

Teaching Java –with OO first

David Gries
Computer Science
Cornell University

1. Introduction
Good morning! I thank you for inviting me to give this
presentation. It is a pleasure to be here.

This talk is aimed at educators, especially those who
teach the first programming course, although I hope
everyone will find it interesting and provocative. I was
led to talk about the teaching of programming because
of the debates that have been taking place on whether
OO should be taught before procedural concepts —or
even whether OO can be taught first! I have strong
opinions on the matter, which are based on 41-years of
teaching, research in the field of formal programming
methodology, and ten years of experience teaching pro-
gramming using Java. My ideas are not widely known,
and I hope that this presentation will spur debate and
change some opinions.

Here is a list of references on “OO first”: por-
tal.acm.org/citation.cfm?id=1189136.1189183. A SIG-
CSE debate on the issue [i] was preceded and followed
by much mail on the SICGSE mailing list, and Kim
Bruce wrote a summary of the discussion [j].

But rather than summarize what others have said, I
prefer to tell you directly my views on how to teach OO.

In preparation for this talk, I spent a great deal of
time looking at Java texts1. It was an eye opener, and it
caused me to review the principles on which I base my
teaching of programming. So, I will begin by discuss-
ing some principles and give examples from the litera-
ture that violate these principles. These almost universal
violations, I argue, contribute to the state of affairs in
teaching programming —whether OO based or not.

2. Some pedagogical principles
Let me turn your attention to the excellent PhD the-

sis [h] of Michael Caspersen of Aarhus, completed in
June 2007. This thesis presents research and conclusions
on the teaching of programming that is based on sound
theories of pedagogy and cognition as well as experi-
ence. It deals with teaching OO, but its findings are ap-
plicable in more general domains. It is the best study on
this topic that I have seen.

1 Throughout, text means introductory programming
text, and computer science is abbreviated as CS.

Among other things, Caspersen discusses two im-
portant principles concerning teaching novices:

Principle 1: Reveal the programming process, in order
to ease and promote the learning of programming.

Principle 2: Teach skills, and not just knowledge, in
order to promote the learning of programming.

Teaching methodological programming skills cannot
be done in a lecture or two. There may be lectures on
stepwise refinement (or stepwise improvement, accord-
ing to Caspersen), loop invariants, and OO design. But
every lecture should deal in some way with program-
ming skills —e.g. when the teacher develops first the
spec of a method and then the method body, or dis-
cusses local variables and where they should be de-
clared, or writes a class invariant for every class, or de-
velops a suite of test cases in a JUnit class. The devel-
opment of skill, rather than simply transfer of knowl-
edge, should be our aim.

From my point of view, few texts treat methodologi-
cal skills appropriately. They teach programs, not pro-
gramming. They focus largely on knowledge, not skill.
Indeed, I would claim that computer scientists in gen-
eral do not think much about the programming process
and have little idea about how to teach programming.

In this sense, the field of formal programming meth-
odology has failed. All through the 1970’s and 1980’s
research went on in this field, research that helped me
learn how to teach programming skills, often in an in-
formal manner but based on a formal theory of pro-
gramming. The field has not embraced the idea, to say
the least. And I find it a tragedy that most students in
CS can graduate without ever having heard the term
loop invariant, much less used it.

I won’t mention principals (1) and (2) again in my
lecture, for I focus on how OO can be taught first. But
rest assured that these principals are always in my mind
when teaching. Here are a few more principles.

Principle 3: Present concepts at the appropriate level
of abstraction.

We all believe that abstraction is important in CS,
perhaps more so than in other disciplines. Abstraction is
discussed in many places. Colburn and Shute [c] con-
clude that “abstraction through information hiding is a
primary factor in CS progress and success.” For Burg
and Thomas [d], abstraction is “arguably the most fun-
damental intellectual activity in the field of CS.” Gunter
Gorz [e] discusses abstraction as a fundamental concept
in teaching CS. One well-known text says that, “a good
abstraction hides the right details at the right time so
that we can manage complexity.”

David Gries. Teaching programming, with OO first

 2

I was co-author of the influential report Computing
as a discipline [f], which discussed the three major
paradigms, or cultural styles, used in CS: theory, ab-
straction (modeling), and design.

But, in spite of this talk, most texts do not use ab-
straction appropriately. For example, many texts de-
scribe variables and assignment in terms of computers2:

“A variable is a name for a memory location used
to hold a value of some particular data type.”

“When [the assignment statement is] executed, the
expression is evaluated … and the result is stored
in the memory location ….”

“The computer must always know the type of
value to be stored in the memory location associ-
ated with a variable.”

“An object reference variable actually stores the
address where the object is stored in memory.”

This computer-centric view gives the impression
that only a computer can execute a program. If students
are taught hat only a computer can execute a statement,
how can they learn to hand-trace execution?

More importantly, the introduction of computing
concepts in terms of the computer can create unneces-
sary and confusing detail. Lest you think that I am alone
in believing that a programming language definition
should be computer independent, I quote from the defi-
nition of Algol 60 [g]:

“The purpose of the algorithmic language is to de-
scribe computational processes. …

A variable is a designation given to a single value.

Assignment statements serve for assigning the
value of an expression to one or several variables
…. The process will in the general case be under-
stood to take place in three steps as follows:

4.2.3.1. Any subscript expressions occurring in the
left part variables are evaluated in sequence from
left to right.

4.2.3.2. The expression of the statement is evalu-
ated.

4.2.3.3. The value of the expression is assigned to
all the left part variables, with any subscript ex-
pressions having values as evaluated in step
4.2.3.1.

There you have it. No reference to a computer.

2 Quotes from texts are given without citation. These are rep-
resentative of many texts. The purpose is not to denigrate in-
dividuals but simply to show the state of affairs.

The confusion really sets in when one describes ob-
jects and classes in terms of a computer. Discussions of
pointers to objects in memory, heaps, and other imple-
mentation-related terms just confuse. For example con-
sider this passage, taken from a text:

“An object has its own unique identity, which dis-
tinguishes it from all other objects in the com-
puter’s memory … An object’s identity is handled
behind the scenes by the Java virtual machine and
should not be confused with the variables that
might refer to that object.”

Far better is to have a model for classes and objects
that rises above the computer, especially if that model
can be based on an analogy to which students can relate.
Later, I will show you such a model.

Principle 4: Order material so as to minimize the intro-
duction of terms or topics without explanation: as much
as possible, define a term when you first introduce it.

This seemingly obvious principle is extremely diffi-
cult to follow when teaching Java, and I cannot claim to
adhere completely to it. I do believe that following it
almost forces you to teach OO first, because almost
every line of a program deals with a class or object. But
even when teaching OO first, this principle is difficult to
follow. In some cases, a “spiral” approach is needed.
For example, one can introduce methods in a way that
allows the student to start writing methods whose bodies
are simple assignments or returns; later, one then ex-
plains methods in depth.

As an example of violation of Principle 4, some
texts introduce applets before they discuss subclasses,
so the students cannot understand the programs they are
shown. In the explanation of an applet, the terms ex-
tends and inheritance are used without explanation. I
have also seen texts that slip in a cast or two without
ever fully explaining what casts are.

Principle 5. Use unambiguous, clear, and precise ter-
minology.

Here is terminology that doesn’t work.

Pointer and reference. Students do not know what a
pointer is. Even after you explain, they still have diffi-
culty understanding what an assignment statement b= c;
means when c contains a pointer. With appropriate ab-
straction away from the computer, these terms are un-
necessary.

Inheritance. In my opinion, the specification of Java
makes a big mistake in its use of this term. According to
the spec, private variables are not inherited, even though
they appear in every object of the subclass! Only ones
that are directly accessible are inherited.

David Gries. Teaching programming, with OO first

 3

I prefer to use the term the way it is used in English.
A child may inherit a million dollars, but the terms of
the inheritance may prohibit access to the money until
the child is 21. In the same way, all fields and methods
are inherited —they appear in every folder of a subclass.
That they may not be referenced directly has no bearing
on the issue of inheritance.

Formal parameter and actual parameter. These un-
fortunate terms were introduced in Algol 60. After in-
troducing them, most texts tend to drop the adjective,
resulting in ambiguity and confusion. Far better is pa-
rameter and argument.

One text says that, “The semantics of an assignment
statement for primitive types and for objects is differ-
ent,” and another says that, “When an object is passed to
a method, we are actually passing a reference to that
object.”

These are wrong and confusing —the confusion be-
ing that the authors think an object is assigned or passed
to a method.

In summary, utmost clarity of terminology is neces-
sary, for our choice of terminology can influence how
easy or hard it is for students to grasp the concepts.

There are other principles that we should follow in
teaching programming, but these will give you an idea
of my general philosophy. Let me now turn to a consid-
eration of teaching objects first.

3. Facilitating the teaching of objects first
Several ideas come together to facilitate the teaching

of objects first. I don’t have time to talk about them all,
so let me just list them and talk about two of the more
important ones:

• An IDE that eliminates the need for Java applica-
tions and that can be used to demo during lecture.

• A model of classes and objects in terms that stu-
dents can understand.

• Closed labs, in which students follow instructions
to learn something, using the computer, with TAs
and consultants available for help.

• Biweekly quizzes that indicate what student should
understand are currently important.

• One-on-one sessions, for all students, at least one
during the semester.

I will talk a bit about the IDE, but my main emphasis
will be on the model of classes and objects.

4. Removing the need for Java applications
The straightjacket of static method main for execut-

ing programs makes it difficult to teach Java, especially
when trying to teach OO first. What frees us is an IDE
that allows any expression or statement to be evaluated
or executed immediately, without requiring an applica-
tion. The use of such an IDE changes drastically what,
when, and how one teaches, as I will demonstrate in this
lecture, although I cannot do so in a paper such as this.

I use such an IDE. In every lecture, I demo some aspect
of Java or of programming methodology. I develop pro-
grams and test them in class. My students don’t learn
about applications and method main until the tenth or
eleventh week of the course.

Two IDEs are recommended for this purpose. First,
DrJava has had its interactions since its beginning. Sec-
ond, BlueJ has added a command window that gives the
same facility.

I cannot impress upon you enough what a freeing
experience it is not to need an application when teach-
ing.

5. A model of classes and objects
There are two aspects to a programming language:

the algorithmic aspect —how one writes sequences of
instructions

• The algorithmic aspect, and

• Structural/organizational aspect

Back in the good old days, the second aspect was es-
sentially ignored, because the main feature for organiza-
tion was the subroutine, or procedure, or function. It
was a rather flat organizational structure. Want more
functionality? Just add some more subroutines. OO
changes all that, as you know.

When teaching OO first, it is important to explain
these two aspects to the students, to make clear to them
that the structural aspect will be studied first, and to
keep them aware of it from time to time.

In the next section, I will discuss the order of pres-
entation of material, but here, I want to explain in some
detail our model for classes and objects.

In our model, a class is a file drawer of a
file cabinet, and the manila folders in the
cabinet are the objects of the class. The class
definition describes the contents of each ma-
nila folder (object), as one might expect.
When introducing the model to students, I
bring actual manila folders, filled with pieces
of paper giving the fields and methods of the object.

David Gries. Teaching programming, with OO first

 4

I draw an object to look like a
manila folder. The name of the
class appears in the upper right
part of the folder. This tells us
what file drawer it belongs in. The
tab of the manila folder contains the name of the object
—we’ll talk about this in a minute.

In the folder, I place the instance variables (the type
of a variable is optional) and the instance methods. I
make the point that the whole method appears in the
folder, but I draw only the signature of the method. The
position of these components in the folder has no mean-
ing at all; I place them wherever we want.

The name on the tab of a folder, in this case a0, is
chosen by whoever creates (draws) the folder. The only
rule is that different folders have different names. If the
computer creates a folder, we have no say in what name
is chosen, much like we have no say in the address
given to a house we are constructing. If I create-draw a
folder, I get to choose its name.

The class name C acts like a type. The values of the
type are the names of objects of the class —the names
on the manila folders of class C. In this paragraph are
two variables, both containing the name of the manila
folder drawn above. His makes sense, in the following
way. Suppose we are modeling a den-
tist office and the manila folders are
patient’s records. Both the secretary,
John, and the accountant, Mary, might
have access to the folder, and they access it by opening
the file drawer and finding it.

The inclusion of fields in a manila folder (or object)
is natural.

We explain the inclusion of the methods as follows.
In a dentist office, each staff member knows how to
carry out some tasks —the secretary can create a folder
and insert the patient’s name and address, the nurse can
make entries on a diagram of the teeth, the accountant
knows how to deal with deposits. If we place the in-
structions in each folder, written as methods, then any-
one can carry out any of the tasks, providing more
flexibility.

The importance of this model of classes and objects
should not be underestimated, for the following reasons:

1. The analogy helps students understand what an ob-
ject is, right from the beginning. It is not in terms of
the computer.

2. The pictorial nature of an object makes the concept
concrete. Students can see what an object is. A huge
problem with current texts is that they provide no
consistent pictorial presentation. On the other hand,
we draw objects often, and we force our students to

draw them. This makes other points easier to explain
later, as we will see.

3. Both the fields and the methods appear in an object.
The inclusion of the methods in extremely important
for later understanding of how the body of a method
can reference a field of the class, as we will see later.

4. The words pointer and reference are not used. In-
stead, we have a new type of value, the names on
manila folders. Automatically, one can see what an
assignment statement like

 John= Mary;

does: it places in variable John a copy of the name
that is in variable Mary.

We do not use UML diagrams for objects. UML
diagrams have no place for the name of the object —the
name on the tab of the manila folder— and this name is
a necessary and important part of the object. It is this
name that leads to easier understanding on the part of
the student.

To the right is an example of a
drawing an object of subclass Cir-
cle. The partition for Circle is at
the bottom, and partitions for suc-
cessive superclasses are drawn
above. The subclass inherits all the
components defined in the super-
classes, and you would see them
all there if we had drawn them all;
we omitted some to save space.

The format is used to explain
overriding. Given a method call,
look for a matching method start-
ing at the bottom of the object and search upward until
it is found. This bottom-up rule automatically find the
overriding method will be found (if the method is de-
fined in a superclass).

The figure below shows the file drawer for a class C,
with two objects, or manila folder. In addition, you can
see in the file drawer a static variable and a static
method. So, the single copy of each static component
goes directly in the file drawer.

I cannot overemphasize the value of these diagrams

in helping students learn what an object is. They are not

David Gries. Teaching programming, with OO first

 5

difficult to understand or draw. Once the students grasp
the idea, these diagrams can be used to explain various
concepts.

For example, every programming language —as
well as logic— uses an inside-out rule to determine
what references mean —I know of only one text that
describes this rule. Consider an assignment v= nob;. To
find variable nob, search outward through enclosing
constructs until the declaration of v is found. Suppose
this assignment is in method toString in object a0. Look
first in the block in which the assignment appears, then
in successive surrounding blocks. If not found, look in
the surrounding context, which is object a0. If it is not
there, look in the surrounding context, which is the file
drawer.

As I said, this general inside-out rule is used in some
manner, with perhaps some restrictions and changes, in
every programming language. Why not explain it in this
fashion to students?

Our model for classes and objects has other advan-
tages and important ramification, for example with an
explanation of inner classes, and the flattening of the
class structure, which Java does when it compiles.
However, we don’t have time to go into this here.

Outline of teaching OO first
Now that you know the OO model, you can appreci-

ate the order in which OO can be taught. I teach two 50-
minute lectures per week, and in between the students
have a 50-minute lab.

1. Expressions, variables, declarations, and assignment,
with types int, double, char, and boolean and casting.

Lab 1. Practice evaluating expressions using DrJava.

2. Objects. Creation of JFrame objects and calls on
methods in the objects, all demoed using DrJava. The
students see what happens immediately.

3. Definition of a subclass of JFrame. Students see a
declaration and use of two methods: a function to com-
pute the area of a JFrame window and a function to
make its width equal to its height.

Lab 2. Write similar methods in the lab.

4. Fields, getter/setter methods, JUnit testing.

5. Static variables, the class hierarchy, class Object.

Lab 3. Practice with static variables and JUnit testing.

This ends the pure structure/organization part, and a
thorough study of the procedural aspect ensues, includ-
ing the steps in executing a method call (like drawing a
frame or activation record for the call).

Interspersed in these lectures on the procedural as-
pect will be sublectures on constructors in subclasses,
overriding, the inside-out rule, this and super, method
equals, casting, and operator instanceof.

By the end of lecture 11, all aspects of OO that we
teach have been introduced.

The first programming assignment, due 2.5 weeks
into the course, is to right a class that maintains infor-
mation about rhinos —name, birth date, whether tagged
or not, who their mother and father are, if known (as
rhino objects). They right getter/setter methods, con-
structors, and comparison functions, e.g. to see whether
one rhino is older than other. Only the assignment and
return statements may be used —no conditional expres-
sions.

References
[a] Westin, L.K., and M. Nordstrom. Teaching OO con-
cepts —a new approach. ASEE/IEEE Frontiers in Edu-
cation Conf., 20-23 Oct., Savannah, GA. F3C-6-11.

[b] Becker, B. Pedagogies for teaching CS1 with Java.
http://www.cs.uwaterloo.ca/~bwbecker/papers/javaPeda
gogies.pdf.

[c] Colburn, T., and Gary Shute. Abstraction in com-
puter science. Minds and Machines 17, 2 (July 2007),
169-184.

[d] Burg, J., and S. Thomas. Computer science: from
abstraction to invention. www.cs.wfu.edu/~burg/ pa-
pers/AbstractionToInvention.pdf

[e] Gunther, Gortz. Abstraction as a fundamental con-
cept in teaching computer science. www8.informatik.
uni-erlangen.de/ IMMD8/staff/Goerz/rennesa.ps.gz.

[f] Denning, P., et al. Computing as a discipline. CACM
22, 2 (Feb 1989), 63-70.

[g] Backus, J.W., et al. Revised report on the algo-
rithmic language Algol 60. CACM 6, 1 (Jan 1963), 1–
17.

[h] Caspersen, M.E. Educating Novices in the Skills of
Programming. PhD Dissertation, Computer Science,
University of Aarhus, Denmark, June 2007.

[i] Astrachan, O., et. al. Resolved: objects early has
failed. Debate at SIGCSE 2005.

[j] Bruce, K. Controversy on how to teach CS1: A
discussion on the SIGCSE-members mailing list.
Inroads (Dec 2004).

[k] Gries, D., and P. Gries. Multimedia Introduction to
Programming Using Java. Springer Verlag, NY. 2005.

