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In [1], Steve Grantham advocates teaching proof, especially in the context of predicate logic,
using “semiformal” methods. He introduces several metaphors and notational conventions intended
to help students understand the role of universal and existential quantification and illustrates the
ideas with two examples.

Grantham says,

This [kind of semiformal proof] is difficult to define precisely, but what I have in mind
is the type of proof that most mathematicians would consider complete and rigorous,
but that is not strictly formal in the sense of a purely syntactic derivation using a very
precise and circumscribed formal set of rules of inference. In other words, I have in mind
the type of proof found in a typical textbook on algebra, analysis, number theory, etc.

Grantham goes on to say that

The main problem with formal proof in the setting of pure logic is the length and tedium
involved in proofs of even simple and obvious results by these methods. This precludes
tackling examples with much intrinsic interest or complexity. ...

The thesis of this note is that, with a calculational predicate logic, teaching students about
proof using formal proofs is superior to teaching them using the “semiformal” proofs proposed by
Grantham. Formal proofs for the kinds of theorems in which Grantham is interested need not be
long or tedious. Indeed, our experience is that the formal approach, with explanations interposed
at judicious places, usually makes arguments clearer, shorter, and more memorable.

We butress our arguments for this thesis with formal proofs of two theorems that Grantham
[1] proves “semiformally”. We use the calculational predicate logic of the text A Logical Approach
to Discrete Math [2], with a few modifications that will appear in the next edition. To make our
discussion self-contained, we repeat one of Grantham’s semiformal proofs verbatim.
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Problems with a semiformal approach

A major pedagogical problem with the semiformal approach proposed by Grantham is punctuated
by his statement “This [kind of proof] is difficult to define precisely”. Without a precise definition of
proof, proofs remain a mystery to students, so naturally students have difficulties developing proofs.
If they don’t know all the rules, they can’t play the game well. If they don’t know the rules, they
won’t like the game. On the other hand, we have observed that formal precision, used in a way that
discourages complexity and detail from overwhelming, is welcomed by students.

Grantham’s [1] metaphors for eliminating quantifications are written in an informal style, and
without formal justification. Students are being asked to believe the metaphors without under-
standing why they should believe them. Just as importantly, “semiformal” proofs are likely to have
missing steps, which the students don’t see —not all the theorems of predicate logic that are actually
needed are mentioned. With parts of proofs missing, it is no wonder that students don’t understand
proofs.

Moreover the nature of “semiformal” proofs make them longer than necessary, make them harder
to follow, and make them less memorable. Finally, the formal (calculational) approach lends itself
to more effective discussions of proof strategies.

Tools for dealing with quantification
Grantham [1] organizes his discussion around the following points:

1. How do we prove universally quantified conclusions?
2. How do we use existentially quantified statements that appear as premises?
3. How do we use universally quantified statements that appear as premises?

4. How do we prove existentially quantified conclusions?

These are indeed important questions. However, Grantham’s answers to these questions suf-
fer from the fact that they are couched in informal reasoning and are not backed up by suitable
theorems and metatheorems. Graham’s informal reasoning does not provide students with enough
understanding for them to really grok predicate logic. In our view, it is far more advantageous to
proceed as follows.

1. Introduce suitable axioms for predicate logic and discuss why they are used, why they are
relevant.

2. Introduce general theorems for manipulating quantified expressions and prove these theorems
formally.

3. Introduce metatheorems for removal and introduction of quantification, prove them, and show
some simple examples of how the metatheorems are used.



Of course, a rigorous, formal approach works only if formal proofs are simple enough. We believe
that this is the case when using the calculational predicate logic of [2]. For example, the proofs of
the theorems and metatheorems presented below, which are most relevant to this discussion, are
proved without complexity overwhelming —see [2].

First, let us discuss notation. Our notation for quantification over any binary, symmetric, and
associative operator x is (xi | R4 : E.i). An exampleis (+i | 0 < i < 3 : i?), which equals
02412 +22. Range R.i is a boolean expression. If the type of * is t x t — ¢, then body E.i has
type t.

In the case that * is A or Vv, we defer to tradition and write the quantifications as (Vi | R.i : E.7)
and (3i | R. : E.), respectively. In case range R.i is the constant true, we abbreviate the
quantifications as (Vi |: E.4) and (3¢ |: E4). Also, we abbreviate nested quantifications like
(Vil: (3j1: Ei.g)) as (Vidjl: E..jg).

We always put parentheses around quantifications so that the scope of the dummies is explicit.
However, in order to minimize parentheses, which helps facilitate manipulations, we write function
applications like T'(x,y) —in which the arguments are variables or constants— as T.z.y .

The notation E[z := e] denotes (simultaneous) substitution: provided the variables in lists z
and e do not contains dummies of quantificationsin E, E[z := €] denotes a copy of E in which all
free occurrences of variables from list of variables z are replaced by their corresponding expressions
in list of expressions e. (If # or e do contain dummies, rename the dummies in the quantification
before performing the substitution.)

We now list the axioms and theorems of predicate calculus used later on. For introducing and
eliminating a quantification, we have the following three rules. The first one holds for * being V
and 3 —and, in fact, for any associative and symmetric operator.

(1) One-point rule: Provided z does not ocur free in E, (xx | z = E: P) = Plz:= E]
(2) Instantiation: (Vz|: P) = Pz := E]

(3) 3I-Introduction: Pz :=E] = (3z|: P)

(4) Quantified freshy: Provided z does not occur freein P, (3z| R: P) = P

The next theorem provides guidance for proving a universal quantification.

(5) Metatheorem. P is a theorem iff (Vz|: P) is a theorem.

Using this Metatheorem, a proof of a theorem @ : (Vz |: P) is often done in the form
For arbitrary x, we prove P

proof of P, where we may have to consider several cases depending on what =z
ranges over.



The following Metatheorem is a tool for dealing with existentially quantified antecedents.

(6) Metatheorem Witness. Suppose & does not occur freein P, @, or R. Then

(3z | R: P) = Q is a theorem iff
(R A P)lz:=3] = Q is a theorem.

Identifier & is called a witness for the existential quantification. 3

Now, the standard Deduction Theorem says that a proof of C' from premises Py, ..., P,
is really a proof of Py A ... A P, = C. Therefore, we are able to use (an extended form of)
Metatheorem (6) Witness to conclude the following:

(7) Metatheorem. Suppose C is being proved using a premise of the form (3z | R: P). Then,
instead, (R A P)[z := Z] can be used as a premise, where & is a “fresh” variable.

Finally, we have the following metatheorem concerning weakening a subexpression of a formula.

(8) Metatheorem Monotonicity. Suppose V' occurs exactly once in formula E, and not in an
operand of = or #. Define the parity of V in E to be even if V occurs in an even number
of negations, antecedents, and ranges of universal quantifications and odd otherwise. Then

E[V :=P] = E[V :=Q] (provided the parity of V' in E is even)
ElV :=Q] = E[V :=P] (provided the parity of V in E is odd)

To the left, below, we indicate a use of monotonicity when the parity is even; to the right, when the
parity is odd.

E[V := P] E[V := P]
=  (Monotonicity: P = Q) <  (Antimonotonicity: P = Q)
EV = Q) EV = Q)

Theorems and metatheorems (1)—(8) are important tools for dealing with quantifications. Most
of them come into play in proving Grantham’s theorems (in the calculational style), so trying to
prove his theorems without having seen these tools does not seem reasonable. It is better to state
these tools crisply and formally than to leave them “semiformal”. Further, the formal proofs of
these tools are simple enough to be understood by freshmen (although the proof of (8) does require
induction over the structure of formulas and has to wait until induction is thoroughly explained.)

Grantham’s first example

Grantham [1] poses the following problem: Determine whether

C: (3avbl:T.b.a)

3 Identifier x itself can be used for & if = does not occur free in Q .




follows from the following four premises.
PO: (Vz|: (Vyl: T.x.y) V (3z1: R.x.2))
P1: (F2VyVzl: Ry.z = Pax.y)
P2: (Vzayl: Q.z.y)
P3: (Vz,y,z1: Px.z A Qay = T.z.x)

Our proof (development) proceeds as follows. C' is an existential quantification, and of the
premises, only P1 is an existential quantification, so a witness for x of P1 is likely to be used in
the proof of C'. Accordingly, we use Metatheorem (7) to introduce the premise

P1: (YyVzI|: Ry.z = Piy)

for a fresh identifier . We now attempt to prove (Vb|: T.b.%), since application of I-Introduction
(3) will then prove C'.

Hence, for arbitrary b, we attempt to prove T.b.% .

Now, T occurs only in PO and P3, so it makes sense to investigate the use of these two in
proving T.b.Z. An instantiation of PO looks promising, because the goal T.b.Z can be reached
easily from at least the first disjunct of its body. This would yield a proof that started from a
premise and ended with the goal.

On the other hand, we could begin with the goal T.b.Z and immediately use an instantiation of
P3 to weaken it to (Vyl: P.2.b A Q.Z.y) . This would yield a proof that started with the goal.

Let us pursue the first alternative and write the following.

(Vyl: T.by) V (3z1: Rb.z) — PO, with instantiation z :=b
=  {Monotonicity: Instantiation (2))

Tb.z Vv (3z1: R.b.2)
=  (Monotonicity: A possible lemma, see below)

T.b.i V T.b.3
= (Idempotency of V)

T.b.&

Hence, it remains to prove a lemma: (3z|: R.b.z) = T.b.3.

As an aside, we perform a step the reason for which is seen only later in the proof* . Instantiate
P2 with z := % to yield the premise (Jy|: Q.Z.y) . Then use Metatheorem (7) with a fresh variable
9 to arrive at

P2 Q.

We now prove (3z|: R.b.z) = T.b.%.

4 Were we to develop this proof in a lecture, we would wait to introduce P2’ until the place where it was needed;
then we would backtrack to introduce it at this point. It is needed here because ¢ needs to be a fresh variable —one
that does not appear thus far in the proof.



T.b.%
= (P3 seems most appropriate, since T.z.x is the consequent of the
body. Use P3 instantiated with z,z,y:=%,b,3.)
PibA Q.14
< (P2 ,s0 Q2.4 = true —thisis why P2’ was developed)
P.z2.b A true
= (Identity of A)
P.z.b
<  {Quantified freshy (4) —so that P1’ can be used)
(3z1: P.z.b)
< (Pl ,with y,z2:=b,2,i.e. Rb.z = P.i.h)
(3z1: R.b.z)

Our development is quite similar to Grantham’s; the difference is that his is “semiformal” while
ours is far more formal and rigorous. Note that our proof references every theorem that it uses,
but complexity does not overhwelm at all. Indeed, we believe that the presentation is more easily
understood than Graham’s. Note that the proof is annotated with comments that explain how it
was (or could have been) developed.

Grantham’s second example

Prove that
C: (Vz3yl: R.x.y)

follows from the following five premises.

PO: (FzVyl: T.y.x)

Pl1: (Vz|: Az = R.ux.x)

P2: (Vzl|: Bx = (Jyl: S.y.x))

P3: (Vz,yl: Sxy A ~Ay = Ry.x)

P4: (Vr,yl:Txy = Az V Bx V Rx.y)

For arbitrary x, we prove (Jy|: R.z.y). We first use Metatheorem (7) to introduce the premise
PO : (Vyl: T.y.2)
PQ’ together with the shape of P4 encourages us to begin as follows. For arbitrary z, we have
T.x.& — PO, instantiated with y :=

= (P4, instantiated with z,y :=x,%)
AxV Bx V R.x.k



=  (Absorption, X V (Y A =X) = X VY  —It looks like case analysis can be used,
based on the three disjuncts. The form of P2 and P3 encourages this step first.)
Az V (Bx A -Ax) V Rua.i

We now prove (Jy |: R.z.y) by case analysis, using the three cases indicated in the last formula,
which is a consequence of the premises.

Case A.x. Ax
=  (P1, instantiated with z :==z)
R.x.x
= {3-Introduction (3))
(Fy1: R.x.y)
Case B.x A —A.x. B.x AN —Ax

= (Monotonicity: P2, instantiated with z :=x)
(Fyl: Syx) A ~Ax

= (Distributivity of A over 3 —y does not occur free in —A.x )
(Fyl: Sy.xz A ~A.x)

= ( P3, instantiated with z,y :=y,x)
(Fyl: R.x.y)

Case R.z.Z. (Jyl: R.x.y) follows by J-Introduction (3).
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Appendix: Grantham’s semiformal proof of the second theorem

We present Graham’s proof of the second example. Keep in mind that we have not explained
Grantham’s metaphors for dealing with quantification, and the development of the proof does read
better once the metaphors are known. Neverthless, we find our proof much crisper, clearer, and
easier to present.



Prove that C : (Vz3y|: R.x.y) follows from the following five premises.
PO: (FzVyl: T.y.x)
Pl1: (VzI: Az = Ru.x)

P2: (VzI|: Bz = (Jyl: S.y.x))

P3: (Vz,yl: Sxy A Ay = Ry.x)

P4: Vz,yl: Txy = Az V Bax V Rx.y)

Keeping in mind the theme of working both backwards and forwards, we might start working
backwards and observing that C begins with a universal quantifier. Hence it is reasonable to
introduce a name for an arbitrary object, say «, hence reducing the problem of proving C to
proving the statement

Goal: (Jyl: R.a.y)

At this point we have two choices: ... continue working somewhat backwards, ... [or] first look
for some additional “toeholds” among the premises that might help us “work forwards”. ... In
the example under consideration, probably the cleanest approach is to work forwards by choosing a
witness, say &, for the existential quantifier 3z in premise PO, so that we have

PO : (Vyl: T.y.d)

. Once we have chosen the witness & , we have two objects at our disposal, and both of them are
reasonable candidates for substitution into the many universally quantified statements we know are
true. Instantiating any of the universal quantifiers in premises P1, P2, or P3 with either & or «
is of questionable value, since we have no guarantee that any of the hypotheses of the implications
thus obtained would be true. The same observation is also true for P4, except that finding an
instantiation that makes the resulting 7'(.,.) hypothesis true seems much more promising, in view
of P0O'.

These considerations suggest that a reasonable next step would be to instantiate the universal
quantifier Vy in statement PO’ with either o or & (why not both?), obtaining the statements

T.o.& and T.&.&%

Of these two statements, the former looks more useful. Specifically, it now seems reasonable to
instantiate the universal quantifiers Vx and Vy in premise P4 with o and &, respectively,
obtaining the statement

P4 : Tad = AaV BaV Rad

Since the hypothesis of this implication is true, we can deduce that the conclusion must be also.
That is, we have

P4":. Aa Vv BaV Ra.d



Now if the third of these three disjuncts holds, we are at least moderately happy: we will have shown
that (Jyl: R.a.y) is true in this case. So we now need to consider the case where R.a.d fails and
hence either A.a or B.a (or both) is true.

If A.a holds, then premise P1 (with the obvious instantiation) immediately gives us
Roa.a

so (Jyl: R.a.y) is true in this case as well.

If A.a fails, then B.a must hold, so premise P2 (again with the obvious instantiation) gives
us

(Fyl: Sy.a)
The obvious next step is to choose a witness, say O = Q.a, for this statement, so that we have

S.0.«

And now premise P3 is perfectly poised to come to our aid: instantiating the universal quantifiers
Vz and Vy in that premise with O and «, respectively, we get

P3 :890.a A mAa = R.aQ

Since the hypothesis of this implication is true, we may conclude that R.a.Q, so (Jy|: R.a.y) is
true in this third case as well.

In summary, we have shown that, given an arbitrary object a, we will find ourselves in one of
three cases, and in each such case the statement (Jy|: R.a.y) is true. Hence, we have indeed shown
that conclusion C' follows from the premises.



