Formalizations Of Substitution Of Equals For Equals

David Gries *and Fred B. Schneider
Computer Science Department, Cornell University
Ithaca, New York 14853 USA

May 27, 1998

Abstract. Inference rule “substitution of equals for equals” has been formalized in terms
of simple substitution (which performs a replacement even though a free occurrence of
a variable is captured), contextual substitution (which prevents such capture), and func-
tion application. We show that in connection with pure first-order predicate calculus, the
function-application and no-capture versions of the inference rule are the same and are
weaker than the capture version. We discuss the deductive apparatus needed for the no-
capture version to be as powerful as the capture version.

1 Introduction

About three hundred years ago, Gottfried Wilhelm Leibniz introduced the following char-
acterization of equality (see e.g. [5]):

Two terms are the same (eadem) if one can be substituted for the other without
altering the truth of any statement (salva veritate). If we have P and @, and P
enters into some true proposition, and the substitution of ) for P wherever it
appears results in a new proposition that is likewise true, and if this can be done
for every proposition, then P and @ are said to be the same; and conversely, if
P and @ are the same, they can be substituted for one another as I have said.

In [2], Church proves that the following formulation of one-half of Leibniz’s characterization
of equality holds in pure predicate calculus F1:

(1) Substitution of equals for equals: If S results from R by substitution of @ for
P at one or more places in R (not necessarily at all occurrences of P in R), and if
FP=Q,then FR=S.

* Supported by NSF grant CDA-9214957.

 Supported in part by ARPA/RADC grant F30602-96-1-0317 and AFOSR grant F49620-94-1-0198. The
views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of these organizations or the
U.S. Government.




Since then, (1) has become a cornerstone of calculational formulations of logic (see e.g. [3, 6]),
so named because a formalization of (1) is the central inference rule. However, differing
formalizations of (1) have been used. One [3] is in terms of function application, another [7]
is in terms of substitution that doesn’t avoid capture of free occurrences of variables, and a
third is in terms of substitution that does avoid such capture [6]. This article explores the
relation between these three formalizations.

In Sect. 2, we present Church’s first-order logic F1 [2] and define two different notions of
substitution as well as the first formalization of (1), called Leibniz. In Sect. 3, we introduce
introduce logic LF, which includes Leibniz as an inference rule, and prove that F1 and LF
have the same theorems.

In Sect. 4, we give two other formulations of (1), Leibniz-FA (for Function Application)
and Leibniz-CS (for Contextual Substitution), and argue that they are just different nota-
tions for the same thing. We then construct logic CSF from LF by replacing Leibniz with
Leibniz-CS and prove that some theorems of LF are not theorems of CSF, establishing that,
in the context of pure first-order predicate calculus, Leibniz-CS is weaker than Leibniz. In
Sect. 5, we describe two ways to extend CSF to give Leibniz-CS (and thus Leibniz-FA) the
same power as Leibniz.

2 Church’s F1

Terminology from Church [2] will be used. We use p,q,r for propositional variables;
v,x,y,z for individual variables; c¢,cy,co, ... for individual variables or constants; f,g for
functional variables or constants; and A, B,C,D,FE,P,Q,R,S,V for syntactical variables
(which denote formulas).

Formulas (i.e. wifs) are formed according to the following rules.

1. A propositional variable is a wif.

2. For f an n-ary functional variable or functional constant and cy,...,c, individual
variables or individual constants or both (not necessarily all different), f(ci,...,cn)
is a wif. If f is l-ary, we depart from Church’s notation and write f.c instead of

fle).
3. For P awff, =P is a wff.
4. For P and @ wifs, (P = Q) is a wif.

5. For P a wif and z an individual variable, (Vz)P is a wif. Variable z is the dummy
of (Vz)P. We abbreviate (Vz)P by (z)P (as does Church [2]).

An occurrence of individual variable x is bound in formula P iff the occurrence is within
a subformula of P of the form (x)Q ; otherwise, the occurrence of x is free in P .



Precedence conventions allow the elimination of some parentheses. Our order of prece-
dence, with the highest first, is: substitution operators (see below); the prefix operators
negation — and quantification (z); V and A; = and <;and = and #.

We use the following abbreviations:

Consequence: P < @ is Q = P

Disjunction: PV Q is (P = Q) = Q
Conjunction: P A Q is —(=P V =Q)
Equivalence: P = Q is (P = Q) A (Q = P)
Inequivalence: P # @ is -(P = Q)

Truth: true is p = p

Falsity: false is —true

An abbreviation can always be replaced by the formula that it abbreviates, and vice
versa, e.g. (z)(fx V p) can be replaced by (z)((f.x = p) = p). Such a replacement
is done at the “metalevel”. That is, in logic F1, to be introduced later, (z)(f.x V p) and
(z)((f.x = p) = p) are the same formula, so that theorem (z)(f.x V p) = (z)((f.x =
p) = p) of F1 is an instance of Reflexivity of =, P = P. Frequently, the distinction
between the logic and the metalevel is blurred, but in this paper it is necessary to recognize
the distinction.

In formalizing (1), we need a notation for expressing the substitution of @ for P in a
formula R. For this purpose, we introduce the notion of a placeholder for a formula. A
formula scheme R® is a formula R in which some its subformulas may have been denoted
by placeholder «. For example, R* could be (P V @) A Q. The notation RE then
denotes formula scheme R® with « replaced by S. For example, ((P V a) A Q)% is
(PVS)AQ,and ((z)(aV P))f, is (z)(fx Vv P).

Note that a formula scheme R is not a formula; it becomes a formula only when all
occurrences of its placeholder are replaced by a formula, as in R% .

Using a placeholder, we can formalize Substitution of equals for equals (1) as the following
inference rule?! :

FP =Q —>I—R§§ER5

We use the term contextual substitution to describe the replacement of a propositional
variable in a formula by a formula in a way that avoids capture of free variables.

(2) Contextual substitution: For p a propositional variable and P,Q formulas,
P[p := Q] denotes a copy of P in which all occurrences of p are replaced by @, but
with dummies renamed to avoid capture. We define P[p := Q] recursively as follows.

1 An inference rule + P;,...,- P, — F Q means: if Py, ..., P, are theorems (of the logic under

. . . . . P
consideration), then so is @ . We also write such an inference rule as o)



plp:=Q] is Q

glp:=Q] is ¢ for ¢ a propositional constant or variable different from p
¢p:=Q] is ¢ for ¢ an individual variable or constant
(fler,..yen))p:=Q] is fl(e1,-.-.¢n)

(=P)lp:=Q] is ~(P[p:=Q])

(P = R)p:=Q) is Plp:=Q] = Rp:=Q]

(2)P)lp:=Q] 1is (2)(Plp:=Q]) if z does not occur free in @
(Z)P)p:=Q] is ((W)(Plz:=y]))p:=@Q] if 2z occurs free in Q,

where y does not occur free in P or @

Church [2] presents the following first-order predicate logic F'1, consisting of two inference
rules and five axioms. Inference rule (3) and axioms (4)—(6) form the propositional part
of the logic. Since the axioms contain syntactical variables, they are really axiom schemes,
which stand for all the axioms constructed by replacing the syntactical variables by formulas.
In the same fashion, proofs of theorems in F1 are really proofs of theorem schemes.

(3) Modus Ponens: FP = Q, FP — FQ

(4) Axiom Affirmation of the Consequent: P = (Q = P)

(5) Axiom = over =: (P = (Q = R)) = (P = @) = (P = R))
(6) Axiom Contrapositive: (-P = -Q) = (Q = P)

(7) Generalization: F P — F (2)P

(8) Axiom = over V: (z)(P = Q) = (P = (2)Q)

for x an individual variable that doesn’t occur free in P
(9) Axiom Instantiation: (z)P = Pz := (]

for z an individual variable and ¢ an individual variable or constant

3 Calculational logic LF

Below, we present calculational logic LF, with propositional part (10)-(23). LF contains
Leibniz (10) as its formalization of (1). Logic LF has more axioms than F1 because LF does
not rely on abbreviations to introduce operators beyond = .

(10) Leibniz: WP = @ — FRp = R}

(11) Transitivity of =: FP = Q,+FQ = R — FP =R
(12) Equanimity: FP,FP = Q — +Q

(13) Axiom Associativity of =: (P=Q)=R) = (P=(Q =R))
(14) Axiom Symmetry of =: P=Q = Q=P

(15) Axiom Identity of =: true = P = P

(16) Axiom - over =: (P = Q) = -P = @



Axiom Golden rule: PAQ = P = @ =

Axiom Implication: P = Q@ = PV Q

Generalization: - P — F (z)P

Axiom = over V: (z)(fx V -fxz = (P = Q)) = (P = (@)(fzV ~fz = Q))
for z an individual variable that doesn’t occur free in P

(26) Axiom Instantiation: (z)(f.z V ~f.z = P) = Pz :=(|

for an individual variable z and individual variable or constant ¢,

(17) Axiom Associativity of V: (PV Q) VR = PV (Q V R)
(18) Axiom Symmetry of V:PV Q = QV P

(19) Axiom Idempotency of V: PV P = P

(20) Axiom V over =: PV (Q = R)=PVvQ@=PVR
(21) Axiom Excluded middle: P V =P = true

(22) v aQ

(23)

(24)

(25)

where P does not contain a free occurrence of f

Axioms = over V (25) and Instantiation (26) are obtained from axioms of the same
names in logic F1 by replacing subformulas of the form (z)R by (z)(f.x V -fx = R).
The change to these more complicated axioms is what allows us to prove, later on, that
Leibniz-CS (30) is weaker than Leibniz (10).

Logic LF is designed to support a calculational style of proof. To illustrate, in Fig. 1 we
prove Frp (9) = (26), i.e. we prove that (27) is a theorem of LF.

(27) (z)P = Plz:=¢ = (z)(fx V ~fax = P) = Plx:=(

Each of the two equivalences in the proof, broken across three lines, is a consequence of
an instance of inference rule Leibniz (10), and the premise of that inference rule is given
as an indented hint on the middle line (containing =). For example, the first three lines
prove (Vz)(f.xV ~fax = P) = Plx:=¢ = (Vz)(true = P) = Pz := ¢] because
it is the conclusion of an instance of Leibniz (10) whose premise is Excluded middle (21).
Transitivity of = (11) is used to conclude that the first and last formulas in this proof

(2)(fxV-fx = P) = Plz:=
(Excluded middle (21))

(x)((true = P) = Plz:=]
)

true = Q = @ (a theorem of LF))
(z)P = Plx:=|

Figure 1: Proof of Frr (9) = (26)




format are equivalent. In the proof, we use Symmetry of = without explicit mention.
(28) Theorem. F1 and LF have the same theorems.

Proof. We show that the axioms of one are theorems of the other and the inference rules of
one are (perhaps derived) inference rules of the other.

Church [2] introduces a propositional logic P1 and proves that P1 and the propositional
part of F1 (i.e. (3)-(6)) have the same theorems and (derived) inference rules. In [7] %, we
prove that the propositional part of logic LF (i.e. (10)—(23)) has the same theorems and
(derived) inference rules as P1. Hence, we conclude that the propositional parts of F1 and
LF have the same (derived) inference rules and theorems.

Now for the non-propositional parts of F1 ((7)—(9)) and LF ((24)-(26)). First, General-
ization is an inference rule of both logics.

Second, consider Instantiation axioms (9) and (26). The proof given above proves kg
(9) = (26) . Since the inference rules and theorems used in the proof are (derived) inference
rules and theorems of F1, also Fp; (9) = (26) . By Equanimity (12) —a (derived) inference
rule of both logics— (9) and (26) are theorems of both logics.

Finally, in the same fashion, we can prove that the axioms named = over V in F1 and
LF are theorems of F1 and LF. O

4 Calculational logic CSF

We now give two other formalizations of Substitution of equals for equals (1). Leibniz-
FA (29), introduced and used by Dijkstra and Scholten in [3]®, is in terms of function
application. Leibniz-FA asserts that two applications (of the same function) with equivalent
arguments give equivalent results.

(29) Leibniz-FA: FP = Q — + f.P = f.Q

Note that f.P isnot a formula of F1 or LF (arguments of f must be individual variables
or constants), so we look for another way to express this inference rule. We can view a
function as a lambda expression (Ap.E) . Function application (Ap.E).P is conventionally
defined to have the same value as the formula E[p := P] —this definition is called
-conversion (see e.g. [1]). Hence, Leibniz-FA (29) can be rewritten as:

(30) Leibniz-CS: FP = Q — F E[p:=P] = E[p:=(Q]

2 The calculational propositional logic in [7] is not exactly the same as the calculational part of LF, but
it is readily seen to be equivalent to it.

3 Actually, monograph [3] presents the formula [P = Q] = [f.P = f.Q], where “[E]” has the interpre-
tation “ E is everywhere true”, but then uses this implication as if it were an inference rule.



Moreover, any formula E can be abstracted to a function (Ap.E) of one of its proposi-
tional variables, so we could write E[p := P] as the function application (Ap.E).P . Hence,
we can view Leibniz-FA (29) and Leibniz-CS (30) as equivalent.

Note that Leibniz-FA (29) is an instance of Leibniz (10) —Leibniz-FA is Leibniz with
formula R replaced by f.a. Hence Leibniz is at least as powerful as Leibniz-FA (and thus
Leibniz-CS (30)). We want to prove that, in the context of pure first-order logic, Leibniz is
indeed more powerful than Leibniz-FA and Leibniz-CS.

To that end, consider a new logic CSF, which is LF with Leibniz (10) replaced by
Leibniz-CS (30). Observe that the proof of (27) on p. 5 is not a CSF-proof because the first
substitution-step,

(2)(fxV-fax = P) = Plz:=1y]
(Excluded middle (21)) (Step is incorrect in CSF)
(z)(true = P) = Pz :=1y]

is incorrect. Why? Well, this step is supposed to follow from inference rule
fx VvV -fx = true
()(fxV-fx = P) = Plx:=y] = (z)(true = P) = Pz :=y)]
which, written as an instance of Leibniz-CS, would have to be something like
fax VvV fax = true
Elp:= faxVv-fx] = Elp:= true]

where E is (z)(p = P) = Pz :=y]. But the contextual substitution E[p:= f.xV —f.z]
does not yield the desired result because dummy z must be changed before the contextual
substitution can be carried out.

Moreover, one is led to suspect that Instantiation (9) is not even a theorem of CSF for the
following reason. In CSF, all quantifications in the axioms have the form (z)(f.z V -f.x =
P), and inference rule Leibniz-CS cannot be used to change f.z V =f.z in the body of such
quantifications without changing dummy z first. We can indeed prove that Instantiation
(9) is not a theorem of CSF. Our proof rests on the following theorem.

(31) Theorem. Suppose formula scheme S* doesn’t contain “(z)f.x” for an individual
variable x . If Fogp S(O;) = then Fcgp S{'} .

Proof. We prove the theorem [ﬁy induction on the length of the proof of a formula S(O;) foo

Base case. For a proof that requires 0 inference steps, S(“z Vo is an instance of one of the

axioms (13)—(23), (25)—(26). We prove this case for axiom (26); the rest are similar.

Stype 18 (@)(fx V ofa = P) = Plz:=| for some formula P. Observe that each
occurrence of the subformula (z)f.z in this formula lies entirely within P.* Hence, we

4 This observation is critical. The base case would not hold if, for example, (z)P = P[z := c] were an
axiom of CSF, because replacing P by f.x would yield (z)f.x = (fx)lx:=c] and V = (f.z)lz =]
is not valid.



can write S¢,. . as (z)(fx V ~fx = Pgy;.) = Fg); [z =, where P* does not
contain (z)f.x. But then S is (z)(f.x V -fax = PJ) = PJ[x := c| and, since this
formula is an instance of (26), it is an axiom, so Fcsr S§

Inductive case. Consider an arbitrary formula schema S for which a proof of S(z) o
requires at least one inference rule. We investigate the four possibilities for the last inference
rule of the proof.

Case Generalization + P("‘ . — F )P(a) . Here, S is (y)P*. Since P( V.o
is proved earlier in the proof, by the induction hypothes1s F Py . Then, by Generahzatlon

F(y)Py,ie FST.
Case Equanimity F Q?Z)f.z,l— Q?Z)f.z = S(@‘;)f‘z — F S&)f.z. Assume that Q¢
does not contain occurrences of (z)f.z (otherwise, replace them by a). Since Qf,, ., and

Q(z)f . = S(z)f.z are proved earlier in the proof, by the induction hypothesis, F Q¢ and
= Sy . Hence, by Equanimity, - 5% .

Case Transitivity F P‘;)f_x = Q‘()‘m)f_z, F Q‘(Xz)f.x = R?x)f_z — F P(x)fz = Rf‘m)f_z .

Here, S® is P = R*. Assume that Qo‘ does not contain occurrences of (z)f.z (otherwise,

replace them by « ). Since P(z)fz = )f , and Q(z)fz = R( .o Are proved earlier in the

proof, by the induction hypothesis, F =Qy and FQy = }2 Hence, by Transitivity,

F Py =Ry ,ie FSy.

Case Leibniz-CS F P=Q — | E[p:= P] = E[p:= Q]. Here, S(o; Vo 1S Elp :=
P] = E[p:= Q]. We have to determine S*. Every occurrence of (z)f.x in the conclusion

is contained wholly in one of E, P, and ) —e.g. an occurrence could not have been
formed by having P be f.r and having E contain (z)p, because ((x)p)[p := f.z] is
(y)f.x and not (z)f.x. Therefore, we can rewrite the inference rule being applied in this
case as follows. Let E*, P*, and Q“ be E, P and @ with every occurrence of (z)f.x
replaced by «, so that E* is E& Vo and similarly for P and @ . Then, the inference
rule is

F PG e = Qs
F By palp = Py el = EGypalp = Q)]

which can be written as:

Poyre = Qyse
H(E[p:=P*] = E%[p:= Q°])(,s

so S* is E%[p := P*] = E%[p := Q° ] Since P& ;. = Qs is proved earlier in the
proof, by the induction hypothesis, - P = Qf; , so by Leibniz-CS, 57 . O

(32) Corollary. There is a theorem of LF that is not a theorem of CSF.

Proof. V. = f.y is not valid and is thus not a theorem of CSF, so, by the contrapositive
of theorem (31), (z)f.x = f.y is not a theorem of CSF. Since (z)f.z = f.y is a theorem
of LF, the theorem follows. O



5 Extending CSF

We have shown that Leibniz-CS (30) and its equivalent Leibniz-FA (29) are weaker than
Leibniz (10) in the context of a pure predicate logic. With additional apparatus, however,
all three rules can have the same power.

Perhaps the simplest way to extend CSF so that Leibniz (10) and Leibniz-FA (29) have
the same power is to use a formulation of Leibniz-FA that caters to the replacement of
functions, as defined in Church [2, p. 192].% Informally, this kind of substitution calls for
replacing function applications by the body of the function, with the parameters of the
function replaced by the arguments of the application. For a function f(z) with body E
the value of a function application f.y is Efz := y]. Thus, Church defines contextual
substitution for a function as follows (but using our notation).

Let f be an n-ary functional variable, z be a list z1,...,z, of distinct individual
variables (the parameters of f ), and E be a formula. The notation P[f(z):= E] denotes
a copy of P in which each (and every) function application f.y (for y alist y1,...,y, of
individual variables/constants) is replaced by E[x := y] —with two restrictions that ensure
that no capture takes place during the substitution.

1. If E contains a free occurrence of an individual variable y (that is not in parameter

list z), then no subformula (y)S of P may contain f.°

2. If a function application f.y occursin P and if E contains a subformula (y1)Q for
y1l an individual variable in list 4, then ) may not contain a free occurrence of a
variable in list z .7

We replace Leibniz-CS (30) in logic CSF by the following;:
(33) Leibniz-FA': P = Q — F E[f(z):=P] = E[f(z) := Q)]

Relying on the theorem P = f.xV -f.x = P, we can prove (9) = (26) using the single
instance of (33) given below, where ¢ is chosen so as not to occur in P .

P = faVv-fax =P
((x)g.z = Plz :=c])[g(z) := P] = ((z)(g.x) = Plz :=])[g(z) := fxV-fax = P]

A second method has the same effect but is more tortuous to use. Admit lambda terms
(e.g. (Ap.E)) as terms within formulas, introduce = as a 2-ary function (written as an infix
operator), introduce contextual substitution for individual variables and function variables
as well as propositional variables, and generalize all three Leibniz inference rules to allow

5 We are indebted to Vladimir Lifschitz for this observation.

6 This restriction avoids the capture that would happen in the substitution ((y)f.z)[f(z) := g.y], which
would yield (y)(g.y) .

7 This restriction avoids the capture that would happen in the substitution (f.y)[f(z) := (y)g.z], which
would yield (y)(g.y) .



substitution for equal lambda terms. Then use the following axioms concerning equality
of lambda terms as well as conventional 3-conversion (below, ¢ is a functional variable,
functional constant, or lambda term):

(34) Extensionality: FP=Q — F (Ap.P) = (A\p.Q)
FP=Q — F(z.P)=(\z.Q)
FP=Q — F(\f.P)=()\.Q)
(35) pB-conversion: (Ag.P).QQ is Plg:= Q)
(Ax.P).c is Plz:=]
(A\f.P).g is P[f:=g]

The proof of the following theorem eliminates the need to replace a subformula that
contains a bound variable by lifting the subformula to a function application and replacing
the function instead .

(36) Theorem. Leibniz (10) is a derived inference rule in any extension of CSF that
includes Extensionality (34) and 3-conversion (35).

Proof. We assume + P = @ and prove - Rp = R Let f be a fresh functional variable
(it does not appear in R, P, or @), and let v be the list of individual variables that
occur free in P or @ . Since H P = @, by Extensionality (34), F (Av.P) = (M.Q). We
calculate:

Rp
(Property of contextual substitution: Plv:=wv] is P)

R(Ixj[v::v]
(B-conversion (35))
RZXAW.P)AJ
((M.P) = (M.Q) (see text that precedes this calculation)
— (Av.P) and (Av.Q) contain no free variables)
R0
(B-conversion (35))
RG]
(Property of contextual substitution: Q[v:=0v] is Q)
R3) O

The proof given above obscures an important point. The middle step of the proof uses
Leibniz-CS (30), but the two steps involving 3-conversion are at the meta-level, because 3
-conversion is an abbreviation. Thus, this proof uses substitution at two levels, and they
are different kinds of substitution —Leibniz (10) is used at the metalevel and Leibniz-CS
(30) is used in the logic itself.

& We are indebted to Rutger Dijkstra [4] for introducing us to this technique.

10



Suppose we wrote [S-conversion as an axiom instead of as an abbreviation:
(37) Axiom: (M\p.P).Q = Plp:= Q)]

Now the second step in the proof above could not have been carried out using Leibniz-CS
(30) because the subformula being replaced, Plv := v], contains free occurrences of the
variables in list v, and some of these might be bound in R%,.—y) - Thus, our proof of (36)
depends critically on B-conversion being an abbreviation instead of an axiom.

6 Discussion

Whether one uses Leibniz (10), Leibniz-FA’ (33), or Leibniz-FA (29) (with the additional
apparatus mentioned above) is perhaps a matter of background and taste. We are drawn
to Leibniz for the following reasons. First, Leibniz is a far simpler to use than the two
alternatives. Second, Leibniz (10) is needed at the metalevel —if it is formalized— for
abbreviations. Having Leibniz as an inference rule within the logic lets us do the same kind
of substitution at both levels, allowing the distinction between the two levels to recede —as
is commonly done anyway.

Acknowledgements

We are indebted in particular to Rutger Dijkstra, who gave us several insightful comments
over the years, and to Valdimir Lifschitz for pointing us to the use of Church’s substitution
for functions. Thanks also to Roland Backhouse and Rick Aaron for useful comments on
previous drafts of this paper.

References

[1] Barendregt, H.P. The Lambda Calculus, its Syntax and Semantics. North-Holland, Am-
sterdam, 1984.

[2] Church, A. Introduction to Mathematical Logic. Princeton University Press, Princeton,
1956.

[3] Dijkstra, E.W., and C.S. Scholten. Predicate Calculus and Program Semantics. Springer
Verlag, NY, 1990.

[4] Dijkstra, R.M. Private communication, 18 December 1996.

[5] Gerhardt, K.I., (ed.). Die Philosophishen Schriften von G.W. Leibniz, Band VII, “Sci-
entific Generalis. Characteristica”, XIX and XX. Weidmannshe Buchh., Berlin, 1887.

11



[6] Gries, D., and F.B. Schneider. A Logical Approach to Discrete Math. Springer Verlag,
NY, 1993.

[7] Gries, D., and F.B. Schneider. Equational propositional logic. IPL 53 (1995), 145-152.

12



