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Abstract. We formalize the notion of underspecification as a means of avoiding problems
with partial functions in modal logic S5 and some semantically related logics. For these
logics, underspecification respects validity, so incorporating it into their semantics leaves
their classes of valid formulae unchanged.

1 Introduction

Gries and Schneider [4] suggest avoiding problems with partial operations and functions
using underspecification. All operations and functions are assumed to be defined for all
values of their operands, but the value assigned to an expression need not be uniquely
specified in all cases. For example, consider division /, which has type R x R — R. With
underspecification, 5/0 evaluates to a real number, but which one it is remains unspecified
—and it is impossible to determine its value. Similarly, 5/0 = /0 is unspecified.

Thus, any type-correct operation or function is total, but it may be unspecified for some
arguments.

Since 5/0 is defined (but unspecified), 5/0 = 5/0 evaluates to true. Therefore, some
expressions can be evaluated even if their operands are unspecified. Underspecification can
be handled in the logic by guarding each axiom and theorem (when necessary). For example,
the law y/y =1 holds iff y # 0, so the law is expressed as y #0 = y/y=1.

In [5], Gries and Schneider investigate propositional logic together with the everywhere
operator o, where oP means “P is true everywhere”. They argue that modal logic S5
(see e.g. [6]) is a suitable such logic, where oP is usually called “necessarily P ”. But they
also show that S5 is incomplete with respect to the single model consisting of the set of all
states and introduce an extension C of S5 that is complete. In this paper, we formalize the
notion of underspecification in terms of the S5 and C models and show that these models
respect validity.

We use the notation for quantification and rules for manipulating quantifications of [2].

1 Supported by NSF grant GER-9454149.
2 Supported by NSF grants CDA-9214957 and CCR-9503319.



Table 1: Table of abbreviations

aApB: —(-aV -p) true: p = p
a=p: —aVy false : —true
a=0: (a=>p AL =a) oa: —oa

2 Underspecification for S5

Let VP be a set of propositional variables. We use lower-case letters p,q,r,... for
elements of VP . A formula of S5 has one of the following forms ( p is any variable in VP,
and metavariables «, § stand for formulas).

W p» (o) (aVvp)  (s0)

In addition, (a A B), (@ = 8), (a = B), (o), true, and false are abbreviations of
certain formulas, as shown in Table 1. (Operator ¢ is read as “possibly” or “somewhere”.)
Precedences eliminate the need for some parentheses; prefix operators —, o, and ¢ bind
tightest, then V and A, then =, and finally =.

A formula of S5 that contains neither o nor ¢ is called a propositional formula.

(2) Definition. An S5 model? is a pair (V,W) where W is a non-empty set of worlds
and wvaluation function V. on W satisfies V.w.p =t or V.iw.p = f for all worlds w
and variables p.

Evaluation ev.V.w.aw of a formula « in a world w in an S5 model (V,W) is defined as
follows. In this definition and throughout the paper, when not explicitly given, the range of
dummy w is the set W of worlds.

(3) ev.V.aw.p = Vawp
ev.Vw.~«a = t iff ev.Vwa=f£f
= f iff ev.Vwa=t
evVw.(a Vv p) = t iff ev.Vwa=torevVwp=t
= f iff ev.Vw.a=fandev.Vw.pg="~f
ev.V.aw.oa = t iff (Vwl: ev.Viaw.a =1t)

= f iff (Gwl: ev.Vaw.a=1)
In the last three cases of the definition, the two subcases are mutually exclusive.

A formula ¢ is S5-valid, denoted by f=g5 ¢, iff ev.Viw.¢ =t for all S5 models (V, W)
and worlds w in W .

3 Some treatments of S5 define a model to be triple (W,R,V), where W and V are as defined above
and accessibility relation R on W is an equivalence relation, which is used in the semantics of operator o
and the description of S5-validity. Hughes and Cresswell [6] argue that the two definitions are equivalent.



In S5 models, evaluation of any expression results in a truth value. We now define S5U
models, which permit underspecification. We use the three symbols t, f, and u, where u
denotes “not specified” and t, f denote truth values in the expected way. Alternatively,
think of u as the set {t,f}. If an expression evaluates to {t,f}, then its value is either t
or f, but it is not known which it is. Note that u is not a symbol of the language, and it
may not appear in expressions.

(4) Definition. An S5U model is a pair (V,W) where W is a non-empty set of worlds
and valuation function V on W satisfies V.w.p=t, V.wp=1f, or Vw.p =u for
all worlds w and variables p.

We define some properties of models and valuations. Valuation V on W is full iff for
all w in W and all propositional variables p, V.wp =1t or V.w.p =f. For a given W,
let F'V denote the set of all full valuations on W . We say that a model (V,W) is full iff
V is full on W . Hence, the set of S5 models equals the set of full S5U models.

We can extend an unfull model (V,W) and its unfull valuation V' to ones that are full.

(5) Definition. A full extension of a model (V,W) isamodel (V',W) where V' satisfies
the following:

1. V'isfullon W: VeFV,

2. Vwp=t=V'wp=t and Vwp=f=V'wp=1 forall win W and
variables p.

We call any such V' a full extension of V. on W, and we denote the set of all such V' by
FX.V . This enables us to concisely formalize properties such as the following three.

A full-extension valuation is full:
(6) FX.VCFV
A valuation is full exactly when it is a full extension of itself:
() VeFV=VeFXV
A full valuation has exactly one full extension, itself:
(8) VeFV=(V'=V=V'eFX.V)
We now define evaluation evu.V.w.¢ in an S5U model (V,W) for a world we W and

a formula ¢ . This definition is supposed to mean that evu.V.w.¢ =t iff evu.V'.w.¢ =t
in all full extensions V' of V (and similarly for f). However, it is easier to define evu



in terms of ev and then prove that the definition of evu has the desired property. In the
definition of evu , note that ev is applied only to full valuations.

(9) evu.Vw.¢g = t iff VW IV eFX.V:ev.V w.¢=t)
= f iff W IV eFX.V:ev.V w.¢="1)
= u otherwise

A formula ¢ is S5U-valid, denoted by |=gsu ¢, iff evu.Viw.¢g = t for all S5U models
(V,W) and worlds w in W .

We now prove three simple lemmas about ev and evu . The first says that ev and evu
agree on full models. The second proves the desired property of evu (stated before the
definition of evu ). And the third is a technical lemma, which will be used shortly.

(10) Lemma of Agreement (of ev and evu). For a set W of worlds, valuation
VeFV,world w in W, and formula ¢, ev.V.w.¢ = evu.V.w.¢.

Proof. Since V is full, function evu yields only t or f, so the third case of definition (9),
the “otherwise” condition, can be ignored. Secondly, since V € F'V | the quantifications in
the definition of evu can be simplified as follows: Using L for f or t, we have

(VV' I V' eFX.V:ev.V'w.¢ =L)

((8) —V eFV)
VMV IV =V ievV'iw.¢=1L)

(One-point rule: Provided z not free in E, (Vz | x = E : P) = P[z := E])
ev.Vw.eo =1L

Hence, the definition of evu.V.w.¢ reduces to ev.Viw.¢ O

(11) Lemma. A formula ¢ has a value in a given world of an S5U model exactly when
¢ has that value in that world in all full extensions of the model: for L in {t,f},
evuVwdp=L = YW | V' e FX.V:evuV'w.¢ =L).

Proof. V' I V' eFX.V :evu.V'.w.¢ = L)
= (V' is full; use Lemma of Agreement (10))
(VV' I V'eFX.V:ev.V' w.¢ = L)
= (Definition (9) of evu )
evu.Vw.¢g =L O

(12) Lemma. For arbitrary set W of worlds and valuation V on W, w in W, and
unary predicate P in which V' does not appear free, (VV', V | Ve FX.V : PV') =
(VW' | V' e FV : PV').

Proof. The proof is by mutual implication.



WV, V| V' e FX.V : P.V) (W' | V' e FV : P.V')

= (Instantiation, with V :=V") = (Introduce V')
VYV | V' e FX.V': PV") WV, V | V' e FV : PV)

= (), V'eFX.V'=V'eFV) = (Antimonotonicity: (6), FX.V C FV')
YV | V' e FV : PV') (YWV',V I V' e FX.V : PV O

We now have the machinery to prove our main result about S5-validity, that we can use
S5 in the standard way even if we treat our possible models as the set of S5U models. We
can reason about partial functions without sacrificing any of S5.

(13) Theorem. For any formula ¢, f=g5 ¢ iff =g5u ¢ -

Proof. We begin with the definition of validity over S5 models and conclude with the
definition of validity over S5U models. We take arbitrary set W of worlds and world w in
W and assume V ranges over possible valuations on W . In the definition of validity over
S5 models, we make explicit the restriction that only full valuations are considered.

(VW' I V' eFV :ev.V' w.¢ =t)
= (Lemma of agreement (10))
VWV I V' eFV :evuV'.w.¢ =t)
=  {((12), W' |V'eFV:PV') = (YW, V | V' e FX.V: PV"))
(VW V IV eFX.V :evu.V' weg=1t)
= (Nesting)
(VVI: (VW : V' e FX.V : evu.V'w.¢p = t))
= ((11), evuVawgp=L = VW | V' e FX.V :evuV'.w.¢=1L)
with L :=t)
YV I: evu.Vaw.¢p = t) O

(14) Corollary. All S5 axioms are valid in S5U. More precisely, since all axioms of S5 are
valid over S5 models, they are valid over S5U models.

(15) Corollary. All inference rules of S5 are sound over S5U.

3 Underspecification for C

In [5], Gries and Schneider present a sound and complete logic C (after Carnap) for proposi-
tional formulas together with o for the model consisting of the conventional set of states. In
this section, we do for C what we did in the last section for S5, prove that underspecification
respects C-validity.

(16) Definition. Let W be the set of all total functions w : VP — {t,f}. Define a
valuation V on W by V.w.p=w.p. Then, (V,W) is the (only) C model.



(17) Definition. Let WU be the set of all functions w : VP — {t,f,u}, and define
valuation VU on WU by VU.w.p = w.p. Then, (VU,WU) is the (only) CU
model.

A formula ¢ is C-valid, denoted by ¢ ¢, 1ff ev.V w. ¢ =t for all w i in W. A formula
¢ is CU-valid, denoted by Ecu ¢, iff evu. VU .w. ¢=1t forall w in WU .

To prove the correspondence between the C and CU models, we need a way to relate
evaluation of formulas over WU to their evaluations over W, to effectively collapse the
larger model into the smaller one. Observe that, by deﬁmtlon W under V consists of
states, i.e. assignments to variables; the same is true for WU under any full extension of
VU For any world w in W and any V' in FX. VU let D.w be the set of all worlds in
WU that are the same under V' as w is under V :

(18) Definition. For V' in FX.VU and w in W, define D.w by w' e Dw =w' e WU A
Vw=V"aw.

Since V' is full, every w’' in WU isin D.w for some w in_ W.In fact, the collection of
sets D.w is a partitioning of WU since no two worlds in W are 1dent1cal We have:

(19) Collapsing Lemma. For all V' e FX.VU, formulas ¢, w in W,and w' in Dw,
ev.Vwo=ev.V'w.¢.

Proof. For an arbitrary V' in FX VU , we prove the lemma by induction on the structure
of ¢. In the cases in which ¢ is a variable, a negation, or a disjunction, the proofs
follow straightforwardly from choosing an arbitrary w and w' and are left to the reader.
The remaining case ¢ = oa itself has two similar subcases; we present only the subcase
ev.V.w.oa = t. For arbitrary w in W and w' in D.w, we have:

ev.V'w'.oa=1t
(Definition (3) of ev)
(Vw' | w' e WU :ev.V'w'a = t)
= (The sets D.w partition V[//E')
(Vw' | (Gw | w eW eDw):ev.V'w.a=t)
= (Trading; 3z | R:P) = Q=(Vz|R:P = @Q),if = not freein Q)
(V' |: (Vw lweW 1w e Daw = ev.V'w'.a =t))
= (Trading; Inductive Hypothesis)
(Vw'|: Vw | we WAweDw:ev.Vawa= t))
= (Predicate calculus, w' does not occur free in ev.V.w.a =t)
(Vw | we W:ev.Vawa= t)
= (Definition (3) of ev)
ev.V.woa =t o



We can now prove:
(20) Theorem. For any formula ¢, =c ¢ iff Fcy ¢.

We begin with the definition of CU-validity and show it equivalent to the definition of
C-validity. For arbitrary ¢, we have:

(Vw' | w' e WU : evu.VU0'.¢ = t)
= (Definition (9) of evu )
V' | w' e WU : (VW' | V' e FX.VU : ev.V' ' .¢ = 1))
(Nesting)
(VW' | V'eFXVU : (V' | w' e WU : ev.V' w'.¢ = t))
= (The sets D.w partition WU )
VYV V'e FX.VU: (Vw' | (Gw | we W:we Duw):ev.V'w'.¢ =t))
= (Trading)
(VW' I V' eFXVU : (Vo' |: Gu lweW 1w’ e Daw) = ev.V'w'.¢ =t))
= (FzIR:P) == Q=(NVz | R: P = @), provided = not free in Q)
A28 R% eFX.VU : (V' |: Vw | w eW:w'eDw = ev.V'.w'.¢ = t)))
= (Trading)
Vv v’ ceFX.VU : (Vw'I: (Vw | w eW Aw eDw: ev.V' w'.¢= t)))
= (Collapsing Lemma (19))
(VW' v’ ceFX.VU : (Vw'I: (Vw | w eW Aw eDw:ev.V.we= t)))
= (Predicate calculus, V' and w' do not appear free in ev.V.w.¢ =t)
(Vw lwe W:ev.V.we= t) O

We close this section with a result about underspecification for PC: propositional logic
with its conventional notion of PC-validity. The language of PC is that of C with o re-
moved, and the model and semantics for PC are the same as those for C. We incorporate
underspecification by extending this basis to PCU-validity and its associated semantics in
the same way we extended C to CU, so as it pertains to underspecification, PCU is to PC as
CU is to C. It is then clear that the theorem concerning C-validity extends to PC-validity:

(21) Corollary: Underspecification over PC. For any propositional formula ¢, ¢ is
PC-valid iff ¢ is PCU-valid.

For propositional logic, Bijlsma [1] derives a similar result, but couched in terms of
the undefined instead of underspecification. We prefer underspecification because then all
functions and operations can be total and we can continue to use simple two-valued logic as
the logic underlying all domains.
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