Full Abstraction and Expressive Completeness for
FP*

Joseph Y. Halpern
Edward L. Wimmers

IBM Almaden Research Center
San Jose, CA 95120

email: halpern@ibm.com, wimmers@ibm.com

Abstract:  We consider issues related to the expressive power of the programming
language FP. In particular, we consider whether a number of variants of FP are fully
abstract and expressively complete. For example, we show that a version of FP with
only one-sided sequences behave similarly to PCF in that the addition of parallel or is
sufficient to make it fully abstract.

However, the addition of parallel or to FP (with its two-sided infinite sequences) is
not sufficient to achieve full abstraction. By considering these and other variants, we
obtain a better understanding of what is required of a language and semantics in order
to guarantee full abstraction and expressive completeness.

*This is an expanded version of a paper that appears in the Proceedings of the Second TEEE Sym-
posium on Logic in Computer Science, 1987. It is essentially identical to the version that appears in
Information and Computation 118:2, 1995, pp. 246-271.



1 Introduction

In a previous paper [HWW90] we considered the question: “What does it mean to have
enough rewrite rules?” in the context of the functional programming language FP84
(henceforth called FP), which extends the FP originally defined by Backus [Ba78]. We
suggested a number of criteria by which to judge this question, and showed that with
respect to all of these criteria, there indeed were enough rewrite rules in FP. The next
obvious question, and the one we address in this paper, is “Do we have enough primitive
functions?”

In one sense the answer is “yes”. We do know that FP has enough primitive functions
to allow us to encode all recursive functions on the integers (cf. [Wi81]), but we want
more, since we want to manipulate the objects in our domain, not just the integers. We
consider here two other well-known criteria from the literature that deal with the ques-
tion of having enough primitive functions. The first of these is called full abstraction. For
a language defined by rewrite rules, we say that two terms are behaviorally equivalent if,
roughly speaking, they rewrite to the same normal form in all contexts. A denotational
semantics is called fully abstract with respect to a language if behavioral equivalence of
terms in the language coincides with denotational equivalence. Full abstraction is of in-
terest because it allows one to prove the operational equivalence (or inequivalence) of two
expressions simply by proving the equality (or lack of it) of their meanings. Thus purely
semantic reasoning allows us to deduce operational facts. The second (generally more
powerful) criterion of language expressiveness is expressive completeness. A language is
expressively complete if every “computable” element in the semantic domain is definable
in the language.

In a seminal paper [P177], Plotkin examines these criteria in the context of the pro-
gramming language PCF (which is based on LCF, Scott’s logic of computable functions
[Mi73]). Plotkin shows that what is perhaps the most natural denotational semantics for
PCF is not fully abstract. However, he shows that if we add a parallel conditional to
PCF, the semantic domain is fully abstract with respect to the resulting language. More-
over, he shows that by further augmenting PCF with a recursive “existential” operator,
the resulting language is expressively complete with respect to the domain.

When we consider full abstraction and expressive completeness for FP, a number of
issues arise that are not present in PCF. We hope that by understanding these issues
better, we can eventually construct a general theory that relates the operational behavior
of a programming language and its denotational semantics.

To understand the subtleties that arise in FP, we must review a little of its syntax
and semantics. In FP we can define sequences of elements and manipulate them. We
allow operations at both ends of a sequence. For example, we can append an element to
the left-hand end of a sequence or to the right-hand end and remove the first element
or last element of a sequence. FP is also powerful enough to allow us to define infinite
sequences of elements. The fact that we can manipulate sequences from either end allows
us to define sequences that are infinite to the right (such as ((a,a,a,...))) and infinite to



the left (such as ((...,a, a,a))).

To deal with this semantically, we allow a * to appear in sequences. Intuitively,
an expression like ((a,*)) is an approzimation to any sequence whose first element is a
(where we say that = approximates y if # <; y for some appropriate partial order <;
on the elements of the domain). Thus ((a,*)) approximates all of the following: {(a)),
{a, L), {(a,a,a)), {a,*,a)) (where, as usual, L is a bottom element which approximates
all other elements). Similarly, ((*,a)) is an approximation to any sequence whose last
element is a. It is easy to see that both {(a)) and {(a,*,a)) are upper bounds for the set
{{a,*)), {(*,a))}, and in fact they are minimal upper bounds for this set. However, this
set has no sup (least upper bound), since {(a)) and ((a, *, a)) are incomparable. Thus, the
semantic domain for FP is not consistently complete: it is not the case that two elements
with an upper bound necessarily have a least upper bound. It can be shown that we lose
consistent completeness exactly because the * may appear anywhere in a sequence.

This lack of consistent completeness has surprising implications for the expressive
power of FP. For example, consider the apply-to-all function apall, which, when given a
function f and a sequence ((ay,...,a,)), applies the function f to all the elements in the
sequence, producing {(f : aq,..., f : a,)). (This is much like the LISP mapcar.) We can
show that apall is not definable in FP. Intuitively, the problem is due to the fact that
* may appear in the middle of a sequence in FP, so we do not know a priori when to
apply f to the left-hand elements of the sequence, and when to apply it to the right-hand
elements of the sequence.

On the other hand, consider FP1, the variant of FP which allows operations only on
the left-hand elements of sequences. While the difference between FP and FP1 seems
innocuous, it does have some surprising consequences. For one thing, since we can
append only to the left-hand end of sequences, the * can occur only at the right-hand
end of a sequence. As a consequence, we can show that the semantic domain for FP1
is consistently complete. Moreover, we can show that apply-to-all is definable in FP1;
intuitively, this is because we just have to work from the left-hand end of the sequence.

These differences between FP1 and FP persist when we consider full abstraction and
expressive completeness. For FP1 we can prove results analogous to those of Plotkin,
as strengthened by Curien [Cu86] and Abramsky [Ab90]. We can show that FP1 is not
fully abstract, but by adding a parallel or we get full abstraction, and by further adding
an existential operator we also get expressive completeness. Our proofs are based on
those of Plotkin, although the proof for FP1 presents new complexities since FP1 has
greater structure than PCF, and, unlike PCF, is an untyped language. However, the
straightforward analogue of these results for FP provably fails. In particular, adding the
parallel or operator to FP does not achieve full abstraction.

These results lead us to look for extensions to FP with four properties that we can
express informally as: natural syntax, natural rewrite rules, enough rewrite rules, and
reasonable expressive power. While it is hard to make precise exactly what natural syntax
and semantics is, a minimal criterion is that the set of expressions be recursive and that



the set of rewrite rules be recursively enumerable. We can judge whether the language has
enough rewrite rules by seeing if we have observable completeness or strong completeness
in the sense of [HWWO90] (these notions are reviewed in Section 2). Finally, reasonable
expressive power for us will be either full abstraction or expressive completeness.

It seems that consistent completeness in the semantic domain together with a certain
amount of parallelism in the language (such as a parallel conditional) is sufficient for
full abstraction and expressive completeness. While we do not yet have a general theory
in which to make this statement precise, we can offer evidence for the claim. Consider
NFP, the nondeterministic variant of FP that results by adding union to FP, where
union:(x,y) rewrites (nondeterministically) to either x or y. We can easily modify our
semantic domain to handle nondeterminism, and the resulting domain is consistently
complete. Since elements in the domain are actually sets and the ordering relation is just
the subset relation, the sup of any two elements is always their union. In NFP, the non-
determinism gives us almost enough parallelism to prove full abstraction and expressive
completeness. However, there is a precise sense in which we still cannot distinguish be-
tween the elements (L, *)) and ((*, L)). Once we add operators into the language that let
us distinguish between these two elements, we can prove full abstraction and expressive
completeness.

Proving full abstraction for NFP turns out to be much easier than proving full ab-
straction for FP1. The reason is that taking sups is so much easier in NFP. The sup
of two elements is simply their union. Indeed, being able to take sups seems to be a
more fundamental condition than consistent completeness when trying to prove full ab-
straction and expressive completeness. The insights gained in studying NFP enable us
to construct extensions of FP that are fully abstract and expressively complete, and yet
have the same domain as FP (and so, in particular, have a semantic domain which is
not consistently complete). These extensions, however, make heavy use of a particular
way of encoding finite elements in the semantic domain as observable elements (those
obtained by starting with atoms and closing off under the sequence operator).

The rest of the paper is organized as follows. In the next section we review the
syntax and semantics of FP and some results regarding completeness of rewrite rules
from [HWWO90]. In Section 3 we prove that apply-to-all is not definable in FP, although
it 1s definable in FP1. In Section 4 we define and discuss the notions of full abstraction and
expressive completeness. In Section 5 we show that FP and FP1 are not fully abstract.
In Section 6 we show how to extend FP1 to get a language that is fully abstract and
expressively complete. In Section 7 we show that by adding a nondeterministic union
construct to FP as well as constructs that distinguish (L, *)) and ((*, L)), the resulting
language is fully abstract and expressively complete. Adding union to FP forces us to
extend the semantic domain to accommodate nondeterminism. In Section 8 we examine
fully abstract and expressively complete extensions of FP that leave the semantic domain
unchanged. We conclude in Section 9 with some discussion of the general issues involved
in obtaining fully abstract and expressively complete languages and domains.



2 A review of FP syntax and semantics

FP has a very simple syntax. We assume the existence of a finite set A of atoms,! which
includes T and F (intuitively, true and false). We also assume the existence of a set F
of primitive function symbols which is disjoint from A. For now we take the set F to be
{al, first, tl, ar, last, tr, null, cond, comp, cons, K, id, apply, eqatom, isatom, isseq,
isfunc}. Intuitively, al (which stands for append left), appends an element to the left
end of a sequence; tl takes the tail of a sequence by removing the first element, and
first returns the first element of a sequence; ar, tr, and last are the corresponding
operators that work on the right-hand end of a sequence; null tests whether a sequence
is empty; cond is a conditional; comp is the composition function; cons takes a sequence
of functions (fy,...,f,) as an argument and returns the function that, when applied to
x, returns the sequence (fi:x,...,f,:x); K is the familiar combinator from combinatory
calculus that converts x to the constant function that always returns x; id is the identity
function; apply, when given a pair of elements, applies the first to the second (so that
we have the rewrite rule apply:(f,x) — f:x); eqatom tests for equality between atoms
(and is undefined if either of its arguments is not an atom); finally, isatom (resp., isseq,
isfunc) tests whether its argument is an atom (resp., sequence, function). We remark
that the variant of FP used in [HWW90] did not have eqatom, isatom, isseq, and
isfunc, but there is no difficulty including them in the language and defining appropriate
rewrite rules for them.

Definition 2.1: The set of FP expressions is the least set containing AU F and closed
under:

1. The formation of sequences: if xi,...,x, are FP expressions (for n > 0), then
(X1,...,Xp) is also an FP expression.

2. Application of expressions: if x; and x, are FP expressions, then (x;:x3) is also an
FP expression.

We get variants of FP by adding or removing elements from the set F of primitive
function symbols. In particular, FP1 is obtained by removing ar, tr and last.
We provide a denotational semantics for FP as usual by defining a domain D* and

a mapping g from FP expressions to D*. The desired domain can be constructed using
general techniques that may be found in [Gu87]. We use instead the construction of

1'We take the set of atoms to be finite here for notational convenience. It actually suffices if there
exists an expression whose meaning is a (possibly infinite) sequence s such that the set of members of s
is exactly the set of atoms. Such an expression exists in the case that the atoms are finitely generated.
For example, we could include the positive integers in our set of atoms as long as we had a successor
function S, with the rewrite rule Sm — n + 1.



[HWW90], which is more specifically geared to FP, and thus easier to explain. Since all
the details of the construction are contained in [HWW90], we only provide a sketch here.

We start with a number of standard domain-theoretic definitions.

Definition 2.2: Let D be a set partially ordered by <. A subset X of D is compatible
iff there is an element x in D which is an upper bound of X. X is downward closed iff
x € X and 2’ < x implies 2’ € X. X is directed iff for all x1, x5 € X, there exists z3 € X
such that z17 < 3 and x93 < z3. (D, <) is complete iff every directed subset of D has a
least upper bound in D. The least upper bound of a directed set X is denoted by | |X.
x 1s a finite element of D iff whenever x < | |Y for some nonempty directed subset Y of
D, then z < y for some y € Y. (D, <) is algebraic iff for every x € D, the set {y <
x|y is a finite element of D} is directed and z = [ |[{y < x|y is a finite element of D}. §

We construct D*, the domain for FP, in stages. We first construct a sequence of
domains Dg, D1, ..., where Dy consists of 1 and, for each atom a € A, a corresponding
atomic item a, and D, .1 consists of D, together with all the continuous functions from
D, to itself (these are called function items), and all sequences of the form ((z1, ..., zx))
and (Y1,..., Y, %, 21, -« Zm)), Where {@1,. .., Th, Y1, Y, 215y 2m) C© Dy, b < 2n,
and max({,m) < n. The latter type of element is called a sequence item; if it contains
no *, it is further called a sequence of definite length. Our restriction on the length of
sequences guarantees that each set D, is finite. There is a straightforward way to extend
a function item f € D, so that it is defined on domains D,, for m > n; see [HWW90]
for details. If f € D,, and =z € D,,, we write f : x to denote the result of applying f to
z. Of course, if x € D,,_1, then f:z = f(z).

Let D be the union of the D,’s. The ordering <; on D is defined as follows, where,
as we mentioned above, * approximates any finite list of elements.

o | <;z holds for all =
e for any atomic item a, a <; x holds iff a = z

e for any function item f, f <; g holds iff ¢ is a function item and f :z <;¢: x for
all z € D

e for any sequence item ((x1,...,x,)) of definite length, (z1,...,z,) <; y iff y =
y1y.yyn) and @; <py; forall e =1,...,n

e for any sequence item {((x1,...,Zm, %, 27, ., 2l)), (@1, .., Tm,* 2], .., 2l) <p y iff
Y = (Y1 ooy Yy 215 ooey 25 Y35 -, 1)) Where at most one of the z;’s is * and z; <; y;
foralle=1,...;mand 2! <;ylforalle=1,...,m

It turns out that D is not quite appropriate for our semantic domain, principally because
it is not complete. For example, {{(a,*)), ((a,a,*)), {(a,a,a,*)},...} is a directed set in
D which has no least upper bound in D. We take D* to be the completion of D, that is,



the domain that results by adding limits of sequences to D (just as a real number can
be viewed as the set of rationals less than it). The elements of D* are the non-empty,
downward-closed, directed subsets of D). The elements of D* are ordered by the subset
relation, which makes D* into a complete partial order (thus every directed subset of D*
has a unique least upper bound). We call an element of D* an atomic item if it is of the
form {L1,a}, where a is an atomic item of D; we call an element of D* a sequence item if
it is a set all of whose elements (other than L) are sequence items in D; finally, we call
an element of D* a function item if it is a set all of whose elements (other than L) are
function items in D.

We can embed D into D* by identifying an element d of D with the subset {d' €
D|d'" <; d}. Furthermore, it can be shown (see Proposition 2.3 below) that an element
of D* is finite iff it is in the image of this embedding. It is now straightforward to
give each FP expression a meaning in D*. The meaning of an atom a is the atomic
item a; the meaning of a sequence (x1,...,X,) is the sequence item {(z1,...,x,)), where
p(x;) = z;. We map the primitive function symbols into functions in D* that have the
obvious meanings, and application corresponds to function application in D*. Again,
further details can be found in [HWW90]. The construction of the semantic domain for
FP1, which we call D1*, is identical except that we restrict sequence items so that the
* can only occur at the right-hand end of a sequence. The semantic function mapping

FP1 expressions to D1* is denoted p;.

The domains D* and D1* have a number of important properties. We describe the
properties of D* below; those for D1* are analogous.

Proposition 2.3: [HWW9(]
(a) D* is a cpo (complete partial order).
(b) x is a finite element of D* iff x € D.
(¢c) D* is algebraic.

(d) D* is isomorphic to A + Seqs(D*) + (D* — D*), where Seqs(D*) consists of
all sequences (possibly infinite to the right and/or left) of elements in D* (and is
described in more detail below).

Since it is the presence of two-sided infinite sequences that is the cause of the lack
of consistent completeness in D*, we describe the Segs operation in a little more detail
below. Given a domain X with an ordering <x, we want Segs(X) to consist of all
sequences of elements in X, including sequences that may be infinite to the right and/or
left. Given a natural number n, let [r] be an abbreviation for the set {0,...,n —1}. For
convenience, we take [0] to denote the empty set, and [w] to denote the infinite set of all
the natural numbers. Formally, s € Seqs(X) iff one of the following holds:



e s = f where fis a function from [n] into X for somen € N. (This case corresponds
to a finite sequence of definite length; if n = 0, we identify the function with empty
domain with the empty sequence.)

e s = (f,g) where where f is a function from [¢] into X and g is a function from [J]
in X, for some ¢, € NU{w}. (This case corresponds to the sequences of indefinite
length. The first function gives all the elements to the left of the * and the second
function gives all the elements to the right of the % in reverse order. If : = 0, then
there are no elements to the left of the *, while if j = 0, there are no elements to

the right of the x*.)
The ordering <,., on Seqs(X) is defined as follows:

o f1 <5y (f2,92) never holds
e (f1,91) <seq f2 holds iff the following all hold:

— dom(f1) = [t], dom(g1) = [7], dom(f2) = [k] where 1 + j < k and 7,5,k € N
— fill) <x f2(l) for all £ <1
—g1(l) <x falk =0 —=1) forall £ <

o f1 <5y f2 holds iff dom(f1) = dom(f:) and f1(¢) <x f2(¢) for all £ € dom(f1)

o (f1,91) <seq (f2,92) holdsiff dom(f1) C dom(fs), f1({) <x f2(¢) for all ¢ € dom(f1),
dom(g1) C dom(gs), and ¢;(€) <x g2({) for all £ € dom(g1)

Because of the ordering on sequence items, D* is not consistently complete. For
example, the set {(.L,*), (%, L)} has no least upper bound, but it does have two minimal
upper bounds: (L) and (L,*, L). In fact, if a finite subset X of D* consisting of finite
elements has any upper bounds, then there is a finite set X’ of minimal upper bounds of
X such that every upper bound of X is greater than one of the minimal upper bounds
in X'. In fact, the domain D* satisfies a more general property called SPF (see [Gu87]
or [Ab91]).

Computation in FP proceeds by using rewrite rules to transform expressions. The
rewrite rules are given in Appendix A. In the rules for eqatom, isatom, isseq, and
isfunc, we say that x looks like a sequence if x is of the form (x4,...,x,), al:(y,z), or
ar:(y,z) and x looks like a function if x is either a primitive function symbol or of the
form K:y, comp:(f;,f;), or cons:z, where z looks like a sequence. Note that we use
X — y to mean that “x can be rewritten to y in one step”; we take —* to be the
reflexive, transitive closure of the — relation. The set of rewrite rules for FP1 consists

of all the rewrite rules for FP that do not mention tr, ar, or last.

We want the rewrite rules to preserve the meanings of expressions. Fortunately, we
have carefully defined our semantics so that the rewrite rules are sound. We have:



Theorem 2.4: [HWWO90] If x —* y, then pu(x) = p(y).

Besides soundness, we also want to know that we have in some sense enough rewrite
rules. This issue is investigated in detail in [HWWO90], so we just briefly review the results
here that we need.

We call an FP expression observable if it is either an atom or a sequence (X1, ...,X,),
where the x; are observable. To each observable expression there corresponds an observ-
able item, which is obtained by replacing (, ), and boldface wherever they occur by ((, )),
and italics. Given an observable item z, let ° be the observable expression to which it
corresponds.

Theorem 2.5: [HWWO90] If x is an expression such that p(x) is an observable item,
then x —* pu(x)°.

For example, if we have an expression x such that u(x) = ((a, (b)))), then it follows
from Theorem 2.5 that x —* (a, (b)). This result is extended in [HWWO90]. Intuitively,
we want to show that if we have an expression whose meaning is an atom, then we
can rewrite 1t to that atom, if its meaning is a sequence, then we can rewrite it to an
expression that looks like a sequence, and if its meaning is a function, then we can rewrite
it to an expression that looks like a function. These intuitions motivate the following
definition.

Definition 2.6: An FP expression X is {ransparent iff
1. if p(x) = a for some atomic item «a, then x = a,

2. if p(x) is a sequence item, then x looks like a sequence; if p(x) is a sequence item
of definite length, then x is of the form (yy,...,y,), and

3. if u(x) is a function item, then x looks like a function.

Note that if p(x) = L, then x is vacuously transparent and that once an expression is
transparent, further rewriting cannot destroy transparency.

The proof of the following two results can be found in [HWW90]. Recall a term is in
normal form iff no rewrite rules apply.

Theorem 2.7: [HWW90] Ifx is an FP expression in normal form then X is transparent.

Definition 2.8: A set of rewrite rules is strongly complete if for all FP expressions x
there is a transparent expression y such that x —*y. 1

Theorem 2.9: [HWW90] The FP rewrite rules are sound and strongly complete.

We refer to Theorem 2.9 as the Adequacy Theorem.



3 The undefinability of apply-to-all

We begin our investigation of the question “Are there enough primitive functions in FP?”
by considering apply-to-all. This is a function we would like to have in practice, and it
is definable in the version of FP originally considered by Backus [Ba78]. We show that
apply-to-all is not definable in FP, but is definable in FP1. The proof will show the subtle
difficulties caused by the presence of two-sided sequences in FP.

Let apall be the function on D* such that
apall - f: {x1,...,2,) = (f r21,..., [ : 2,)), where we take f:+* = .

We take apalll to be the function in D1* with precisely the same definition. It is not
hard to give an FP1 expression apalll such that p(apalll) = apalll. We define apalll
so that

apalll = M. x.(cond : (null:x, (), al:(f:(first:x), apall1:f:(tl:x)))).

Using standard techniques for expressing A abstraction and fixpoints in FP (cf. [HWW90])
we can find an FP1 expression with this property.

Note that it is not the case that p(apalll) = apall. Intuitively, since apalll works
on a sequence starting with the left end, we can show, for example, that p(apalll:id) :
{(*,a)) = ({(L,*)) rather than ((*,a)). As we now show, this is in fact an unavoidable
problem; there is no FP expression whose meaning is apall. We in fact prove a somewhat
stronger result that will be useful in our later investigation of full abstraction. We show
that apall is not definable in FP extended by a parallel or.

Let or be the finite function item such that or: x = 1 unless x is a sequence of length
2, and
T ifa=Torb=T
or: {(a,b) = { F ifa=b=F

1 otherwise

Let FPO be the result of extending FP by adding a new primitive function symbol
or and then closing off under application and the formation of sequences, and extending
o so that p(or) = or. We take FPOI1 to be the analogous extension of FP1.

Theorem 3.1: There is no FPO expression whose meaning is apall.

Proof: The key step is to show that the finite function apallKT, which intuitively
captures the meaning of apall : (K : T) on four very small sequences, is not definable in
FPO. More formally, we define apallK'T as follows:

if (L) <;x, then apallKT : x = (T)) otherwise

if (L, L) <;x, then apallKT : v = (T, *,T)) otherwise

9



if (L,*) <7z, then apallKT : z = (T, *)) otherwise
if ((*, L) <7z, then apallKT : z = {(*,T)) otherwise
apallKT :x = 1L
In Appendix B we prove
Lemma 3.2: There is no expression g in FPO such that apallKT <j pu(g).

It easily follows that apall is not definable in FPO, since if g is an expression in FPO
such that p(g) = apall, then we must have apallKT <; p(g: (K :T)). I

FPO has an even more fundamental lack of expressive power than that characterized
by Theorem 3.1. It is impossible to distinguish (L, *)) from ((*, L)) in FP. More precisely,
let ef and el (for “exists a first element” and “exists a last element”) be functions on D*
such that: T )

i J_, * §[ X
ofw= 1 otherwise

el:x = 1 otherwise.

Notice the ef and el are definable if we augment FP by a primitive function symbol
apallKT such that p(apallKT) = apallKT. For example, we have ef = p(Ax.(first :
apallKT : x)). Thus, ef and el are in some sense more fundamental that apallK'T (or
apall). As we now show, neither one is definable in FPO.

Theorem 3.3: There is no FPO expression whose meaning is ef or el.

Proof: See Appendix B. I

4 Full abstraction and expressive completeness

In this section we formally define the notions of full abstraction and expressive complete-
ness. We want to define these notions, not just for FP, but for a number of variants and
extensions of FP. To do this carefully, we need to provide a few more details about the
variants we consider. As we mentioned earlier, each variant F of FP that we consider is
obtained by adding or removing elements from the set F of primitive function symbols.
Thus, the set of atoms is the same for all variants, as is the set of observables. For
each variant F, there is a corresponding semantic domain £*, and a semantic function
v mapping expressions in F to elements of £*. All the semantic domains agree on the
set of atomic items. We assume that all the atomic items in £* are finite, as 1s every
step function determined by every pair z,y of finite elements, where the step function

10



determined by z, y, denoted [z — y], is the function f such that when applied to any
element ' > z yields y as the answer and when applied to anything else yields L. For the
remainder of this section, we assume that F, £*, and v satisfy the properties described
above.

As usual, we say a context is an expression with a single “hole” in it. If C is a context,
we write C[x] for the result of filling the hole in context C by x. For example, in FP, if
C is the context al:(—, (a)), then C[b] is al:(b, (a)).

When we talk about full abstraction, it is really with respect to a given domain and
language. In the standard definition of full abstraction (for example, the one given in
[P177]), the language is typed. In particular, there is a type prog that is the type of
programs. In this case, we say two terms are behaviorally equivalent, and write x =y, if
in all contexts C of type prog the expressions C[x] and C[y] have the same operational
behavior. (That is, C[x] rewrites to a normal form iff C[y] rewrites to a normal form,
and if one rewrites to a normal form, they both rewrite to the same one.) A fully abstract
language is one where x ~ y iff v(x) = v(y), where v is the semantic function for the
language. Thus, full abstraction says that two objects are semantically equal iff they are
behaviorally equivalent.

Now FP and its variants are untyped, so there is no exact analogue to expressions of
type prog. However, we can get an analogue by considering expressions whose meaning
is an atomic item. More formally, we define full abstraction for all of the variants F of
FP considered in this paper as follows.

Definition 4.1: Given a context C and an expression x, we say C is an alomic context
for x if ¥(C[x]) is an atomic item. We say two F expressions x and y are behaviorally
equivalent, and again write x ~ y, if (a) for all contexts C, C is an atomic context
for x iff C is an atomic context for y, and (b) if C is an atomic context for x, then
v(C[x]) = v(Cly]). Finally, we say that Fis fully abstract with respect to E* if for all F
expressions X and y, we have x ~ y iff v(x) = v(y). I

Note that by Theorem 2.5, for FP we have that if y(C[x]) = a for some atomic item
a, then C[x] —* a. Thus, if x & y, then in all atomic contexts both x and y rewrite to
the same normal form. Since analogues to Theorem 2.5 hold for all the variants of FP
we consider, the same remark holds for them as well.

The intuition behind the notion of expressive completeness is that all computable
elements are definable. But what is a computable element? Following Plotkin [P177], we
take the computable elements to be the least upper bounds of recursively enumerable
sets of finite elements. To make this precise, we need a few more definitions.

We first need some way of encoding the finite elements of £* as integers. Suppose we
have a function code mapping finite elements in £* to observable items; we call code(d)
the code of d. The details of code do not matter for the discussion that follows. (We
define code carefully on the finite elements in D* and D1* in Appendix C; we define code
on the variants of FP as we discuss them in the appendix.) All that matters is that the

11



encoding is such that we can easily write expressions in F that test whether an observable
item encodes bottom (i.e., we can write a function f such that p(f):z = T if x = code( L)
and p(f):ix = F if @ # L and @ # code(L)). Similarly, we can write expressions in F
to test whether an observable item encodes an atomic item, a finite sequence item of
definite length, a finite sequence item of indefinite length, a function item, etc.

We next define a function taking observables to integers. Recall that we assumed that
there were only finitely many atomic items. For convenience, suppose they are aq, ..., an.
Let p; denote the :*P prime. Let enc map observable items to integers as follows:

enc(a;) = pip1
ene((a1, e 2)) = 2550,

Definition 4.2: A sequence x1, o, ... of finite elements in £* is said to be recursive if
there is a recursive function f on the integers such that f(:) = enc(code(z;)). An element
of £* is said to be computable if it is the sup of an increasing recursive sequence of finite
elements of £*. We say that F is expressively complete with respect to E* it for every
computable element z in £*, there is an expression x in F such that v(x) = . We say
that F is f.e. (finite element) complete with respect to E* if for every finite element of
E*, there is an expression X in F such that v(x) = z. I

Clearly expressive completeness implies f.e. completeness. F.e. completeness in turn
implies full abstraction for algebraic domains under some reasonable assumptions. Since
we have only defined full abstraction for variants of FP, we cannot make this statement
formal, but we do prove it for variants of FP.

Proposition 4.3: If F' is a variant of FP and F is f.e. complete with respect to E*, then
Fis fully abstract with respect to E*.

Proof: If v(x) # v(y), then since E* is algebraic, without loss of generality there is
some finite element z¢ such that zo <; v(x) and zo £; v(y). Now consider the step
function f = [xg — ag] where ag is an atomic item in E*. Qur assumptions on variants
of FP imply that f is finite. Since F is f.e. complete with respect to E*, there is an F
expression f such that v(f) = f. Consider the context C = f:—. We have v(CI[x]) = ao
and v(Cly]) = L. Thusx# y. i

In general, we will prove full abstraction by showing f.e. completeness. We remark that
Plotkin also proves f.e. completeness in the course of proving full abstraction for PCF.
There is a question of which of full abstraction or f.e. completeness is the more important
notion in an algebraic domain. The answer depends somewhat on one’s point of view.
If the language is viewed as fixed, then arguably full abstraction is the more important
notion, since it ensures that the domain does not have any “extraneous” finite elements.
If the domain is viewed as fixed, then f.e. completeness is arguably more important, since
it means that the language is sufficiently powerful to express all the finite elements of the

12



domain. In this paper, we use prove f.e. completeness for our positive results, and lack
of full abstraction in our negative results, thus proving the stronger result in each case.

We remark that for extensional models of PCF, full abstraction and f.e. completeness

are known to be equivalent [Mi77,5t90]. There are non-extensional algebraic models of
PCF that are f.e. complete but not fully abstract.

5 FP and FP1 are not fully abstract

Our goal in this section is to prove that neither FP nor FP1 is fully abstract. We actually
prove that FPA is not fully abstract, where FPA is the extension of FP to include the
primitive function symbol apall. The result for FP and FP1 follows readily.

The fact that FPA is not fully abstract follows from two lemmas. For the first, let
FPAO be FP extended to include both apall and or, as well as the primitive function
symbols ef and el introduced in Section 3. We extend p in the obvious way to FPAO.
In Appendix A, we provide sound rewrite rules for apall, or, ef, and el; the techniques
of [HWWO90] show that these rules are strongly complete for FPAO.

Lemma 5.1: Ifx is an FPAO (resp. FPA, FPO) expression in normal form such that
(%) is a function item and p(x:y’) = L for all FPAO (resp. FPA, FPO) expressions y’,
then x ~ K:(.

Proof: Define a new meaning function px that acts just like p except that ux(x) =
1(K:Q). More formally, ux(f) = p(f) if f is an atom or primitive function symbol,

fx (Y15 o ¥n)) = (ox(Y1)s s x(¥n))

p(K:Q) ify:z=x
px(y) : px(z) otherwise.

px(y:z) = {

The function px has three important properties:

L. px(y) <1 p(y) for all FPAO (resp. FPA, FPO) expressions y,
2. pux(C[x]) <r p(C[K:9]) for all contexts C,
3. if y —=* z, then px(z) <1 pux(¥y).

Properties (1) and (2) can be checked by a straightforward induction on the structure
of y and the structure of C respectively. To see that property (3) holds, note that, as
usual, straightforward inductions on the length of the reduction and the structure of y
show that it suffices to consider the case where y — z, and this is an instance of a rewrite
rule. Again we must consider the rewrite rules on a case-by-case basis. For example, if
y is of the form apply:(f,y’) and z is of the form f:y’, then we know y # x (since x

13



is in normal form and y is not), so it is easy to see that px(y) = p(apply) : {(ux(f),
px(¥)) = px(£) + px(¥'). Thus px(z) <; px(y). (Note that if x = z then we might have
px(z) <1 px(y).) Similar arguments work in all cases except when y is of the form f:y":y’
and f is comp, cons, or K. We consider the case where y is of the form comp:(fi, f;):y’
here; the other cases are similar and left to the reader. If x # comp:(fi,f;), then
similar arguments to that used in the case of apply easily show that ux(z) <; px(y).
If x = comp:(f;, f;), then u(y) = L by our assumption that p(x:y’) = L for all FPAO
(resp. FPA, FPO) expressions y’. Thus, since FPAO (resp. FPA, FPO) rewriting is
sound, we must have p(z) = L. Since px(z) <; p(z), we also have pux(z) = L, so
x(2) <1 px(y)-

We are now ready to prove that x ~ K:Q. If 4(C[K:Q]) = b for some atom b, then
1(C[x]) = b since p(C[K:Q]) <; p(C[x]). Conversely, if u(C[x]) = b for some atom
b, then (by Adequacy for FPAO (resp. FPA, FPO)), C[x] —* b Thus, b = ux(b) <;
px(Clx]) <; p(C[K:€]). Therefore, u(C[K:Q]) = b= pu(C[x]). 1

The second lemma is an analogue of a result proved by Plotkin for PCF [PI77],
and shows that parallel or is not definable in FPA. The proof requires rather extensive
machinery, and so is deferred to Appendix B.

Lemma 5.2: There is no FPA expression g such that or < u(g).

Theorem 5.3: Neither FPA nor FP is fully abstract with respect to D*, and FP1 is not
fully abstract with respect to D1*.

Proof: Let f be an FP1 expression that tests to see if its argument is greater than or.
That is, f:g — T iff u(@)(T, 1) = T, u(g) : (L, T) = T, and s(g) : (F, F) = F. We

can take f to be the expression
Ag.(cond:(g:(T, Q), cond:(g:(Q, T), cond:(g:(F,F), Q, T), Q), Q).

We leave it to the reader to check that when the lambda is eliminated f is in normal form.
By Lemma 5.2, there is no FPA expression (and hence no FP or FP1 expression) g such
that or <; u(g), so we must have pu(f:g) = L for every expression g in FPA, FP, or FP1.
Thus, by Lemma 5.1, f &~ K:Q. Since p(f) # p(K:Q) (and similarly pq(f) # p1(K:2)),
it follows that neither FPA nor FP is fully abstract with respect to D*, and FP1 is not
fully abstract with respect to D1*. 11

In the next few sections, we examine how we can extend FP and FP1 in order to get
full abstraction.

6 Extending FP1 to get full abstraction and expres-
sive completeness

In [P177], Plotkin shows that by adding a parallel conditional facility to PCF we get full
abstraction. He also observed that using parallel conditional, parallel or is definable.

14



Curien [Cu86] and Abramsky [Ab90] later showed that in order to get full abstraction for
PCF, it suffices to add parallel or. Stoughton [St91] showed that parallel if and or are
each definable in terms of the other. Here we show that we can get full abstraction for
FP1 by adding parallel or; however, we cannot get full abstraction for FP in this way!
We then go on to show that using techniques similar to Plotkin’s, we can further extend
FP1 to get expressive completeness.

Given a finite element z in D1*, let code(z) represent code(x)®, the observable ex-
pression corresponding to the observable item code(x).

Theorem 6.1: There is an FPO1 expression Ey such that for all finite elements x in
D1*, we have pq(Eq:code(z)) = x.

Proof: See Appendix C. I

Corollary 6.2: FPOI! is f.e. complete with respect to D1*.
By applying Proposition 4.3, we have
Corollary 6.3: FPO1 s fully abstract with respect to D1*.

As mentioned above, the analogue to this result does not hold for FP. Even though
adding parallel or to FP1 is sufficient to make it fully abstract, the addition of parallel
or to FP (whose domain is not consistently complete) does not suffice to make FP fully
abstract.

Theorem 6.4: FPO is not fully abstract with respect to D*.

Proof: Our first step is to define a function geapallK'T with the property that y(geapallKT) :
g = T if apallKT <; g, where apall KT is the function defined in Section 3, and

p(geapallKT) : g = L if apallKT £; g. In order to do this, geapallKT must check if
its argument satisfies the following five properties:

o (T%) <rg:(L,*),
o (v, T) <rg:{{ L),
o (T#) <rir:(g: (L * L)),
o (v, T) <rtl:(g:(L,x L)),

o (T) <rg:{L)).

If the argument ¢ does satisfy all these properties, then p(geapallKT) : g returns 7
otherwise it returns L.

The following definition of geapallK'T does the trick:

15



Ag.(
cond : (first : (g : (al: (2, Q))),
cond : (last : (g : (ar : (2,0))),
cond : (first : (tr: (g : (al: (0, ar : (Q,0))))),
cond : (last : (t1: (g : (al : (Q,ar : (0, Q))))),
cond : (null : (t1: (g: (Q))), T,N),0Q),Q),Q),0Q))

We leave it to the reader to check that when the lambda is eliminated, the expression
is indeed in normal form. From Lemma 3.2, we know that there is no FPO definable
function g such that apallKT <; p(g). Thus, we must have y(geapallKT : g) = L
for all FPO expressions g. From Lemma 5.1, it follows that geapallKT ~ K : ). But
p(geapallKT) # p(K : Q) since p(geapallKT) : apallKT = T. Therefore, FPO is not
fully abstract. I

We remark that we show in Lemma B.5 below that the same result holds even if we
add to FPO the function symbols ef and el (whose meaning is given in Section 3).

In order to get expressive completeness for PCF, Plotkin adds a parallel conditional
and an “existential” operator 3 such that v(3)(f) = F if f(L) = F and v(I)(f) =T if
f(n) =T for some natural number n. We use observable elements rather than natural
numbers to get the same effect in our domain. Thus, we take FP1* to be FPO1 augmented
with the primitive function symbol exists, where

{Fiﬂ\LF

pa(exists) : f=< T if f:2 =T for some observable item z

1 otherwise.

Using exists, we can define an FP1* expression sup; that takes least upper bounds
of sequences of elements.

Theorem 6.5: There is an expression sup, in FPI* such that if (z1,...,z5) is an
increasing sequence of finite elements in D1*, then

pi(supy) @ (code(z1), ..., code(zy), %) = zk.

Proof: See Appendix C. I

Corollary 6.6: FP1* is expressively complete with respect to D1*.

16



Proof: Let x = sup{zi,z2,23,...} where z1,2,,... is a recursive sequence of finite
elements in D1* and z; <; z;31. We must show that there is an expression whose
meaning is x. Using well-understood techniques it can be shown that recursive se-
quences can be encoded in FP1*; thus, there is an expression eq such that pq(eg) =
{(code(x1), code(x), . . .)). By the continuity of yi(sup,), we have that

a(sup : e

= pa(supy) : p(eo)

L{p1(supy) : {code(xq),. .., code(z,),*)|n=1,2,3...}
U{z1, 22, 23,...}

=

?

as desired. 1

7 Full abstraction and expressive completeness for
nondeterministic FP

In the previous section we showed that by adding a certain parallel facilities to FP1 we
were able to get full abstraction and expressive completeness. However, the obvious ana-
logues of these extensions for FP do not give full abstraction or expressive completeness.
One major difference between FP and FP1 is that the domain for FP1 is consistently
complete.

To investigate the effect of consistent completeness, we force the domain to be consis-
tently complete by adding unions to the domain. Formally, we define a domain ND* in a
manner analogous to the way we defined D*. We construct a sequence of finite domains
NDy, NDy, NDy,.... We take NDy = Dy, and let ND, 11 consists of ND, together with
all the continuous functions from ND, to ND,, sequence items of the appropriate form
and length of elements in ND,, and sets of elements in ND,,. Let ND = U,ND,,. We
can define an ordering <yp on ND in a straightforward way; we omit details here. Let
ND” consist of all of non-empty, downward-closed subsets (with respect to <yp) of ND.
Notice that, unlike D*, the sets in ND* are not necessarily directed. By doing this, we
in effect permit unions, thereby ensuring consistent completeness.

We extend FP to NFP~ by adding one more primitive function symbol union. We
extend g to py by defining px(union) : (zy,...,z,) = x1 U...Uz,. ND" is easily seen
to be consistently complete; the sup of any two elements of ND” is just their union.

NFP~ does allow a great deal of parallel evaluation. In particular, the parallel or
function or is easily seen to be definable in NFP~, since we can now work from both ends
of a sequence of length two to test for T. The following definition does the trick (the

17



first test checks that the sequence has length two):
Ax.cond : (null : (tl: (tl: x)),
union : (cond : (first : x, T, cond : (last : x, T, F),
cond : (last : x, T, cond : (first : x, T, F)),
)
However, we can easily extend the techniques of Theorem 3.3 to show that neither ef nor
el is definable in NFP~. It follows that apallKT and apall are not definable in NFP~
either. By combining the ideas of Theorem 3.3 and Theorem 5.3, we can then show that
NFP~ is not fully abstract. However, the inability to define ef and el is all that keeps

NFP~ from being fully abstract and expressively complete. Let NFP be the result of
adding ef and el to NFP~.

As we show in Appendix C, we can extend the function codeto NDin a straightforward
way, so that code(x) is an observable item for each element @ € ND. Again, we take
code(z) to be the observable element corresponding to the observable item code(z).

Theorem 7.1: There is an NFP expression Ex such that for all for all finite elements
z in ND*, we have py(En:code(z)) = x.

Proof: See Appendix C. I

Corollary 7.2: NFP is f.e. complete with respect to ND*.
By applying Proposition 4.3, we immediately get
Corollary 7.3: NFP is fully abstract with respect to ND*.

We now turn our attention to expressive completeness. As for FP1*, the key step in
proving expressive completeness for NFP is the ability to take the sup of an increasing
recursive sequence of finite elements. Using union, we can do this in a straightforward

way in NFP.

Theorem 7.4: There is an expression supy in NFP such that if (z1,...,z) is an
increasing sequence of finile elements in ND*, then

pa(supy) : {(code(z1), ..., code(zy), *)) = zk.
Proof: See Appendix C. I
Now, just as in the case of FP1*, we get
Corollary 7.5: NFP is expressively complele with respect to ND*.

We also note that if we extend FP1 by adding union and extend D1* by allowing
unions, the resulting language NFP1 is fully abstract and expressively complete with
respect to the domain. We do not need to explicitly add ef or el to the language: The
problem of distinguishing ((*, L)) from {(L,*)) does not arise in NFP1 since ((*, L)) is not
in the domain.

18



8 Extending FP to get full abstraction and expres-
sive completeness

In the previous section we showed that by extending FP with nondeterminism we could
get a language that was fully abstract and expressively complete. However, in extending
to nondeterminism, we also extended the domain D* to ND*, which is consistently com-
plete. The reader may wonder at this point if we can get full abstraction or expressive
completeness for an extension of FP that still has semantic domain D*. Using the ideas
from the proofs in the previous sections, we show that this can be done.

Our proofs of full abstraction for FPO1 and NFP both depend on constructing ex-
pressions E; and Ep, respectively, which map code(z) to z for a finite item x. We cannot
construct such an expression in FP. Thus, in order to get full abstraction, we simply
extend FP by adding with a new primitive function symbol E with this property.

Let FPE be the result of augmenting FP with ef, el, and the further primitive function
symbols E. We define p on E so that u(E) : y = x if y = code(z). (We give the precise
definition of p(E) in Appendix C, after we have given more details of the function code.)
Of course, the definition of E guarantees that FPE is f.e. complete, hence fully abstract.

The proofs of expressive completeness for FP1* and NFP show that the crucial factor
in getting complete expressiveness is the ability to take sups of increasing recursive se-
quences of finite elements. Let FPE* be the result of extending FPE with the primitive
function symbol sup. Further extend p so that if z41,...,z; is an increasing sequence of
finite elements in D*, then p(sup) : ((code(xy), ..., code(xy), *)) = x). (Again, we give the
precise definition of y(sup) in Appendix C.) Arguments similar to those used for FP1*
can now be used to show that FPE* is expressively complete.

We do not want to claim that FPE and FPE* are natural extensions of FP. However,
they both have recursive syntax, r.e. rewrite rules (see Appendix C for details of the
rewrite rules), and a finite set of primitive functions. Moreover, these extensions do indi-
cate exactly what is required of a language in order to get full abstraction and expressive
completeness.

9 Conclusions

We have investigated the question of full abstraction and expressive completeness for FP
and a number of its variants. By considering these issues for a number of related domains,
we feel we have obtained a better understanding of what is required of a language and
semantics in order to guarantee full abstraction and expressive completeness. We hope
that the results of this paper will lead to a framework for a more general theory of
constructing good programming languages, i.e., ones with natural syntax, natural rewrite
rules, enough rewrite rules, and reasonable expressive power.

19



A Rewrite Rules

In this appendix, we provide the rewrite rules for FP and a number of extensions of FP
we have considered in this paper. For FP as we have defined it, the rewrite rules are:

al:(x, (y1,.-,¥n)) = (X, ¥1,- -, ¥n)
ar:((y1,..,¥Yn),X) = (Y1, -+, ¥n, X)
first:(x1,...,x,) = x1 (n >1)
first:(al:(x,y)) — x
first:(ar:(al:(x,y),z)) — x
first:(ar:(ar:(x,y),z)) — first:(ar:(x,y))

last:(xy,...,%X,) = X, (n>1)
last:(ar:(x, y)) — y
last:(al:(x, ar:(y,z))) — z
last:(al:(x, al:(y,z))) — last:(al:(y, z))
th(x1,...,Xn) — (X2,...,%X,) (R >1)
tl:(al:(x, al( z))) —>al< z)
tl:(al:(x, ar:(y,z))) — ar:(y, z)
tl:(ar:(al:(x, > z)) — ar:(y,z)
tl:(ar:(ar:{x,y>,z>) — ar: <tl (ar:(x.,y)),z)
tri(xq, ..., X,) = (X1,...,Xp-1) (R 2>1)
tr:(ar:(ar:(x,y),z)) — ar:(x,y)
tr:(ar:(al:(x,y>7 z)) — al:(x,y)

tr:(al:(x, ar:(y, z))) — al:(x,y)

tr:(al:(x, al: < z))) — al:(x,tr:(al:(y,z)))
null:() —

null:a — F (for any atom a)
null:(x;,...,x,) = F (n>1)

null:(al:(x,y)) = F
null:(ar:(x,y)) = F
cons:(f;,....f,)x — (fi:x,... f,:x)

cons:(al:(f, g)):x — al: <f X, cons:g:x)

cons:(ar:(f, g)):x — ar: <c0ns f:x, g:x)

(T, x,y) = x

(F,x,y) =y

comp:(f, g):x — f:(g:x)

apply:(f,x) — f:x

Kxy —x

idix — x

eqatom:(x,x) — T if x looks like an atom

eqatom:(x,y) — F if both x and y look like atoms and x # y

isatom:x — T if x looks like an atom

20



isatom:x — F if x looks like a sequence or function
isseq:x — T if x looks like a sequence

isseq:x — F if x looks like an atom or function
isfunc:x — T if x looks like a function

isfunc:x — F if x looks like an atom or sequence

It is worth observing that the rule tl:(al:(x,yo)}) — yo is sound only in the case that
Yo 1s a sequence. Thus, in order to preserve soundness, we require that yg look like a
sequence in the rules.

The languages FPA, FPO, and FPAO defined in Section 5 have the extra primitive
function symbols apall, or, ef, and el. The following rewrite rules characterize these
functions:

apall : f: (xq,...,x,) = {f :xq,...,f:x,)
apall : f: (al: (x,y)) — al: (f : x,apall : f : y)
apall : f : (ar: (x,y)) — ar: (apall : f : x,f : y)

or: (T,x) —» T

or:(x,T)—T

or: (F.F) - F

ef:(x1,....,x,) > T, n>1
ef:(al:(x,y)) = T
ef:(ar:(al:(x,y),z)) = T
ef:(ar:(ar:(x,y),z)) — ef:(ar:(x,y))
el:(xy,...,x,) > T,n>1
el:(xy,...,x,) > T,n>1
el:(ar:(x,y)) = T
el:(al:(x,ar:(y,z))) — T

el:(al:(x, al:(y,z))) — el:(al:(y, z))

Using the techniques of [HWWO90], we can show that these rules characterize these
primitive functions apall and or, in that when we combine the rules for apall (resp.
or; apall, or, ef, el) with the rewrite rules for FP, we get an analogue of Theorem 2.9

(Adequacy) for FPA (resp. FPO, FPAO).

The language FP1* of Section 5 had the additional function symbol exists. For this,
we have the following rules:

exists:f — or: (f : t,exists: f), where t is any observable expression

exists:f — F if f:QQ —* F.
Note that the second rewrite rule for exists is r.e. rather than recursive; the instances
of this rule form an r.e. (but not recursive) set, since the problem of deciding if f:Q —* F

is r.e. We could replace this rule by the recursive rule exists:f — cond:(f:Q, T, F).

21



The latter rule is unsound (for example, if p1(f) : L = L but pg(f) : @ = T, then
pa(exists:f) = T while pi(cond:(f:Q, T, F)) = L1). However, it can only lower the
meaning of an expression; adding this rule results in a set of rewrite rules that is weakly
sound, in that if x —* y with respect to these rules, then u1(y) <; p1(x). Either choice
of rule (when combined with rewrite rules for FP1, which are identical to those for FP,
without the rules for ar, tr, and last) gives an Adequacy Theorem for FP1*. In the latter
case, where the rewrite rules are only weakly sound, we have to generalize the notion of
strong completeness to get an appropriate Adequacy Theorem: for strong completeness,
we now require that for every expression x there is a transparent expression y such that
x —* y and pu(y) = p(x). The requirement that p(y) = p(x) is redundant for sound
rewrite rules, but not for weakly sound rules. (Notice that without this requirement, by
simply adding a rule such as exists : f — , we would get a system that is weakly sound
and strongly complete.)

B Proofs of Lemma 3.2, Theorem 3.3, and Lemma 5.2

We recommend that the reader read this section after having read the Sections 3-5, since
we develop here simultaneously all the results required to prove Lemma 3.2, Lemma 5.2,
and Theorem 3.3. In these proofs, we use the rewrite rules for FPAO given in Appendix
A, as well as the fact that the Adequacy Theorem (the analogue of Theorem 2.9) holds
for FPAO (with these rewrite rules). As we remarked earlier, this can be proved by a
straightforward extension of the techniques of [HWW90]; we omit details here.

Let FPX be the extension of FPAO to include oneof, £;(x), and Q2(x). As usual, we
close off under application and sequence formation. FPX has three meaning functions p,
2, and ps. For expressions y not involving oneof, Q;(x), and Qy(x), pi(y), ¢t = 1,2,3,
agrees with the earlier definitions given. For the new expressions, we have:

pi((x)) = L fore=1,2
pi(Qa—i(x)) = pi(x) for 1 =1,2
ps((x)) = L for e =1,2
pa(oneof) = (L, )
ngoneof) ((+, L))

p3(oneof) = L

—

The key new symbol here is oneof. We use the different meanings given to oneof by
p1 and gy to illustrate our point that in FP we cannot distinguish between ((_L,*)) and

(0, L)-

Rewrite rules for apall, or, ef, and el were given in Appendix A. We have the
following additional rules to take care of the new primitive functions in FPX (where 1
ranges over 1,2):

x — Q;(x) if pi(x) = L

22



Qi(ﬂg_i(x)) — 0

0,(CIO(x)]) — 2 (CIx))

tl: (al : (x,oneof)) — oneof

tl: (ar: (oneof,y)) — ar: (Q,y)
tr: (ar : (oneof,y)) — oneof

tr: (al: (x,oneof)) — al : (x,0)
null : oneof — F

ef : oneof — Oy(T)

el : oneof — Q4(T)

cons : oneof : y — oneof

or : <QZ(T), Qg_Z(T» — T

¥

Notice that if the language contains oneof, ef, and el, then it must contain €4,
to allow the above rewrite rules.

The next lemma guarantees the soundness of FPX rewriting.

Lemma B.1:

(a) If xo is an FPX expression, 1 € {1,2}, and xo —* x3, then pi(Xo) = pi(xy).

(b) If xo is an FPX—{oneof,or} expression and xo —* X1, then ps(xo) = ps(x1).

Proof: Fach part follows easily by checking all the rewrite rules. The only interesting
case is the use of rule x — Q;(x) if g;(x) = L in part 2. Notice that in this case,
ps(x) <y pi(x) = L. Therefore, it follows that ps(x) = L = ps(Q:(x)). I

Note that part (b) of the preceding theorem does not apply to the full language FPX.
Some restriction is crucial, since, for example, null : oneof — F is not sound with
respect to pus.

To take advantage in FPX of the Adequacy Theorem for FPAO, we need a way of
mapping FPX expressions down to FPAQO so that rewriting in FPX can be, in a precise
sense, tracked in FPAO. The relation ©>; (for : € {1,2}) between FPX and FPAO
expressions captures the properties of tracking that we need. The basic idea that the
expressions in FPAQO that are tracking the expressions in FPX should have the same
meaning and the FPAO expressions should not mention oneof, €y, or ;.

Definition B.2:  For : € {1,2}, define x b; y for FPX expressions x and FPAO
expressions y by induction on the structure of y ordered as follows:

e if y is an atom or primitive function symbol, then x b,y iff x =y or x = Q3_,(y)

o ify =(y1,...,¥n), then x b; y iff x = x" or x = Q3_;(x’), and at least one of the
following holds:

23



- x'=(x1,...,X,) where x; b;y;forj=1,...,n
—n>1and x' = al: (x1,%x0) where x; >; y1 and xo b, (y2,...,¥n)

— n>1and x' = ar : (xg,X,) where xg >; (y1,...,¥n-1) and X, b; ¥,
o if u(y)= L, then x b; y iff p;(x) =L

o if y =al: (y1,y2), then x b; y iff x = x" or x = Q3_,(X’), and at least one of the
following holds:

— x' = al: (x1,%3) where x; b, y; for y =1,2

— u(y1) = L = p(yq) and ¢ = 1 and x’ = oneof

e if y =ar: (y1,y2), then x b; y iff x = x" or x = Q3_;(x’), and at least one of the
following holds:

— x' = ar: (x1,X2) where x; >;y; for j = 1,2

— u(y1) = L = pu(yq) and ¢ = 2 and x’ = oneof

o ify =y :y2 then x b,y iff x = %1 1 x5 or x = Q3_,(x1 : x2), and x; b, y; for
j=1,2

Although we do not use this fact here, it easily follows from the definition of >; that
>; is sound, in the sense of the following proposition:

Proposition B.3: If: € {1,2} and x b;y, then pu;(x) = p(y).

The next lemma guarantees that there are enough rewrite rules in FPX in the sense
that if an FPAO expression yo can be rewritten to y;, then an FPX expression xq that
corresponds to yg can be rewritten to an expression x; that corresponds to y;. This will
enable us to take advantage of the Adequacy Theorem for FPAO.

Lemma B.4: If: € {1,2} and xq b; yo —* y1 and Xq is an FPX expression that does
not have both apall and oneof as subexpressions, then there exists an FPX expression
X1 such thalt xg —* X1 B>; yi.

Proof: It is easy to reduce the result to the case where yo — y; is an instance of an
FPAO rewrite rule. We consider two illustrative cases here, leaving the remainder to the
reader.

First suppose 1 = 1, xg = tl: (ar : (oneof,yo)), yo = tl: (ar: (al : (©,9Q),y0)), and
y1 = ar: (Q,yo). Since Xg — y1, we can take x; = y; in this case.

Now suppose that 1 = 1, xo = tr : (al : {(y1,al : (yq,al : (y3,22((y4)))))), Yo = tr:
((¥1,¥2,¥3,¥4)), and y1 = (¥1,¥2,¥3). Then we can rewrite xq as follows:

24



tr: (al: (y1,al: (ya,al: (ys,2:((y4))))))
—al: (y;,tr: (al: <Y27a1 (¥3, Q2({y4))))))
—al: (yi,al: (ys,tr:(al: (ys, Q((y4))))))

— al : (yq,al : (ys, Qy(tr: (al (3, Q2({ya))))))
— al: (yq,al: (y2, Qa(tr: (al : (y3, (y4))))))

— al: (yy,al : (y2, Qa(tr: (y3,¥4))))

—al: (y1,al : (y2, Q2((y3))))

This last expression serves as the desired x;. 11

As the following example shows, the previous lemma would not hold if we allowed xq
to be an arbitrary FPX expression: apall : (K : T) : oneof I>; apall : (K : T) : (al :
(Q,0)) —al: (K:T:Qapall: (K:T):Q).

We now have the machinery required to prove Lemma 3.2, Lemma 5.2, and Theo-
rem 3.3. For convenience, we restate these results before proving them.

Lemma 3.2: There is no expression g in F'PO such that apallKT <; u(g).

In fact, we prove the following strengthened form of Lemma 3.2.
Lemma B.5: There is no expression g in FPO U{ef,el} such that apallKT <; p(g).

Proof: Suppose there were an expression g in FPO U{ef,el} such that apallKT <;
u(g). Since (T) <1 u(g) : (L), we have that u(g) : (L) = (T). Since {T+) <
p(g) « (Lyx) <; (T)), it follows that u(g) : {(L,*)) must be either (7)) or (T,*)).
If pu(g) : (L,x) = (T, then u(g) : {(L,*, L)) would be an upper bound to both
(T} and (T,*,T)) which is impossible. Therefore, u(g) : (L,*)) = {(T,%)). Similarly,
H(g) * (3, 1) = (s, T).

Notice that g : oneof >y g : (al : (2,)). By Adequacy, g : (al : (,Q)) —* al :
(T, y1) for some FP expression y; such that u(yy) is not a sequence item. By Lemma B.4,
there is some FPX expression x such that x >; al : (T,y1) and g : oneof —* x.
Therefore, by Lemma B.1, p2(x) = ((*,T)). Furthermore, x must have a form such as
al : (T,xq), al : (Q(T),x1), Qa(al : (T,x1}), or Qy(al : (Q(T),x1)). It is easy to see
that in all such cases, pa(x) # ((*,7)). This contradiction yields the result. I

Theorem 3.3: There is no FPO expression whose meaning ts ef or el.

Proof: Since the proofs are similar, we show only that efis not definable. Suppose there
were an FPO expression efy such that u(efy) = ef. Notice that efy : oneof >, efy :
(al: (Q,9)). By Adequacy, efy : (al : (2,Q)) —* T. By Lemma B.4, there is some FPX
expression X such that x >; T and efy : oneof —* x. From Lemma B.1 it follows that
p2(x) = L. Since x 1T, x is T or Q5(T). Since pz(x) = L, x can not be T. Therefore,
ef : oneof —* Q,(T).

Call an FPX expression FPO-like iff it has no occurrences of ef or apall and every
subexpression of the form Q(y) has the property that ps(y) = L. Notice that the

25



original expression efy : oneof is FPO-like. It is easy to check that if x and y are
FPX expressions such that x —* y, then y is FPO-like if x is FPO-like. This gives
us a contradiction, since the final expression efy : oneof —* Q,(T), and Q(T) is not
FPO-like. This contradiction yields the desired result. NI

Lemma 5.2: There is no FPA expression g such that or < u(g).

Proof: Suppose there were an FPA expression g such that or <; u(g). Notice that
g: (M (T),2(T)) b1g: (R, T). By Adequacy, g : (2, T) —* T. By Lemma B.4, there
is some FPX expression x such that g : (Q;(T),2(T)) —* x and x 1 T. This implies
that x is either T or Q3(T). From Lemma B.1 it follows that py(x) = T' and this implies
that x can not be Qy(T). Thus, g : (% (T),2(T)) —* T. By Lemma B.1, us(g :
(Q1(T),Q22(T))) = ps(T) = T. Therefore it follows that T = ps(g) : p3((Q1(T), Q2(T)))
=pu(g): (L, L) <;u(g): (F,F) = F. This contradiction gives the desired result. I

C Proofs of Theorems 6.1, 6.5, 7.1, and 7.4, and
rewrite rules for FPE and FPE"

C.1 Preliminaries

Our proofs that FPO1 is f.e. complete with respect to D1* and that FP1* is expressively
complete with respect to D1* follows roughly the same lines as Plotkin’s proof that LCF
enriched with a parallel conditional is f.e. complete and that LCF enriched with an exis-
tential operator is expressively complete [P177]. However, there are greater complexities
in the context of FP, since we are working in an untyped domain, and so cannot proceed
by induction on types. Instead, we adopt an approach similar to Wadsworth [Wa78] and
work with the finite elements in D1*, and use induction on the complexity of these finite
elements. In order to do so, we need to define an appropriate notion of complexity. We
also need a way of representing the finite elements; in particular, we need a representation
of the function items.

We proceed as follows. We simultaneously define a set Rep of representations of finite
elementsin D*, a surjective function emb from Rep to the set of finite elements of D*, and
an injective function code from Rep to observable items. Since the image of the function
emb is the set of finite elements of D*, we can define an injective function rep from the
finite elements of D* to Rep such that emb(rep(d)) = d for all finite elements of D*. We
call rep(d) the canonical representation of d. The actual choice of canonical representation
is not particularly significant, since throughout we work with all representations, not just
the canonical representation; for definiteness, we choose rep(d) to be the representation
d" such that enc(code(d')) is minimal in the set {enc(code(d"))|emb(d") = d}. (Recall
that enc is the mapping from observable items to integers defined in Section 4.) Thus,

we can view code as a function from finite items in D* to observable items by identifying
code(d) with code(rep(d)) for each finite element d in D*.

26



The set Rep is defined much like the set D. That is, we define a sequence of sets
Repg, Repy,.... For each element r € Rep,, we associate a (unique) finite element
emb(r) € D*. This will enable us to compare elementsin Rep, using the ordering <;. We
take Rep, = Dy; thus, Rep, consists of all the atomic items and L. Suppose we have con-
structed Repy, ..., Rep,. Rep, ., is the result of starting with Rep, and closing off under
sequence formation and function formation. It is easy to define what it means to be closed
under sequence formation: we require that if {z1,... 2%, y1,...,¥s,21,...,2m} C Rep,,
k < 2n, and max({,m) < n, then ((x1,...,2x) and {(y1,...,Ys,%,21,...,2y) are in
Rep, ;. We call such representations of this form sequence representations; as in the
case of sequence items, if a sequence representation has no *, we say that it has defi-
nite length. The definition of emb on these sequence representations should be obvious.
We now define what it means to be closed under function formation. Suppose that
Tlyeo oy Thy Y1, .-, Yx € Rep,, y; # L for 7 = 1,...,k, and for each x € D*, the set
{emb(y;) : emb(x;) <; } has a least upper bound. (Note that the least upper bound is
finite if it exists.) In that case, [1 — y1,...,2, — ya) € Rep, ;. We call a represen-
tation of this form a function representation. If ¢ = [x1 — y1,...,2, — yn|, we define
dom(g) = {x1,...,2,} and range(g) = {y1,...,yn}, and denote y; as ¢g(z;). Moreover,
we define emb([z1 — y1,...,2, — yn]) to be the function f € D* such that

frz=U{emb(y;) : emb(z;) < z,i=1,...,k}.

We leave it to the reader to check that f is indeed finite. This completes the definition
of Rep. It should be clear that the function emb maps Rep onto the finite elements in
D*. Indeed, as a consequence of the close similarity of Rep, and D,, it is easy to see
that emb(Rep,) is the same as the image of the embedding of D, into D*. Using emb,
we can define an ordering <, on Rep: for representations z,y € Rep, we define z <, y
iff emb(x) <; emb(y).

We can similarly define a subset Repl of Rep that consists of the representations of
finite elements in D1*, simply by restricting sequence representations so that the * can
only occur at the right-hand end, and modifying the definition of function representation
to use D1* instead of D*. Clearly the range of emb(Repl) consist of the finite elements
of D1*.

We now define code on Rep as follows:

code(L) = {()),

code(a) = a for the atom a,

code({(x1, ..., xn))) = (F, code(x1), ..., code(x,))) (where we take code(x) = ({( ))))
code([x1 — Y1, ..o, & — Yn]) = (T, code(zy), code(y), ..., code(x,,), code(y,,))),

As we remarked earlier, we can now view code as a function on the finite elements of D*
by identifying code(d) with code(rep(d)) for a finite element d in D*. We shall make this

27



identification below without further comment. This definition of code clearly satisfies the
minimal requirements mentioned in Section 4. In particular, we can easily write FP1
functions that test whether an observable item encodes a representation for bottom, for
an atomic item, for a finite sequence item of definite length, for a finite sequence item of
indefinite length, or for a function item.

To carry out the proof, we need to introduce some technical machinery. We first
define two notions of complexity on Rep, denoted ||z||; and ||z||s respectively. The first
notion counts the number of arrows in each term in a function representation. the second
essentially measures the length of the representation. These notions of complexity will
allow us to prove some results by induction on complexity.

We define ||z||; and ||z||2 by induction on the structure of z. For ||z||; we have
o ||z][i =0if zis L, (), *, or an atom
o [[{1;. szl = max([[za][1;. . |[zallh)
o [[[zr =y, wn =yl = T+ max([als, [lvallss - lznllss [lyall)-
For ||z||; we have
o ||z]|]o=1if z is L, *, or an atom
o [z, swalla =1+ lzalla+ .. 4 [l2nll2
o [z = yr,en = yalllz = 14 ]|z - 2000 4l ]z - 2ln e,

Finally, we define ||z|| = (||z||1,||z||2), and take complexity to be lexicographically or-
dered, so that [|z[| < [ly[| if either (1) |[z[[s < |yl or (2) [[z[lx = [[y|l and |[z|[> <ly[2-

It is easy to check that a sequence representation or a function representation has
greater complexity than any of its components. Besides this property, our definition of
complexity has two other key properties we shall need in our proofs.

Proposition C.1: If S is a finite sel of representations in Repl such that the elements
of S are pairwise compatible, then we can effectively find a representation that we denote
LS such that (as the notation suggests) US is a least upper bound of S (with respect to
<r), and |[U S|y = maxies([[t[[1)-

Proof: We proceed by induction on the structure of complexity of the representation
in S of maximum complexity. We assume without loss of generality that L ¢ S (since
y is a least upper bound for (S — {L}) iff y is a least upper bound for S). Since the
elements of S are pairwise compatible, S either consists of a single atom, a set of sequence
representations, or a set of function representations. Clearly if S consists of a single atom,
the result is immediate, so we focus on the other cases here.

28



If S consists of sequence representations, then we can divide up S into two subsets 57
and S, where S; consists of the representations in S of definite length, and S3 consists of
the remaining representations. The sequence representations in S; must all have the same
definite length (otherwise the representations in S would not be pairwise compatible). In
addition, if S7 is nonempty, the number of non-* elements in each sequence representation
in Sy must be no more than the length of the sequence representations in Sy. (That is, if
the length of each sequence representation in 57 is m, then the sequence representations
in Sy have the form {((y1,...,yx, *)), where k& < m. Notice that the fact that the * is
on the right follows from our assumption that S C Repl.) There are now two cases to
consider: S; # () and S; = 0. If S; # (), suppose the sequence representations in Sy all
have definite length m. Replace each sequence representation {(y1,. .., yx, *)) in Sy by the
representation (y1,...,Ys, L,..., L)), where there are m — k L’s. Let S} be the set that
results after this replacement, and let S’ = S; U S). Suppose

S = {<<:v%, .. .,x}n», (AN X §

Define
y = (W{z1,..., 27}, .., W{zl .. 2 ).
The inductive hypothesis guarantees us that y is well defined. We leave it to the reader

to check that y is a least upper bound for both S” and S, and that ||y||1 = maxes ||t]]1.
Thus, we can take y = LS.

If S; =0, let m be the number of non-* elements in the longest representation in S,.
Replace each representation ((y1, ..., yx, *)) in Sz by the representation (y1,...,yx, L,..., L, *)),
with m — &k L’s. Let S’ be the set that results after this replacement. Suppose

S ={{xy, .yl k), (a2t ) )

Define
y = (U{zy,..., 2" 0{x)l o 2l ).
Again, the inductive hypothesis guarantees that y is well defined. We leave it to the reader

to check that y is a least upper bound for both S” and S, and that ||y||1 = max;es ||t]]1.
Thus, we can take y = LS.

Finally, suppose that S consists of function representations. If S = {fi,..., f.},
where fz = ['rll - yia SR 7$ini - yan]a let

f = [x% _)y%7"'7$1n,1 - y})’bl?"'?"'l:? - y??"'?'j[;’?flnn - y?:L’Ln]'
We claim that f is a function representation and f is a least upper bound for S, so we
can take f = LUS. To check that f is a function representation, suppose z € D1*, and
let Y = {y; : emb(:z:;) <7 z}. We must show that emb(Y) has a least upper bound. It
clearly suffices to show that Y has a least upper bound, since if y’ is a least upper bound
of Y (with respect to <,), then emb(y’) is a least upper bound of emb(Y"). It suffices by
the induction hypothesis to show that the items in Y are pairwise compatible. Suppose

29



y;-,y;-I, €Y, and let y = emb(y;), Yy = emb(y;’,). We want to show that y} and y;/, are
compatible. Clearly y; and y;; are compatible iff y and y" are compatible. If 7 = ¢/, then
it follows from the fact that f; is a function representation that y and y’ are compatible.
If ¢« # ¢, let g be an upper bound of f;, fir (which exists since the elements of S are
assumed to be pairwise compatible). Clearly emb(g) : z is an upper bound of y and y'.
Thus, f is indeed a function representation.

It i1s easy to see that f is an upper bound of S. To see that it is a least upper
bound, it suffices to show that emb(f) is a least upper bound for emb(S). So let f’ be
an upper bound of emb(S) and let = be an arbitrary item in D1*. We want to show
that emb(f) : @ <; f': z. Let X; = {2’ € dom(f;)|emb(z') <; z} and let X = {2 €
dom(f)|emb(z") <; xz}. By construction, X = Xj U ... UX,. Let ¥; = {fi(2') : 2’ € Xi}
and let Y = {f(2') : 2’ € X}. Our arguments in the previous paragraph show that Y is
compatible; it follows from the induction hypothesis that UY is well defined. Similarly, we
can show that LY; is well defined. Suppose z; = UY; and z = UY. Since Y = Y1U...UY,,
it is easy to show that emb(z) = U{emb(z),...,emb(z,)}. Since emb(f;) <; f’ for all
i, we must have emb(z;) <y f': x for all ¢. Since emb(f) : © = emb(z) by definition, it
follows that emb(f) : x <; f": x, as desired. Finally, it is easy to see from the definition
of f that [|flls = max{[[filli - Lful 1} B

Corollary C.2: If f is a finite function representation and d € D1*, then U{f(z):x €
dom(f), emb(x) <y d} represents emb(f) : d, and ||U {f(z) : x € dom(f), emb(z) <,
dily < |[f1h-

Proof: Suppose [ = [z1 — y1,...,2, — y,]. Given d € D1*, our definitions guarantee
that U{y;|emb(x;) <; d} indeed represents emb(f) : d. By Lemma C.1, it follows that
[Hyilemb(zi) <r d}|l < max{[ly[lily € range(f)} <|[f]]:.

We can also prove the following generalization of the fact that D1* is consistently
complete.

Corollary C.3: Let S be a pairwise compatible subset of D1*. Then S has a least upper
bound in D1*.

Proof: Let S; be the set of finite elements of D1* that are <; at least one element of
S. Since D1* is algebraic, it suffices to show that S; has a least upper bound (which
will also be the least upper bound of S). Since S is pairwise compatible, S; is also
pairwise compatible. Let Sy = {emb(UW)|W C rep(Sy), W is finite}. (Note that by
Proposition C.1, UW is well-defined for each such set W.) It is clear that S; is a directed
set and hence, by the completeness of D1*, has a least upper bound y. It easily follows
that y is the least upper bound of Sy as desired. I

Corollary C.4: D1* is consistently complete.

30



The second property of complexity (which is the reason for the perhaps unexpectedly
complicated definition of || ||2 in the case of function representations) is that the uncurried
form of a finite function representation (that is, Az, y.f(z,y)) has lower complexity than

the curried form (that is, Az Ay.f'(x)(y), where f'(z)(y) = f(z,y)). More precisely, given

a finite function representation of the form
= [xl - [yll Al Yimg Zlm1]7 R [ynl 7 Znlye s Ynmy T ann]],
let uncurry(f) be the function representation

[«1‘1, y11>> IR TR <<:L‘1, y1m1>> T Zlmys e <<xn7 yn1>> T Znly ey <<xn7 ynmn» — Znmn]-

Lemma C.5: Taking [ as above, we have |[uncurry(f)|| < ||f]|-

Proof: It is easy to check that ||uncurry(f)||1 < ||f|]1. Thus, it suffices to show that
|luncurry(f)|l2 < ||f]lz. This will follow if we let a; = ||zi||2, bi; = ||yijl|2, and ¢;; =
||zij]|2, and show that

1+Zi(1+a2+62]>20zj < 1_|_Z ) 1—}—2 bUQJ
=1 j=1 =

It clearly suffices to show that for each i, we have

Z(l + a; + bl]) L% < a; - 2(1+Z;"=¢1 bij.QCiJ).

i=1

Observe that the right-hand side is equal to 2 - a; - 2512 ... 2bim; 2™ Gince in general
we have ty---1, > 1, +---+1, as long as each ¢; > 2, it follows that the right-hand side
is at least 2+ a; - (2%027°" + .. 4+ Qbim; 277 ). Thus, it suffices to prove that for each ¢, 7,
we have

(14 a; +bij) - 2% < 2-qa;- 202"

This latter inequality follows from some straightforward algebraic manipulations.

(14 a; + by;) - 2%
< 3-a;-b;j-2% (since, in general, 1 + 11 + 13 < 311 - 13)
< 2 Qb‘ﬂ 2% (since, in general, 3 -1 < 2-2%),

This completes the proof. 11

31



C.2 Proof of Theorem 6.1

Recall that we are trying to find an FPO1 expression E; such that pq(E4) : code(z) = =z
for all finite elements z in D1*. Recall that for a finite item z, we identify code(z) with
code(rep(z)), where rep(z) is the canonical representation of z. We will in fact define an
expression E; that gives us the desired result for all representations, not just canonical
representations. That is, we define E; so that

o 11(E1): code(z) = emb(z) for all z € Repl.

This is an example of a typical phenomenon in all our proofs below: we work with
representations, rather than finite elements.

In order to define Eq, we will need two auxiliary expressions, By and split;. Roughly
speaking, given code(z;) for some z; € Repl and an item y € D1*, we would like y1(B1)
to return 7' if emb(z1) <; y and F' if emb(z;) and y are incompatible. Unfortunately,
we cannot define an expression with these properties in FPO1. (As we shall see later,
we can define such an expression if we enrich FPO1 slightly.) We can, however, define
a “bounded” version of it, which still returns returns true if emb(z1) <; y and returns
false if it is given a finite witness z; to the incompatibility of z; and y. More formally,
we require that for z1,29 € Repl, y € D1*, we have:

o 11(By): (code(z1),code(z2),y)) =T iff emb(z1) <1y

o if emb(z3) <71y and z1, z9 have no upper bound, then p1(B1) : {code(z1), code(z3),y)) =
F.

Notice that if emb(z2) <; y and z; and z, are incompatible then it must be the case that
emb(z1) and y are incompatible as well. Also notice the first condition is an “if and only
if” condition, since in function application we need to know exactly when one item is
greater than another, whereas the second condition is merely an “it” condition, since it
suffices to know when the items are incompatible.

The expression split; is somewhat similar to By, but applies to function representa-
tions. We say that x 1s a minimal element in D1* if y <; = implies that y = L. We say
that z is a minimal representation in Repl if emb(z) is a minimal element in D1*. It
is easy to check that the minimal representations are precisely the atoms, (()), (L, *)),
and [], the function representation that, intuitively, maps all elements to L. Notice that
each minimal elements is finite, and has a unique representations.

If f is a function representation, = is a minimal representation, and y is an arbitrary
element in D1*, then we require:

o 11(splity) : {(code(f),code(x),y)) =T iff emb(x) <; emb(f) 1y

o if emb(f) :yand emb(z) are incompatible, then pq(split,) : {code(f), code(x),y)) =
F.

32



As we shall see, the requirement that x be minimal is crucial here. As before, the first
condition is “if and only if” whereas the second condition is merely an “if” condition.

The definitions of E;, By, and split; all involve nontrivial programming in FPO1.
They are given in terms of mutual recursion (so that, for example, the definition of
split, involves By, and so on). We describe the functions using “psuedo-FPO1”, which
is intended to convey the essential ideas of the definition without going into programming
details. We first define split;, then E;, and finally B;. When proving correctness of our
definitions, we proceed by induction on the complexity of the representations involved,
assuming the correctness of all three functions for arguments of lower complexity, and
for previously defined functions for arguments of the same complexity (so that, when
proving correctness of By, we assume the correctness of split; and E; for arguments of
the same complexity).

We define split; as follows:

Az.( if z = (code(f),code(z),y) where f is a function representation and
x 1s a minimal representation
then if {t € dom(f)|z £, f(t)} =0
then Viciom(s); B1: (code(l), code(L),y)

else Viicaom()le<, £} Nredom(f)zg, ()} B1 : (code(t), code(t'),y)
else Q)

A few comments are in order regarding this definition. Suppose f, the first argument to
split,, is of the form [t; — uy,...,tx — ug|. From code(f), we can easily compute codes
for each element ¢; € dom(f) and the corresponding element u; in the range. Since we
are given the code of z and can easily compute the code of f(#;) (it is just the code of
the corresponding u;), we can easily write an FPO1 expression that, given code(z) and
code( f(t;)), checks if @ <, f(t;). Thus, it is straightforward programming to write an
FPO1 expression that, given code(f), returns T if {t € dom([f)|z £, f(t)} =0 and F

otherwise.

The FPO1 expression that represents \/(;cqom(s); B1 @ (code(t),code( L), y) uses the
or and an easily definable dual and. Strictly speaking, we actually need to extend or to
a function orr that works on sequences (and not just pairs). We can do this as follows:

orr = Ax.(cond : (null : x,F,or : (first : x,orr : (tl: x)))).

We can then define and (that also works on sequences) by first defining a Boolean
negation not = Ax.(cond(x,F,T)), and then taking and = Ax.(not : orr : (apalll :
not : x))). Using these expressions, it is now straightforward to write an FPO1 expression
that captures the informal description of split, above; we leave details to the reader.
As mentioned above, the proof that split; has the required properties proceeds by
induction on complexity. Consider uy(splity) : (code(f),code(z),y)), where f is a finite
function representation with ||f|| = (k, k") and x is a minimal representation. It is easy
to see that if pq(split,) : ((code(f),code(x),y)) =T, then there exists a ¢ such that By :

33



(code(t),code(q),y) = T for some t € dom(f) with <, f(t). Hence, by the induction
hypothesis, we have that emb(z) <; emb(f) : y. In proving the other properties, we can
assume inductively that the definition of By is correct for representations zq, z3 such that
max(]|z1|], ||z2]]) < (k,&"). Because x is minimal, if emb(z) <; emb(f) : y, then there is
some t; € dom(f) such that @ <, f(;) and emb(t;) <; y. (We remark that this would
not be true in general if  were not minimal.) The definition of complexity guarantees
that ||;]] < (k, k). There are now two cases to consider. If {t € dom(f)|z £, f(¢)} =0,
so that # <, f(t) for all t € dom(f), then it is easy to see, using the induction hypothesis,
that By : (code(?;),code(Ll),y) = T, giving us pq(split,) : {code(f),code(x),y)) =T,
as desired. If it is not the case that = <, f(t) for all t € dom(f), then for all ¢’ € dom(f)
such that © €, f(t') we must have B; : (code(?;),code(t'),y) = T. Again, this gives
us the desired result. If emb(f) : y and emb(z) have no upper bound, then there must
be some t"” € dom(f) such that @ £, f(t") and emb(t") <; y. It is easy to see that if
t € dom(f) and z <, f(t), then ¢t and " have no upper bound (for otherwise f would
not be a well-defined function representation). By the inductive assumption it follows
B, : (code(t),code(t”),y) = F for all t € dom(f) such that = <, f(¢), and hence
V{tedom(f)|zgrf(t)} /\{t’edom(f)hngf(t’)} B1 . <COd€(t),COdE(t/),y> = F. This completes the
inductive argument for the correctness of split;.

The definition of E; : code(z1) proceeds as expected by induction on the structure of
the representation z;. For example, if z; is a nonempty sequence representation (which
can be easily checked by looking at code(z)), let firsi(z1) and tl(z1) be the obvious
representations of the first element of z; and the tail of z;. (We shall similarly abuse
notation in viewing other function items in D1* as functions on representations.) Then
E; : code(z) = al : (E; : (codefirst : code(z;)),E; : (codetl : code(z))), where
codefirst and codetl are (easily definable) FPO1 expressions such that codefirst :
code(z;) = code(first(z;)) and codetl : code(z;) = code(tl(z)). Since our definition
of complexity guarantees that both first: z; and t/: z; have lower complexity than zq, it
is easy to see inductively that this definition has the right properties.

The hard part of the definition of E; is, as expected, the case of function items. If z;
is a function item, then E; : code(z1) has the form Av.(...). The argument in the (...)
should be the result of applying E; : code(z1) to v. In order to compute this, we use the
split; function defined above. For example, if split, : (code(z;),code(a),v) = T, then
we know that @ <; emb(z1) : p1(v). This means that we must in fact have a = emb(z) :
p1(v), so we can return a. Similarly, if split, : (code(z;),code(((L,*))),v)) = T, then
we know that emb(z1) : p1(v) must be a nonempty sequence item. If f is the function
representation [#7 — y1,...,2;r — yi| and ¢ is a function on representations, then we
take Ay.(¢ @ (f : y)) to be the function representation that results by starting with
1 — g(y1),...,2x — g(yx)] and removing all components such that g(y;) = L. Notice
that emb(Ay.(first : (21 : y))) : p1(v) gives us the first element of the sequence item
emb(z1) : p1(v), while emb(Ay.(t: (21 1 y))) : p1(Vv) gives us its tail. Let codefirstf and
codetlf be FPO1 expressions such that

34



codefirstf : code(z;) = code(Ay.(first: (z1 : y))) and
codetlf : code(z) = code(Ay.(t: (21 :y))).

Thus, if z1 : p1(v) is a nonempty sequence item, then E; : code(z) : v = al : (E; :
(codefirstf : code(z;)) : v,E; : (codetlf : code(z1)) : v). It easily follows from the
definitions that Ay.(first: (z1 : y)) and Ay.(¢l: (21 : y)) both have lower complexity than
z1, so we can apply the inductive hypothesis.

The most interesting case is where split, : (code(z;),code([]),v) = T, so that
emb(z1) : p1(v) is a function item. In this case, we replace z; by uncurry(z1). As shown
in Lemma C.5, this decreases the complexity, allowing us to apply the inductive hypoth-
esis. Let codeuncurry be an FPO1 expression such that codeuncurry : code(f) =
code(uncurry(f)).

Recall that we assume that A, the set of atoms, is finite. For the remainder of this
section we take A = {a;,...,a,}. While we use the finiteness assumption throughout
this section, the proofs can typically be easily modified to deal with the case where A is
finitely generated. We define E; as follows:

Az.( if z = code(z)
then if z; = 1 then
else if z; = a; then a;

else if z; = a,, then a,

else if z; = (()) then ()

else if z; is a nonempty sequence representation then
al: (E; : (codefirst : z), E; : (codetl : z))

else if z; is a function representation then

Av.(

if split, : (code(z1),code(a;),v) then a;
else if split, : (code(z;),code(a,),v) then a,
else if split, : (code(z),code((())),v) then ()
else if split, : (code(z),code({(L,*))),v) then
al: (E; : (codefirstf : z) : v,E; : (codetlf : z) : v)
else if split, : (code(z;),code([]),v) then
Aw.(E; : (codeuncurry : z) : (v,w))
else Q)
else Q)

Using our discussion above as a guide, it is straightforward to show that E; has the
required properties. Formally, we show that if ||z|| = (k, k"), then p;(Eq) : code(z) =
emb(z), assuming that the correctness of the definition of Eq for all 2z’ such that ||2'|]| <
(k, k') and the correctness of the definition of split; for all {(code(z1), code(z2),y)) such
that max(||z1||, ||z2]]) < (k, k). We leave details to the reader.

35



Finally, we must deal with B;. We need to introduce a little more technical ma-
chinery first. Given a set S of representations in Rep!, define the set C'L(S) to be the
smallest superset of S that is closed under L, in the sense that if z and y are compatible
representations in C'L(S), then = Uy is in D1*. It is easy to show that if S is finite,
then so is CL(S). (Indeed, we can show that |C'L(S)| < 2I°l: we simply add LIS’ for
every compatible subset S’ of S. The resulting set is easily seen to be closed under U.)
Moreover, given codes for all the elements in S, it is easy to compute codes for all the

elements in C'L(.5).

If z is a function representation and ¢ is a representation, we define z : ¢ to be the
representation U{z(z) : x € dom(z),z <, t}. We can now define B, as follows:

Mz1,22,y).( if z; = code(z) A z; = code(z;) then
if z7=1 then T
else if z; = a; then isatom : y A eqatom : (a;,y)

else if z; = a,, then isatom : y A eqatom : (a,,y)

else if z; = (()) then isseq: y Anull : y

else if z; is a nonempty sequence representation then
isseq :y Anot : (null : y)A
B, : (codefirst : z1, codefirst : zy, first : y) A
B, : (codetl : z;,codetl : zy,tl : y)

else if z; is a function representation then
isfunc : y A
/\tEOL(dOm(Zl)UdOm(ZQ))(Bl: <C0de(21 : t)7 COde(ZQ : t) >
v : (Eq : code(?))))

else Q)

To show that this definition of By is correct, we again proceed by induction on com-
plexity. Consider p1(B1) : ((code(z1), code(z2),y)), where max(||z1], ||z2]|) = (k, k). Sup-
pose inductively that the definition of E; is correct for all representations z such that
|||l < (k, k'), while the definition of By is correct for all representations z; and z;
such that max(||z1]], ||z2]]) < (k,&"). Tt is easy to see by inspecting the definition that
if 11(B1) @ {(code(z1), code(zz),y) = T, then it must be the case that emb(z1) <; y.
The only difficulty comes if z; is a function representation. To see that B; works cor-
rectly in this case, first suppose emb(z1) <; y. In that case, y must be a function
item, so isfunc : y = T. Moreover, we must have emb(z; : t) <; y : emb(t) for
each t € CL(dom(z1) U dom(z2)). By Lemma C.1, if t € CL(dom(z1) U dom(z3)),
then ||| < maxXyedom(z)udom(z) ||t]]1 < max(|[z1]|1,]]22]|1). Thus, it follows that if
t € CL(dom(z) U dom(z,)), then ||t|| < max(||z1]|,||22]]). From the inductive hy-
pothesis, we get that p(By) : ((code(z : t),code(zy : t),(y : 1)) = T for each ¢ €
C L(dom(z) U dom(zz)). The result immediately follows.

Next suppose that z; and z; have no upper bound and emb(zy) <;y. If y is not a
function item, then isfunc : y = F, and we get F' as desired. If y is a function item

36



then z; must be a function representation (since emb(z2) <7y and z9 # L, since z; and
z9 have no upper bound). Since emb(z2) <; y, we must have emb(z2 : t) <7y : emb(t)
for all t € C'L(dom(z1) U dom(z3)). Moreover, since z; and z; have no upper bound,
there must be some t € C'L(dom(z1) U dom(z3)) such that z; : ¢ and z3 : ¢ have no upper
bound. (We remark that there might not be such a ¢ in dom(z1) U dom(z3); this is why
we need the closure here.) By the inductive hypothesis, it follows that for this ¢, we have
p1(By) : ((code(zy 1 t), code(z : t),y : emb(t))) = F. Again, the result now follows. We

leave further details to the reader.

This completes the proof of the theorem. I

C.3 Proof of Theorem 6.5

Recall that we want to be able to define an expression sup, that takes sups of increasing
sequences. More formally, we want to define sup, such that if {z1, ..., z;} is an increasing
sequence of finite elements in D1*, then pi(supy) : (code(z1),..., code(zg), *) = z.
Again, it is useful to extend this definition to all representations, so we actually require
that {z1,...,2,} is an increasing sequence of representations in Rep!, then pq(sup,) :
{(code(z1), ..., code(zy), *)) = emb(z).

To define sup,, we again need three auxiliary functions, sup,, split, and B;. The
function sup, is actually just a special case of sup,. Its definition is similar to that of
sup,, but it is restricted to sequences with two terms other than *, rather an arbitrary
number of terms. More precisely, we require that for all z,z, € Repl,

o if 21 <y zy, then pq(sup,) : ((code(z1), code(zs), *)) = emb(z2)
o a1(supy): (code(z1), L,*)) = z

The function B, is precisely the one we were hoping to define in FPO1, that, given
code(z) and y, returns T if emb(z1) <; y and F if emb(z1) and y are incompatible. Thus,
if z is a finite representation in Rep! and y is an arbitrary element of D*, we require
that:

o 11(B2): (code(z),y) =T iff emb(z) <;y
o 11(B2): (code(z),y)) = F if emb(z) and y are incompatible.

Once again, we emphasize that first condition is “if and only if”, whereas the second
condition is not.

The requirements for split, are somewhat similar to split;. If f is a finite function
representation, x is a minimal representation, and y is an arbitrary element in D1*, then
we require that:

e 11(split,) : {(code(f),code(x),y)) =T iff emb(x) <; emb(f) 1y

37



o 1(split,) @ ((code(f),code(x),y) = F iff emb(t) and y are incompatible for all
t € dom(f) such that z <, f(1).

Notice the first clause in split, is identical to that of split;. The second clause is some-
what stronger: For split; we required that if emb(f) : y and emb(x) are incompatible,
then pq(splity) : ((code(f), code(z),y)) = F. For split, the second requirement is equiv-
alent to requiring that ps(split,) : (code(f),code(x),y)) = F iff for all y’ >; y, we have
emb(x) L1 emb(f) : y'. Notice that by the monotonicity of emb(f), the second condition
will automatically be met if emb(z) and emb(f) : y are already incompatible. Therefore,
split, returns F whenever split, is required to, but is also required to return /' in more
general circumstances.

The definitions of split,, sup,, and B, are much in the same spirit as those of split,,
E; and B;. Again, we start with split,, and then define sup, and B, and when proving
correctness of our definitions, we proceed by induction on complexity, assuming the
correctness of all three functions for arguments of lower complexity, and for previously
defined functions for arguments of the same complexity. After we have defined these three
functions and proved their correctness, we define and prove the correctness of sup;.

The definition of split, is quite straightforward:

Az. if z = (code(f),code(z),y) where f is a function representation and
x is a minimal representation

then V{tedom(f)|x§rf(t)} B2 : (code(t),y>

The proof that split, has the required properties proceeds, as usual, by induction
on complexity. Consider puq(splity) : {(code(f), code(z),y)), where f is a finite function
representation with ||f|| = (k, k') and z is a minimal element. If emb(z) <; emb(f) :
y, since z is minimal, it must be the case that there is some ¢; € dom(f) such that
z <, f(t;) and emb(t;) <ry. Thus, by the induction hypothesis, we have that u;(B,) :
{(code(t;),y)) = T, from which it follows that uq(splity) : (code(f),code(z),y)) = T, as
desired. Conversely, if pq(split,) : ((code(f), code(x),y)) = T, then it must be the case
that for some t € dom(f) such that <, f(t), we have emb(t) <; y. It follows that
emb(x) < emb(f) : y.

For the second requirement of split,, observe that emb(¢) and y are incompatible for
allt € dom(f)such that <, f(t) iff (by the induction hypothesis) u(Bz) : {(code(t),y)) =
F for all t € dom(f) such that x <, f(t) iff puq(split,) : (code(f), code(x),y)) = F.

We now turn to sup,. Although sup, is quite similar in spirit to E;, there are two
significant differences in the requirements of sup, which makes its definition somewhat
more complicated than that of E;. The first difference is that the significant arguments
to sup, are sequence representations. This is fairly easy to take care of: we need to
use apalll in a number of the clauses of sup, to make sure that the same function
gets applied to all arguments of the sequence representation which is the argument to
sup,. The second difference comes in the case that the argument of sup, is a sequence

38



of function representations. Recall that when computing E; in this case, we compute
Av.((Eq : code(z1)) : v). Using split,, we check if there is some minimal element z such
that © <; emb(z1) : p1(v). If so, we take the appropriate action; otherwise, we return
. The problem is, when computing sup,, it is not necessarily appropriate to return Q.
That is, suppose we are attempting to compute pq(sup,) : {(code(z1), code(zz),*))). If z;
is a function representation, we want to compute emb(z1) : v for each argument v. If the
result is not L, then we can use essentially the same techniques as for E;. However, if
the result is L, then we need to compute emb(zz) : v (= p1(Eq) : code(zz) : v).

We cannot do this using a normal conditional, since the conditional will diverge if
p1(emb(z1) : v) = L. Instead, we need to use a parallel conditional. Roughly speaking,
this will allow us to carry out all the necessary computations in parallel. Let pcond be
the function item in D1* such that pcond : & = L unless z is of the form (xq, x5, z3), and
(taking glb to denote the greatest lower bound, as usual)

T2 if 1 = T
peond : (x1, 9, 23) =< w3 ifey=F
glb(zy,z3) otherwise.

Of course, we need to show that this is indeed a function item in D1*, which amounts to
showing that every pair of elements in D1* has a greatest lower bound, and that glb is
a continuous function. We leave these details to the reader.

Observe that or: {(x,y)) = pcond : {(x,T,y)), so that that oris definable in terms of
pcond. As we now show, the converse also holds. (The proof is similar to the proof in

St91].)

Lemma C.6: There exists an FPO1 (and, a fortiori, FP1*) expression pcond such that
p1(pecond) = peond.

Proof: Let nn be an abbreviation for Ay.(isseq :y Anot : null : y). Thus, nn :y
returns true exactly if y;(y) is a nonempty sequence item. We now define pcond as
follows.

/\<X1,X2,X3>.(
if (x1=TAxs=a;)V(xy=FAx3=a;)V(xy=x3=a;)) then a,

elseif (x;=TAxy=a,)V(x1=FAx3=a,)V(x2=x3=a,)) then a,

elseif (x; =TAx,=())V(xi=FAx3=())V(x2=x3=¢))) then ()

elseif (x; =T Ann:x;)V(xy=FAnn:x3)V(nn:x;Ann:xs))
then al : (pcond : (x,first : xy, first : x3), pcond : (x1,tl : x5,tl : x3))

else if ((x; = T Alisfunc : x;) V (x; = F Alisfunc : x3) V (isfunc : x; A isfunc : x3))
then A\v.(pcond : (x1,X2: v,X3:V))

else )

39



In order to prove that ui(pcond) = peond, it clearly suffices to show that u;(pcond) :
(x1, 9, 23)) = pcond : {(x1,22,23)). By continuity, we can restrict attention to the case
where x5 and x5 are finite. Define the type of a finite element z to be a pair (n, m) where
n is the least k such that z € D, and m = 0 if x is not a sequence item, otherwise it
is the length of the sequence (not counting the * if x is a sequence of indefinite length).
The proof of correctness now proceeds by a straightforward induction on type (ordered
lexicographically). We leave details to the reader. 11

In analogy with cond, we use parif ... then...else to denote a use of the parallel
conditional.

We define sup, as follows (where we take second : z as an abbreviation for first :
(tl: z); i.e., second picks the second element in a sequence):

Az.( if first : z = code(z;) then
if 21 = L then E; : (second : z)
else if z; = a; then a;

else if z; = a,, then a,
else if z; = (()) then ()
else if z; is a nonempty sequence representation then
al : (sup, : (apalll : codefirst : z)), sup, : (apalll : codetl : z))
else Av.(
parif split, : (first : z, code(ay),v) then a,

else parif split, : (first : z,code(a;),v) then a,
else parif split, : (first : z, code((())), v) then ()
else parif split, : (first : z,code(((L,*))),v) then
al : (sup, : (apalll : codefirstf : z) : v,
sup, : (apalll : codetlf : z) : v)
else parif split, : (first : z, code([]),v) then
Aw.(sup, : (apalll : codeuncurry : z) : (v,w))
else E; : (second : z) : v)

else Q)

The proof of correctness of this definition proceeds by induction on the complexity
of the first argument to sup,, assuming that split, works correctly for all arguments
of the same or lower complexity. The case where p(second) : z = L is similar to the
proof for E;. So assume that z = ((code(z1), code(z3), %)), ||z1|| = (k, k') and 2z < z,.
We need to show that pi(sup,) : emb(z) = emb(z;), assuming that the correctness
of the definition of sup, for all sequences whose first term has complexity less than
(k, k'), and the correctness of the definition of split, provided its first two arguments
have complexity at most (k,%’). For the most part, the proof is essentially the same
as that of the correctness of E;. The most interesting case is where z; is a function

40



representation. We sketch the proof of that case here, leaving the remaining cases to
the reader. We must show that pi(sup,) : emb(z) : v = emb(z2) : v for all v. The
proof proceeds by cases, depending on the structure of emb(zy) : v. If emb(z1) : v = L,
then the test of the parif in each case will return either F' or L. In the case that
emb(z2) 1 v = L, it is easy to see that ui(sup,) : z = L as desired. In the case that
emb(z2) : v = ay for the atom ay, all the parif tests other than the one for a; produce
F' (since z; <; z3). By the results already proven for E;, the final clause yields a;.
Since pq(split, : (first : z,code(a;),v)) € {L, F'}, by the parallel properties of parif,
pi(supy) @ z = ay as desired. The other subcases for different values of emb(z3) : v are
similar. If emb(z1) : v # L, then all the tests in the parif involving split, will return
either 7" or F' (in fact, it was only to deal with the possibility that emb(z1) : v = L that
we had to use parif rather the if ). If emb(z1) : v is either an atom or the empty sequence
{()), then we must have emb(z3) : v = emb(z1) : v, and the definition is easily seen to be
correct. If emb(z;) : v is either a nonempty sequence item or a function item, then the
result follows using the induction hypothesis (again, we need Lemma C.5 to guarantee
that the complexity goes down in the case of function items). This completes the proof
of correctness of sup,.

Next, we must deal with B,. It is useful to have the dual of exists by defining
all = M.(not : (exists : (Ax.(not : (f : x))))). Thus, gy(all): f=Tiff f: L =T and
pa(all) s f = Fiff f:¢ = F for some observable ¢. It is also helpful to have the function
sup), = Av.(sup, : (first : v, grow : v,*)) where grow : v is second : v if v is a pair of
the form (code(z;),code(xy)) and z1 <, xy; otherwise, grow returns 2. We define B,
as follows:

Mz,y).( if z = code(z) then
if z=1 then T
else if z = a; then isatom : y A eqatom : (a;,y)

else if z = a,, then isatom : y A eqatom : (a,,y)
else if z = (()) then isseq:y Anull : y
else if z is a nonempty sequence representation then

nn :y A By : (codefirst : z,first : y) A By : (codetl : z,tl : y)
else if z is a function representation then

isfunc : y A Asegom (s all : (Aw.(

B, : (code(z(t)),y : (sup) : (code(t), w))})
else Q)

The proof that By is correct again proceeds by induction on complexity. More pre-
cisely, we want to show that pq(B;) : ((code(z),y)) satisfies its specifications provided that
B, satisfies the inductive hypothesis and that p(sup,) gives the right answer when ap-
plied to sequences of the form ((code(z1), code(z2),*)) with ||z1|| < ||z]|. (Note for future
reference that all that matters here is the complexity of the first argument of sup,; this
is legitimate since in our proof of correctness for sup,, we proceeded by induction on the

41



complexity of the first argument.) The only difficult case is if z is a function representa-
tion. If emb(z) <y, then y must be a function item and for all t € dom(z), it must be the
case that emb(z(t)) <r y : emb(t). Moreover, for t € dom(z), by the induction hypoth-
esis, we have pq(sup,) : (code(t), L,*)) = emb(t), so (by the induction hypothesis and
Corollary C.2) we have p1(Bsy) : {(code(z(1)),y : (p1(sup,) : ((code(t), L,x))) = T. Tt
now follows from the definition of y4(all) that u;(Bs) : (code(2),y)) =T if emb(z) <; y.
It is easy to check that if p1(B2) : {(code(z),y)) = T, then emb(z) <7 y.

Similarly, it is easy to check that if pq(B2) : {(code(z),y)) = F, then emb(z) and y
are incompatible. Assume that emb(z) and y are incompatible, with the goal of proving
that p1(Bs) @ ((code(z),y)) = F. The only interesting case occurs when y is a function
item. For each finite ¢t € D1*, define W; = {w € D1*|w <;y : ¢, w is finite} and define
Ty = {emb(z(1")|t" € dom(z), emb(t') <;t}. Suppose that W, UT; is pairwise compatible
for all finite t € D1*. By Corollary C.3, we can let f(¢) be the least upper bound of W,UT;.
Using the fact that D1* is algebraic, we can easily extend f to a continuous function
on D1* that is an upper bound to emb(z) and y. This contradicts our supposition.
Therefore, there is a finite £; € D1* such that Wy, UT}, is not pairwise compatible. Since
both W;, and T}, are pairwise compatible, there is a wy € Wi, and ] € T}, that are not
compatible (i.e. have no upper bound). By definition of T3,, we can find t, € dom(z)
such that emb(to) <; t; and such that emb(z(%y)) and w; are incompatible. Therefore,
emb(z(to)) and y : t; are incompatible as well. We have (using the induction hypothesis)
that p1(Bs) : {(code(z(to)),y : (p1(supy) : (code(ty), code(rep(ty)),*)))) = F. From the
definition of all, it follows that p1(Bg2) : {(code(z),y)) = F as desired.

We are finally ready to define sup,. The definition is identical to that of sup,
except that all occurrences of sup, are replaced by sup,, and the two occurences of
E; : (second : z) (in the second line and the last line of the pseudocode) are replaced
by sup; : (tl: z). We provide the definition here for completeness:

42



Az.( if first : z = code(z;) then
if zy = L then sup, : (tl: z)
else if z; = a; then a;

else if z; = a,, then a,
else if z; = (()) then ()
else if z; is a nonempty sequence representation then
al : (sup, : ((apalll : codefirst) : z)),sup, : ((apalll : codetl) : z))
else Av.(
parif split, : ((first : z), code(a;),v) then a;

else parif split, : ((first : z),code(a,),v) then a,
else parif split, : ((first : z),code((())),v) then ()
else parif split, : ((first : z),code({(L,*))),v) then
al : (sup, : (apalll : codefirstf : z) : v,sup, : (apalll : codetlf : z) : v)
else parif split, : ((first : z),code([]),v) then
Aw.(sup; : (apalll : codeuncurry : z) : (v, w))
else sup, : (tl:2) : v)
else Q)

a
a

3

The proof of correctness of this definition is essentially the same as that for sup,. The
only difference is that now, since we are dealing with sequences of arbitrary length (not
just length 2), we proceed by induction on the length of the sequence, with a subinduction
on the complexity of the first argument to sup,. Note that we have already proved that
split, is correct, so we do not have to include the correctness of split, in our induction
hypothesis. The proof is almost identical to that of sup,, so we omit details here. This
completes the proof of Theorem 6.5.

The reader may wonder at this point why we bothered with sup,. Could we not
have omitted the definition of sup,, and used sup, in its place in the definition of
B,? Unfortunately, it seems that the answer is no. If we used sup; in the defini-
tion of By, then we could no longer in the proof of correctness of sup; : z assume
the correctness of split, (since split, uses B;, which in turn would use sup;). It
seems that we could assume the correctness of split, on arguments of “lower” com-
plexity. To see the problem with this assumption, observe that in proving the correct-
ness of pq(supy) : ((code(z1),. .., code(zy),*)), we would need to assume the correct-
ness of pi(splity) @ ((code(z;),...)), ¢ = 1,...,m (so that we do not run into prob-
lems as we apply the tail function to the sequence). This in turn would require the
correctness of p1(Bz) : ((code(z;),...)), which in turn would require the correctness of
pa(supy) : ((code(z;), code(w),*)) for ¢ = 1,...,m and arbitrary representations w. But
this requires the correctness of split, : {(code(w),...)) for arbitrary w. Suddenly we have
lost the base of our induction!

43



Note this was not the case for sup,, where we only needed to assume the correctness
of p1(splity) : ((code(z1),...)). We did not need to assume the correctness of uy(split,) :
{(code(zq), .. .), since split, never gets applied to the second argument in the case of
sup,. As in Plotkin’s proof for LCF [P177], this apparently small difference is quite
critical.

C.4 Proof of Theorems 7.1 and 7.4

In this section, we consider NFP. We first must define a set NRep of reprsentations of
finite elements in ND*. The definition is analogous to that of Rep. We take NRep, = Dy,
and take NRep,, ., to be the result of starting with NRep, , and closing off under sequence
representations, function representations, and set representations. Sequence representa-
tions and function respresentations are defined just as before; a set representation in
NRep, ., has the form {zy,..., 21}, where 2q,...,2; € NRep,. We can again define a
function emb that maps elements of NRep to the finite elements in ND*, and define a
function code that maps elements of NRep to observable items in ND*. The definition of
code on atomic items, sequence representations, and function representations is just as
before. We extend it to set representations as follows:

code({x1,...,x,}) = ((), code(x1), ..., code(x,,))).

As before, we take code(z) to be the observable expression corresponding to the observ-
able item code(z).

We are now ready to prove Theorems 7.1 and 7.4. For convenience, we restate the
results before proving them.

Theorem 7.1: There is an NFP expression Ex such that for all for all finite elements
z in ND*, we have py(En:code(z)) = x.

Proof: As usual, we define Ex on all representations, so that we require:
e un(En:code(z)) = emb(x).

Again, it is helpful to define an expression By such that p,(By) : {(code(z),y)) = T iff
emb(x) <7 y. The definition of Ey is:

44



Az( if z = code(z)

then 1if z; = a; then a;

else if z; = a, then a,
else if z; = (()) then ()
elseif z1 = ((x1,...,2,) ANx1 # %
then al : (Ey : code(z),En : code(((z,,...,2,)))
else if zy = ((z1,...,2,) Az, #*
then ar : (Ey : code({(z1,...,2,-1))), Ex : code(z,))

else if z; = {z1,...,2,}
then union : (Ey : code(z),...,Ey : code(z,))
elseif z; = [z1 = y1, ..., 20 — yy)

then Av.(union : (cond : (By : (code(z1),v),Ex : code(y1),Q),...,
cond : (By : (code(z,),v),Ey : code(y,),)))
else Q)

In the definition of By, we use the expression andof (xy,...,x,), which is an abbre-
viation for cond : (x;,...cond : (x,T,Q)....Q). Thus, p(andof (x,...,x,)) is T if
p(xi) =T for i =1,...,n, and is L otherwise. The definition of By is:

AMx,y).( if x = code(z1)

then if 1 = ¢; then andof(isatom : y,eqatom: (a;,y))

else if z; = a,then andof(isatom : y,eqatom: (a,,y))
else if z; = (()) then null : y
elseif zy = ((«f,..., 20 ) Az} # =
then andof(isseq: y,not : (null : y),
By : (code(z)),first : y, By : (code({(z},...,2)))
elseif xy = ((z},...,2))) Azl #*
then andof(isseq: y,not : (null : y),
By : (code(z!),last : y, By : (code({(z],...,2! ), tr:y)

»Yn—1
else if zy = {z/,..., 2}
then andof(By : (code(z}),y),...,(code(z)),y))
elseif z1 = [z} — yy,.... 2, — y!]

then andof(isfunc : y, By : (code(y}),y : (Ey : code(z)))),...,
By : (code(y)),y : (Eny : code(z)))))
else Q)

The proofs that Ex and By have the desired properties are left to the reader. 1

Theorem 7.4: There is an expression supy in NFP such that if (z1,...,z) is an
increasing sequence of finile elements in ND*, then

pa(supy) : {(code(z1),. .., code(zy), *)) = zk.

45



Proof: Again, we generalize the definition of supy to arbitrary representations. Define
supy = Ax.(union : (first : x,supy : (t1: x))). It is easy to see that this definition has
the desired properties. 1

C.5 Rewrite rules for FPE and FPE*

Now that we have defined representations, we can also give the rewrite rules for the
languages FPE and FPE* as defined in Section 8. For FPE we added the primitive
function symbol E; for FPE*, we also added sup. As usual, we actually define the rules
on the codes of all finite representations (not just canonical representations). In these
rules we use andof, which was defined in Section C.4; recall that p(andof(xy,...,x,))
is Tif p(x;) =T fori =1,...,n, and is L otherwise.

The rules presented for sup are only weakly sound. Despite the fact that they are
only weakly sound, as we observed in Appendix A, by generalizing the notion of strong
completeness appropriately, we still get Full Adequacy. Recall that ((x)) is identified
with L.

E : code(a) — a if a is an atom

E : code(() — ()

E: co‘de(«a:l,wz,...,:z;n») — al:(E : code(z1),E : code({(z2,...,z,)))) if
1 1s not *

E: code(((xl,mg, ooy ,)) — ari(E : code({(z1,...,2,-1)),E : code(x,,)) if
T, 18 not *

E : code(f) : z — E : code(y) if f is a function representation, and y is a

finite element such that y <; U{f(z) : « € dom(f) and E : code([z —

T)):z—*T}

:code(f[a = T]):a— T

code([{() =+ T]): ) — T

: code([(z1,...,2,) — T]) : z — andof(E : code([z; — T]) : (first :

z),E: code([((z2,...,z,) = T]): (t1: 2)) if 21 # %

E : code([{(z1,...,2,) — T]) : z — andof(E : code([z, — T]) : (last :
z),E: code([{(z1,...,241) = T]): (tr:2)) if z,, # *

E : code([[t1 — y1,..., 20 — yu] — T]) : 2 — andof (E : code([y; — T1]) :
(z: (E:code(z1))),...,E:code([y, = T]):(z: (E: code(z,))))

sup : x — E: (first : x)

sup : x — sup : (tl: x)

ololol

The above rules were presented in a weakly sound form so as make them more read-
able. It is possible to construct a sound variant of these rules. Roughly speaking, this
can be done by repeating rules as necessary for E where f is a function representation
and for sup. This would involve techniques such as the ones used in Section C.3, where

46



we ensured that all the codes in sup got altered in the same that the first code did during
a recursive call. We omit details here.

Acknowledgements: We would like to thank Albert Meyer for inspiring us to consider
these questions and pointing out the relevance of the results in [P177]. John Williams
first conjectured that apply-to-all was not definable in FP, and David Chase encouraged
us to prove it. Samson Abramsky suggested the importance of showing the lack of full
abstraction for FPO. John Backus, Ron Fagin, Matthias Felleisen, and John Williams
provided useful comments on a draft of this paper. The referees also provided thoughtful
and helpful comments.

References

[AB9O]

[Ab91]

[BaT8]

[Cu86]

[Gu87]

[HWW90]

[Mi73]

[Mi77]

[P177]

[SP82]

[St90]

S. Abramsky, The Lazy Lambda Calculus, in Research Topics in Functional Pro-
gramming edited by David Turner, Addison-Wesley (1990), pp. 65-116.

S. Abramsky, Domain Theory in Logical Form, Annals of Pure and Applied Logic
58:1/2 (1991), pp. 1-77.

J. W. Backus, Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs, CACM 21:8 (1978), pp. 613-641.

P.-L. Curien, Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming, Pitman Publishing Limited (1986).

C. Gunter, Universal Profinite Domains, Information and Computation (1987), pp.
1-30.

J.Y. Halpern, J.H. Williams, and E.L. Wimmers, Completeness of rewrite rules and
rewrite strategies for FP, Journal of the ACM 37:1 (1990), pp. 86-143.

R. Milner, Models of LCF, Memo. AIM-186, Stanford Artificial Intelligence Labo-
ratory, Stanford University (1973).

R. Milner, Fully abstract models of typed lambda-calculi, Theoretical Computer
Science 4 (1977).

G.D. Plotkin, LCF considered as a programming language, Theoretical Computer
Science 5 (1977), pp. 223-255.

M.B. Smyth and G.D. Plotkin, The category-theoretic solution of recursive domain
equations, SIAM Journal on Computing 11:4 (1982), pp. 761-783.

A. Stoughton, Equationally fully abstract models of PCF, Proc. 5th MFPS, Lecture
Notes in Computer Science No. 442, Springer-Verlag (1990).

47



[St91] A. Stoughton, Interdefinability of parallel operations in PCF, Theoretical Computer
Secience 79 (1991), pp. 357-358.

[Wa78] C.P. Wadsworth, Approximate reduction and lambda calculus models, SIAM Jour-
nal of Computing 7 (1978), pp. 337-356.

[Wi81] J.H. Williams, Formal representations for recursively defined functional programs,
in Formalization of Programming Concepts, Lecture Notes in Computer Science

No. 107, Springer-Verlag (April, 1981), pp. 460-470.

48



