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At the Marktoberdorf summer school in August 1996, Larry Paulson lectured on his mechanical
theorem prover, Isabelle; Natarajan Shankar lectured on his mechanical theorem prover, PVS; and
I lectured on calculational logic. Both Paulson and Shankar suggested that I try the calculational
approach on Andrew’s challenge, which is one of several theorems used to benchmark mechanical
theorem provers. Andrew’s challenge is to prove the following theorem. 3

1) (FzvVyl:pxz=py) = (Fzl:qx) = Vyl:py))) =
(FzVyl: gz =qy) = (Azl:px) = Vyl: qy)))

In proving Andrew’s challenge using the calculational approach, I use theorems given in the text
[1] (or in its as-yet-unpublished second edition). The Appendix contains theorems used here that
may be unfamiliar to the reader.

Now, = is both associative and symmetric, so we can rewrite Andrew’s challenge as
P =qQ
where P and ) are defined by the following.

P: (AaVyl:px=py) = (3zl:px) = Yyl: py)
Q: (AxVyl: gz =qy) = (Azl:qx) = Vyl: q.y)

where it is assumed that this formula is closed (so p.z and g.z contain no free variables other than

This form gives the impression that perhaps P is valid (or invalid), regardless of p. If this is the
case, then @ is also valid (or invalid). Hence, we try to prove P.

We don’t have many theorems that deal with = as they appear in P, so we try to prove P by
mutual implication, proving instead

(2) ((FzVyl: p.x = p-y) 3zl:px)) < (Vyl: py) and
(3) (FxVyl:px=py) = Fxl:pa)) = Vyl:py)
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3 We use the notation (Vz |: (Jy |: P)) may be abbreviated as (Vz3y|: P). Also, we use = for equality over
the bools and = for equality over any type (including the bools). Our precedences are, beginning with the tightest,
-, =, V and A, = and <, =. Finally, in order to eliminate parentheses, we write p.z instead of p(z) for
application of function p to variable x .




Proof of (2). Assume (Vyl: p.y)
(FaVyl: px=py) = Bzl:p.x)
= (Assumption, instantiated with y := z and with y:=y,
so p.x = true and p.y = true)
(FaVy |: true = true) = (3z|: true)
= (Identity of = (5); (Vyl: true) = true)
(3z1: true) = (3x|: true) —Reflexivity of = (6)

Proof of (3). (3)
= (Contrapositive, X = ¥V = Y = -X)

A(Vyl:py) = ((F2Vyl:px =py) = (Fzl: pa))
= (De Morgan (12) on antecedent;
2(X=Y) = X = =Y and De Morgan (11) on the consequent)

(Fyl: —py) = (F2Vyl:px=py) = (VzI: ~p.x))
By Metatheorem Witness (13), the last formula is a theorem iff the following one is.
-4 = ((FzVyl:p.x =py) = (Vzl: —p.x))
We calculate:

Assume —p.jj, so also p.y = false
(32Vy |: p.x = py)

= (Lemma (4) —heading to change p.x to p.j)
3z 1: (Vyl: p.x = p.y) A p.x = p.j)

= (Substitution (8))
(Fz1: (Yyl: p.g =p.y) A px =p.j)

= (Lemma (4))
(xVy |: p.g = p.y)

= (Assumption p.g = false; false = X = -X)
(F2Vy |: —p.y)

= (Provided z doesn’t occur free in X, (Jz|: X)
(Vy 1: =p.y)
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(4) Lemma. (Vz|:Sx) = (Vxl: S.x) A St

Proof. (Vz | true : S.x)
= (Zero of Vv (7))
(Vx| true V x =t : S.x)
(Range split (10))
(Vx| true: S.x) A (Vx| z=t:S.x)
(One-point rule (9))
(Vx| true: S.x) A Sit
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Appendix. Some of the theorems used in the proof

(5) Identity of =: true=Q =Q

(6) Reflexivity of =: P=P

(7) Zero of V: PV true = true

(8) Substitution: X=Y A EY = X=Y A EY

(9) One-point rule: Provided z does not occur free in E,

(Vx| z=FE:P) = Plz:=E)
(10) Range split: (Vx| RVS:P) = (Vx| R:P) A (Vx| S:P)
(11) De Morgan: =(3z | R: P) = (Vz | R: -P)
(12) De Morgan: =(Vz | R: P) = (3z | R: —P)

(13) Metatheorem Witness. Suppose # does not occur freein P, @, and R. Then

(3z | R: P) = @ is a theorem iff
(R A P)lz:=%] = Q is a theorem.



