a terminal node in I' (and thus determines a path in the game tree) and z is a
node on the path leading to z, which is denoted z < z. Intuitively, (z,z) can be thought
of as saying “the path taken is (or will be) z, and the player is currently at x”. Note
that at(z) is a well-defined event in this space for any node x in the tree, consisting of
all pairs (z,x) such that < z. Furthermore, note that if x and y are distinct nodes,
then at(x) and at(y) are mutually exclusive events. Thus, Tr can be embedded in Sr in
the obvious way.

We now must define a utility function and a probability distribution over Sr. There
are a number of reasonable choices that can be made for each. We begin by considering
a distribution that corresponds to having a belief assessment consistent with the strat-
egy chosen. Given a behavior strategy b in I, let gy(2, ) = ps(2)/ (o aryesy Po(2). Tt
is easy to see that for the strategy bop in the absentminded driver example, we have
Qoo (at(e1)|at(Xe)) = 3/5 and gy, (at(ez)|at(X.)) = 2/5 (where X, is the informa-
tion set {e1,es}). Note that, according to Equation 3, u, ,(at(e1)|at(X,)) = 3/5 and
I, (at(e2)|at(X,)) = 2/5. In general, for any game T', strategy b, and information set
X, it is not hard to show that g,(-|at(X)) is a belief assessment consistent with b.

Finally, we must define utility as a random variable over Sr. Having the terminal
node as one of the components of an element of St makes this easier to do for Sy than for
Tr. Nevertheless, there are several reasonable ways it can be done. Perhaps one’s first
thought would be to take u(z, x), the utility of a pair (z,z), to be the payoff at terminal
node z; this is the utility function we focus on from here on.

With these definitions we can make formal sense of the expected utility of using
strategy b, interpreted here as expected utility in the space Qrp = (Sr, gs, u). We de-
note this expected utility EUg(b), to emphasize the fact that we are working in Qr.
Similarly, we can compute conditional expected utilities in Qr . It is easy to check that
EUg(bops; at(e1)) = 4/3 and EUg(bopt; at(ez)) = 2. Since at(e;) and at(ey) are disjoint
events, we can calculate EUg(bopt; at(X.)) =4/3 x 3/5+2 x 2/5 =8/5.

In this space, it seems that the PR’s expected value calculations are justified. How-
ever, it must be stressed that Qry, , is very different from the original space. For example,
a straightforward calculation shows that the unconditional expected utility of b,y using
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Qr by 15 3/2, not 4/3. Thus, we must ask to what extent any expectation in Qpy, , (and
in particular, EUg(bopt; at(X.))) tells us something about the original example. There
are other, quite different, spaces that we might have considered instead of Qrp, . How
should we decide among the various possibilities?

A good way of understanding the issues involved is to give a concrete operational
interpretation of the new space(s) being considered. One possibility is as follows. Imagine
playing the absentminded driver game over and over again. From time to time, an
external agent A stops you in the middle of play, and asks you how much you would pay
to receive the payoff of the play being interrupted. To make things even more concrete,
we stipulate that the external agent knows how the game will end and, if you do pay
him, immediately deposits the amount of the game’s payoff in your bank account.? It is
important to note that this story, interpreted literally, is only relevant to the expectation
form of the paradox. The only option the player has is to refuse the offer (which means,
if he is never given the offer again in this game, that he has effectively left the game). It
would require a much more elaborate model in order to give the player the opportunity
to choose to continue playing but with a different strategy.

In this setting, when you are stopped, your situation will be adequately described by
some pair (z,x). Thus, Sr is a good space over which to analyze this new game. By
assumption, if the situation is (2, ), then the payoff you stand to earn is the payoff asso-
ciated with z. Thus u(z, x) as defined above is also appropriate. The missing ingredient
is the probability distribution over Sr. In part, this distribution is determined by the
strategy one is actually playing. It is worth noting that, in strategy-change problems,
this dependence is problematic because it appears somewhat circular. Roughly speaking,
this is because in some formulations of the strategy-change paradox, the player must take
into account that he might have already been in this information set, performed exactly
the same calculation he is doing now, and decided to change strategies. However, in our
setting this issue is straightforward because the only option is to buy the game’s payoft.
Even if the driver had done this in the past, he knows that he has also continued to play
his initial strategy (and will do so in the future), and so can he can base his beliefs on
this knowledge. But even in our setting, the distribution over St depends on more than
the player’s initial strategy: it is also determined by the strategy .4 uses to decide when
to stop you. This is perhaps the more interesting dependence.

For instance, consider the agent A, who decides randomly, at each point, whether
to stop you (i.e., at each point he tosses a coin of constant bias 7, whose outcome is
independent of previous tosses). It is easy to verify that, if you are playing strategy b, then
the resulting distribution over places where you are stopped is precisely ¢, (independent
of ). We can thus view the new game, involving A, as a concrete instantiation of the

2The assumption that the external agent can “predict the future” is a rather harmless one. In fact,
it is not even necessary for some of the models we discuss and is made only because we want to be
extremely concrete about how payoffs are made. Even where the assumption is important, it is easy to
simulate it by having all random decisions determined in advance (such as when the driver is still in the
bar) and made known to A at that point.



space Qr, . defined earlier. In the new game EUg(bopt; at(X)) can be interpreted as the
amount the player should be prepared to pay if he has been stopped and all he can tell
is that he is in information set X. If he pays this amount, he will break even in the long
run.

How should we feel about EUg(bopt; at(X.)) = 8/5, given this interpretation? On
the one hand, if one really is playing the new game (involving the external agent A.),
this is undoubtedly the right value to pay. On the other hand, the new game differs in
important respects from the original. If 7 is high then the agent .A, may stop you more
than once in a game and, according to the rules we have given, will pay you each time
you buy into the game. For instance, if you are stopped twice in a play of the original
game that ends at 25, then 4, will need to reward you with 8 = 4 x 2 units altogether.
This seems to be against the spirit of the original game (in which, for such a play, exactly
4 units of reward is made available). It is not surprising that the new game is worth
more to play.

If we would prefer that the player never be paid twice per evening, there are many
ways to ensure this. Some of these involve using a utility function other than w. For
example, we could define u/(z, ) to be 0 unless z = e; (so that A only has to reward you
when you are in fact at the first exit). Or we could expand the space Sr to keep track of
whether the player has been stopped already that evening (and if so, then the utility at
stake in any subsequent stop is 0). Another idea, which does not involve modifying w, is
to consider A, in the limit as v — 0, in which case the probability of being asked twice
in an evening becomes vanishingly small. These possibilities, and many others, are all
reasonable. Indeed, the story we have given (concerning an agent A and repeated plays
of the game) is certainly not unique either. What we believe is important is simply that
the complete model be defined and interpreted somehow. Only then can we form useful
opinions as to what (if anything) a certain calculation tells us about the original game.

With respect to understanding the absentminded drivers paradox, it turns out that
none of the utility models mentioned in the previous paragraph lead, by themselves, to
the er ante expectation of 4/3. But this is not surprising. Consider the case of A, in
the limit as ¥ — 0. We have already seen that 8/5 continues to be the fair value of
this game. But even though you do not stand to earn two rewards per evening, there
are some evenings in which you are never stopped at all (and so do not pay anything).
Furthermore, if you are stopped it is more likely to be in a game that gets to the second
exit (because you are twice as likely to be stopped at some exit in such a game). Because
games in which the second exit is reached are preferred, it is not surprising that expected
rewards should be biased upward when compared to the original game.

This bias toward longer games shows up in another way. In fact, it allows us to
generate a purely probabilistic version of the paradox that does not involve utilities at
all. Just as reach(z;) is an event in the original probability space, it is also an event
in Sp: reach(z;) is the set of all pairs (z;,«) whose first component is z;. However,
qp(reach(z1)|at(X,)) = 1/4, whereas py(reach(z;)|reach(X.)) = 1/3; the corresponding
probabilities for z; and z3 also differ. Thus, being “at” some node in the information



set (which the driver knew all along he was going to reach) will result in the driver
changing his initial assessment of the probability of reaching the terminal nodes, so as
to favor nodes that terminate longer paths. This change is not just an artifact of our
use of ¢p; if the agent’s beliefs yu;, are consistent with b (in PR’s sense), and we define
us(reach(z;)|at(X)) = X ex up(at(x)|at(X))py(reach(z;)|reach(z)) (in analogy with PR’s
expected utility calculation), then we get the same paradoxical result.

What if we are uncomfortable with this implication of ¢,7 We say that a distribution r
over Sr is outcome-uninformative at information X (under strategy b) if, for all terminal
nodes z, we have r(reach(z)|at(X)) = py(reach(z)|reach(X)). This is not quite as strong
as saying that being at a set conveys no more information than reaching the set,® but
rather that whatever extra information (if any) is conveyed by being at this set, it is not
enough to help us predict the game’s final outcome. By definition, the purely probabilistic
“paradox” vanishes for outcome-uninformative distributions. A little more work shows
that if the driver uses an outcome-uninformative distribution, then his ex ante expected
utility is the same as his expected utility at the information set.

Proposition 2.3: Suppose r is outcome-uninformative for X under strateqy b, and let
R = (Sr,r,u). Then
EUg(b; at(X)) = EU(b; reach(X)).

Proof: A straightforward calculation gives us

EUR(b; at(X)) = X(owjeax) Wz, 2) 7(2,2)/r(at(X))
:Zz Z{w(za:)Eat(X ( ) ('Za )/ (at(X))
=2 ez u(z) E{m (z,@)€at(X)} (Z,I /T t(X))
= Y.z u(z) r(reach(z)|at(X))
=3 .cru(z) r(reach(z)|reach(X))
= FEU(b; reach(X)). 1

We believe that this proposition provides some resolution to the expectation form
of the absentminded driver paradox. Either the driver gains knowledge simply due to
the fact that he is contemplating expected utility at an exit (because the probability
distribution is not outcome-uninformative), or else he continues to accept the ex ante
expected utility value.

It turns out that not only does an outcome-uninformative distribution always exist,
but that PR have done much of the work of defining one for us. Recall that we said earlier
that PR considered two ways of computing subjective beliefs. Although they ended up
working mostly with the notion of consistent belief, they also defined a notion called
Z-consistency. Let Z be the set of terminal nodes in a game I'. PR say that a belief

3This stronger condition might be captured by requiring r(Y |at(X)) and p,(Y |reach(X)) to agree for
all events Y that are defined in both spaces.



assessment p is Z-consistent with a behavior strategy b in I' if for every information set
X reached with positive probability we have

)] (X)) = Zhec2 T ()
2{zez:X<z) Po(2)

where X < z if ¢ < z for some node z € X.

Does Z-consistency have any analogue in the richer space Sr? Given a game I' and
a node x in I, let X, be the information set containing z if x is a decision node (one
where the player performs an action), and just {z} otherwise. Consider the following

distribution: ( )
PolZ

= 5

(2 7) K|{r'eX, o/ <z} (5)

where K is a normalization constant. It is easy to see that 1, is Z-consistent with b.

We can also understand 75 in terms of an external agent Az. Again, we assume that
Az knows the outcome of each particular play of the game. At the beginning of a play
of the game with outcome z, for each information set X containing a node on the path
to z, Az tosses a fair coin to determine whether or not to stop the player in X. If the
coin for X comes up heads, Az then chooses the node at which to stop the player by
choosing uniformly at random among the nodes on the path to z that are in X (so that,
in particular, the player is only stopped once in X). If the coin for X comes up tails, the
player is not stopped at X at all. It is easy to see that the long run proportion of times
at which the player is stopped at (z,z) is indeed given by r,. Moreover, r, is outcome-
uninformative. For suppose that the player is stopped somewhere in information set X.
What else can the player deduce from the fact that he was stopped? In this game, the
only extra information he learns is that Az threw heads on the coin he used for deciding
whether to stop in X. But Az’s coin toss was independent of all other factors, so this is
not especially useful information. This intuition can be formalized to show the following:

Proposition 2.4: If strateqy b is being played, then ry is outcome-uninformative for
every information set.

To summarize, if we use the distribution 73, (which is very much like PR’s Z-consistent
distribution, although defined over the space Sr), together with the utility function u as
defined earlier, and do our calculations in the space St, then the driver’s expected utility
at the information set is the same as his ex ante expected utility, at the bar.

PR make the interesting observation that a player whose beliefs are Z-consistent
is vulnerable to a sort of “money pump”. They define a particular scenario in which
the player is guaranteed to lose money if he plays the game repeatedly. Their scenario
involves a game with absentmindedness, in which the player is offered a certain bet each
time he reaches a point in an information set. In particular—and this is crucial to their
example—he is offered the bet twice in a play if the information set is reached twice, and
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if he were to accept twice he must pay twice. Since this is inconsistent with the story
we gave to motivate Z-consistency (involving Az, who only stops the player once per
information set), it is not surprising that Z-consistency leads to the wrong expectation
in this game. However, it is easy to construct a similar money pump if the player’s belief
assessment is consistent (i.e., if the player uses ¢, rather than r,). For example, if the
absentminded driver is stopped each time he is in the information set X, and pays 8/5
to play the game (which, as we have seen, is what he calculates as his expected utility if
he is using strategy bopt and his beliefs are consistent), but is paid only once per play of
the game, then he can expect to lose 4/5 on average each time he plays the game.

Such examples can be used to show that any notion of expected utility will be appro-
priate only for certain games, and subjects the player to a money pump if he persists in
using it in other cases. Indeed, we doubt that there can be any argument that demon-
strates the general superiority of one particular belief assessment approach in games of
absentmindedness. This emphasizes the need for operational scenarios corresponding to
the choice of any particular belief assessment. While we have provided such scenarios
for ¢, and r, (involving external agents Az and A,, and repeated plays of the original
game), as well as giving a more abstract condition (outcome-uninformativeness) that dis-
tinguishes 7, from ¢, we do not mean to imply that these are the only possible scenarios
(nor that these are the only possible reasonable belief assessments).

We close this discussion by asking how Proposition 2.3 reconciles with the “para-
doxical” calculation in the introduction which, in the absentminded drivers example,
gives an answer that is greater than 4/3, essentially independent of distribution. The
explanation is that the expected utility calculation in the introduction does not apply
to 1, because the underlying space is different. In particular, it is easy to verify that
EUg (bopt; at(er)) = 1, rather than 4/3. If the driver is stopped at eq, it becomes more
likely that he will exit at z; (because if the final outcome will be z; or z3, Az has more
choices of where to stop him), and so the expectation conditional on being stopped at e;
is less than 4/3 (and is in fact 1). On the other hand, EUg (bopt; at(es)) = 2, as before.
Since Tbopt(at(el)) =2/3 and rbopt(at(eg)) = 1/3, we get that the expected utility is 4/3.

3 Discussion

The message of this paper should be obvious: The notion of expected payoff to a player at
a point in the middle of a game is a subtle one, especially in games with absentmindedness.
To calculate the expected utility, we must first decide whether to condition on the event
of reaching the information set or being at the information set. In the former case,
as we have seen, the correct expectation—3 ¢ po(reach(z)|reach(X))EU (b; reach(x))—
is equivalent to that provided by Proposition 2.2, and not to the calculation used in

Proposition 2.1 (at least, not in games with absentmindedness).

On the other hand, if we really intend to condition on the event of being at the
information set, then we must consider carefully how to construct a space that captures
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this event, and what probability distribution and utility are appropriate for it. Various
answers are possible depending on the assumptions made, although the ones that seem
best motivated to us do not lead to time inconsistency. Our view of PR’s absentminded
driver game is that it is an important cautionary example, showing how careful one must
be in doing expected utility calculations in games with absentmindedness.

So what does all this tell us about time consistency and the examples given by PR?
We have deliberately not discussed strategic concerns here, preferring to focus on the
case of a fixed strategy. Nevertheless, we argue that our results are directly relevant
to the fairly narrow question of why PR were able to produce paradoxical conclusions
in the absentminded driver example. This is because the expected utility calculation
that we have been analyzing lies at the heart of PR’s formulation of the strategy-change
issue (i.e., their notion of time consistency). Our argument is that there are “paradoxes”
inherent in this calculation itself, which we have endeavored to resolve.

What about the broader question, of whether and how one should change strategies
in the middle of a game? We have not addressed this directly in this paper. However, it
should be clear that many of the issues that we have considered in the context of calcu-
lating expected utility also arise in the richer context of strategy change. In particular,
as shown in [Halpern 1996], the calculations used both by PR and by Aumann, Hart,
and Perry [Aumann, Hart, and Perry 1996] can be understood in terms of an external
agent that stops the driver at most once in each play of the game. This suggests that we
should then consider an expanded game that includes the external agent. As shown in
[Halpern 1996], in this expanded game, the paradox disappears.

PR also give examples of apparent time inconsistency in games without absentmind-
edness, but the issues raised in these examples are quite different from those raised by
the absentminded driver example. (See [Halpern 1996] for some discussion of these is-
sues.) The subtleties that arise in calculating expected utility at an information set in
games with absentmindedness tend not to arise in games without absentmindedness. The
lack of absentmindedness means that there is at most one representative of any given
information set per path. Thus, from the standpoint of someone in that information set
considering the various possible points at which he might be, there is a one-to-one corre-
spondence between the events of being at a point and reaching a point (i.e., reaching it
sometime during the play of that game). It is thus only natural to conflate the two, and
it seems to be relatively harmless to do so. In the case of absentmindedness, there is no
one-to-one correspondence between “being at” and “reaching” for us to rely on.
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