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Abstract

An algorithm for processing program transformations as described by the transform construct is
presented. The algorithm constructs a coordinate transformation of an abstract program based
on a set of transforms and transform directives applied to it.

1 Introduction

A new language construct, the transform (as a feature of the programming language Polya [GV92]),
has been proposed for program transformations at the source program level [GV91]. The advantage
of the transform is that it lets programmers write programs in an abstract form, which can then
be transformed under their directives to a more concrete form that can be accepted and executed
by a machine. Hence, programs may be written at a much higher (more abstract) level than most
conventional programming languages allow. A transform describes the replacement of a program
variable of some type by another variable, perhaps of a different type. A transform directive specifies
which transform to use to replace a particular program variable.

The abstract program is transformed to a more concrete form with a set of transforms. Each
transform contains rules that prescribe various ways of transforming components of a program. The
selection of the transformations to be applied to program variables is localized. By changing a single
directive, a new transformation can be applied to the abstract program, resulting in a completely
different concrete program.

In this paper, an algorithm that transforms programs according to a set of transforms and
transform directives is presented. The paper is organized as follows: In Section 2, the necessary
background for the transform construct is given and, in Section 3, an overview of the algorithm
is presented. In Section 4, the pattern matching function that is used in the algorithm is defined.
Section 5 contains the definition of replacement instantiation. The algorithm for program trans-
formation is given in Section 6 and is discussed in subsequent sections. Section 7 discusses the
transformation of program variables and Section 8 discusses the transformation of constants. In
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Section 9, the construction of expression representations and transformations is presented. Sec-
tion 10 discusses the transformation of statements. In Section 11, transformations of programs is
discussed. In Section 12 a proof of correctness of the transformation algorithm is given and Sec-
tion 13 contains a complexity analysis of the algorithm. Finally, Section 14 contains conclusions
and comments on the present work.

2 The Transform

A transform describes a coordinate transformation, the replacement of some program variables by
new ones [GV91]. A coordinate transformation can be a partial implementation of an abstract data
type [GP85], a data refinement of a piece of code [MG90, Mor89], or a general transformation like
the transformation of a dummy variable in a loop for efficiency purposes [Knu63]. The declaration
of a transform has the following form:

transform T'(p:1);
var av:at into T¢v:ct
{coupling invariant}
transform rules

end

In the sequel we call the program that is being transformed the abstract program and the program
that is the result of the transformation the concrete program. The same naming convention applies
to parts of the abstract and concrete programs, for example we talk about abstract statements,
abstract expressions, concrete statements, and concrete expressions. If the abstract program is
represented by a tree, we refer to it as the abstract tree which has abstract nodes. Similarly, we use
the terms concrete tree and concrete node.

In the sections that follow we discuss the various components of a transform. An example of
a transform is given in Figure 1.

Transform name and transform parameters

Each transform is uniquely identified by its name. The name of the transform above is 7. A trans-
form may have one or more parameters, which are enclosed in parentheses following the name of
the transform. If a transform has no parameters, the parentheses are omitted. The parameters are
separated by commas; both the name and the type of each parameter have to be given. Transform T
above has parameters p, which have types . The parameters of a transform are bound to values
with the transform directive, which will be discussed later.

Abstract and concrete variables

In the example of transform T above, a7 is a list of abstract variables (and af is a corresponding list
of their types) and ¢7 is a list of concrete variables (and ¢t is a corresponding list of their types).
The abstract variables of a transform describe the program variables (and their types) on which



the transform can be applied. The concrete variables of a transform describe the program variables
that are generated as the result of applying the coordinate transformation that is described by the
transform.

The two lists @ and 7 need not have the same length. Both the abstract and the concrete
variables are dummies: their consistent renaming throughout the transform will not change the
meaning of the transform.

The abstract variables of a transform are matched to the program variables on which the trans-
form is applied (with a transform directive). The concrete variables of a transform are used for
generating the appropriate program variables that result from the coordinate transformation. In
a later section we discuss how the abstract and concrete variables of a transform are used.

Coupling invariant

The coupling invariant is a predicate that relates the abstract and concrete variables. The coupling
invariant has no bearing on the transformation process, which is purely syntactic. It is used by
the author of a transform for proving the correctness of each transform rule. Later in this section
we discuss the proof obligations for the author of a transform.

The coupling invariant of a transform T gives rise to the definition of a representation of an ex-
pression according to T. Let T be a transform that transforms v;:t; to vy:ts and let CI 7(v1,v2)
be its coupling invariant. An expression 7:t3 is a T representation of an abstract expression e:t; iff
CIr(e,r). For example, for a variable v:compler that is represented by

u:record re, im:real end

the coupling invariant is v = u.re + i - u.im. Note that a representation of an expression is defined
only when transform T transforms a single variable to another single variable.

Transform rules

Each rule in the list of transform rules describes a way of replacing an expression or statement
that involves one or more abstract variables or has a subexpression of the same type as an abstract
variable. Each rule may have one of the following forms:

{P} ezpression-pattern into expression-replacement
{P} statement-pattern into statement replacement

A transform rule may be preceded by a precondition (P in the example above) enclosed in
braces. The user of a transform has the obligation to verify that the precondition of a rule is
satisfied at the place in the program where the rule is applicable. The precondition has no effect
on the transformation process, which is a syntactic process.

The first kind of rule prescribes the transformation of an expression that may contain abstract
variables or expressions. Whenever ezpression-pattern matches an expression e of an abstract
program, e can be replaced by the corresponding instance of expression-replacement.



The second kind of rule prescribes the transformation of a statement that may contain abstract
variables or expressions. Whenever statement-pattern matches a statement s of an abstract pro-
gram (pattern matching is defined in Section 4), s can be replaced by the corresponding instance
of statement-replacement.

The rules above describe the transformation of an expression or a statement. A transform may
contain a third kind of rule, a representation rule that has the following form

{P} [expression-pattern] = expression-replacement jrepresentation

A transform may have rules of the third kind only if it transforms exactly one abstract variable
to one concrete variable. A representation rule prescribes a way of constructing a representation
of an expression. Whenever ezpression-pattern matches an expression of an abstract program, the
corresponding instance of expression-replacement is used to construct the specified representation
of the expression. This is explained in more detail in a subsequent section. The type of the cor-
responding instance of expression-replacement is the same as the type of the concrete variable of
the transform whose representation is constructed. A representation of an expression depends on
the representations and/or transformations of its subexpressions. The representation of a vari-
able according to a transform T is prescribed by the first into rule of T, and the representations
of constants are prescribed by transform rules. A pattern can refer to a specific representation of
an expression, which can be used in the corresponding replacement of the transform rule.

The name of a transform can be used as a unique identification for a concrete representation
of an abstract expression. Thus, an abstract expression may have a representation according to
transform T3 (a T representation) and a representation according to transform T (a T, representa-
tion). The representation after symbol “;” in the third kind of transform rule above specifies which
representation of the abstract expression is constructed when the transform rule is applied. It also
specifies the values of the parameters of the transform whose representation is constructed (if the
transform has parameters). If “representation” is omitted, then the transform rule prescribes the
representation of an expression according to the transform in which it appears.

As mentioned above, an expression may have more than one representation with respect to
a set of transforms. A special kind of representation rule is the one that specifies a conversion of
representation: a function from one representation to another. If ezpression-pattern in the third
kind of rule above has no component subpatterns, then the corresponding rule is a conversion of
representation. The syntax of patterns and replacements of transform rules is discussed later in
this section.

Proof obligations

The author of a transform has several proof obligations for proving the correctness of a transform
rule, depending on the kind of a transform rule. Here, we outline the proof obligations for showing
the correctness of a transform rule.

1. For rules that prescribe the transformation of an expression: The correctness of the rule can be
shown by proving that the pattern and replacement of the rule are equal, under the assumption
that the abstract and concrete variables that appear in the pattern and replacement satisfy
their coupling invariants.



2. For rules that prescribe the transformation of a statement: The correctness of the rule can be
shown by proving that the simultaneous execution of the pattern and replacement of the rule
maintains the coupling invariant, under the assumption that the abstract and concrete vari-
ables that appear in the pattern and replacement of the rule satisfy their coupling invariants.

3. For rules that prescribe the representation of an expression: The correctness of the rule can
be shown by proving that the pattern and replacement satisfy the coupling invariant, under
the assumption that the abstract and concrete variables that appear in the pattern and
replacement of the rule satisfy their coupling invariants.

Rule patterns and replacements

In this section, we discuss the syntax of patterns and replacements of transform rules. Examples
are given using transform BN of Figure 1.

A pattern of a transform rule may have one of the following forms:

1. An abstract statement operator applied to subpatterns. For example, if stmt_op is an abstract
statement operator of arity n and P is a list of patterns such that #p = n, then stmt_op P is
a pattern. Pattern BNibjl := BN bj2 of rule (9) of BN is an example of this case.

2. An abstract expression operator applied to subpatterns. For example, if ezp_op is an abstract
expression operator of arity n and P is a list of patterns such that #p = n, then exp_op 7 is
a pattern. Pattern BNbil V BNb;2 of rule (4) of BN is an example of this case.

3. A reference to a representation of an expression. For example, if T is the name of a transform
and a is the name of its abstract variable, then Tja is a pattern. Different instances of the
same representation in the same pattern are distinguished by a number after a second «;”
symbol. For example, Tjail and Tja;j2 refer to two (possibly different) T representations
of different subtrees of the abstract tree. Pattern BN;bjl of rule (4) of BN is an example of
this case.

4. stmt-s is a pattern, where s is an identifier. The scope of s is the transform-rule pattern
in which it appears. If stmt-s appears more than once in a transform-rule pattern, then all
occurrences of stmt-s refer to the same s. Pattern stmt-s; of rule (10) of BN is an example
of this case.

5. exp-e:t is a pattern, where e is an identifier and ¢ is a type. The scope of e is the transform-rule
pattern in which it appears. If exp-e:t appears more than once in a transform-rule pattern,
then all occurrences of exp-e:t refer to the same e. Pattern exp-e:bool of rule (7) of BN is
an example of this case.

6. var-v:tis a pattern, where v is an identifier and ¢ is a type. The scope of v is the transform-rule
pattern in which it appears. If var-v:t appears more than once in a transform-rule pattern,
then all occurrences of var-v:t refer to the same v. Pattern var-v:bool of rule (11) of BN is
an example of this case.



. const-c{re}:t is a pattern, where c is an identifier and re is a regular expression that describes
constants of type t. This pattern can be simplified to c:t if re is just string ¢. The scope of ¢
is the transform-rule pattern in which it appears. Pattern false:bool of rule (2) of BN is
an example of this case. The same pattern can be written as const-false{false}:bool.

. (p) is a pattern, where p is a pattern. Pattern (BNb) of rule (7) of BN is an example of this
case.

replacement of a transform rule has one of the following forms:

. A concrete statement operator applied to subreplacements. For example, if stmt_op is an ab-
stract statement operator of arity n and 7 is a list of replacements such that #7 = n,
then stmt_op T is a replacement. Replacement BNjjjl := BNjjj2 of rule (9) of BN is an ex-
ample of this case.

. A concrete expression operator applied to subreplacements. For example, if ezp_op is an ab-
stract statement operator of arity n and 7 is a list of replacements such that #7 = n,
then ezp_op 7 is a replacement. Replacement BNijil * BNj;2 of rule (5) of BN is an example
of this case.

. A reference to a representation of an expression. For example, if T is a transform, a is the name
of its abstract variable and c is the name of its concrete variable, then Tjc is a replacement.
This replacement corresponds to the representation of an expression that is referred to by
pattern T'ja of the same transform rule. Different instances of the T" representation in the same
replacement are distinguished by a number that follows a second “j” symbol. For example,
Ticil and T'jc;2 refer to two (possibly different) T representations of different subtrees of the
abstract tree. The BNjj part of the replacement of transform rule (4) of BN is an example
of this case.

. 8 is a replacement, where s is a name defined with stmt-s in the pattern of the corresponding
transform rule. The s; part of the replacement of transform rule (10) of BN is an example of
this case.

. e is areplacement, where e is a name defined with exp-e:t in the pattern of the corresponding
transform rule. The z part of the replacement of transform rule (7) of BN is an example of
this case.

. v is a replacement, where v is a name defined with var-v:t in the pattern of the corresponding
transform rule. The v part of the replacement of transform rule (11) of BN is an example of
this case.

. ¢ is a replacement, where c¢ is a name defined with const-c¢{re}:t in the pattern of the corre-
sponding transform rule.

. A reference to a parameter of a transform is a replacement. For example, if p is a parameter
of a transform T whose abstract variable is a, then Tjp is a replacement. This replacement
corresponds to the parameter that is associated with the T' representation that is referenced
by the T'ja part of the corresponding pattern of the transform rule. Different instances of the



same parameter in the same replacement are distinguished by a number following a second
“;” symbol. For example, T'ipjl and T'jp;j2 refer to the two (possibly different) instances of
parameter p of the T representations that are referenced by Tjajl and Tjaj2, respectively, of
the corresponding pattern.

9. (r) is a replacement, where 7 is a replacement. Replacement (BNjj) of transform rule (3)
of BN is an example of this case.

In the case of a rule that specifies a representation of an expression, the replacement of the rule
has to specify which concrete representation of the abstract expression is constructed and the values
of the parameters of the corresponding transform. For example, if a rule specifies the construction
of the T representation of an expression, then this is denoted by the symbols “{T” that follow
the replacement (assuming that transform T has no parameters). If no such symbols follow the
replacement, then the rule specifies a representation according to the transform in which it appears.

Assume that T has an abstract variable a and parameters p. Each reference Tja to a T represen-
tation of an expression has an instance of parameters p associated with it. We use the notation T'ip,
(0 < i < #Pp) to refer to parameter p that is associated with representation Tja. If a transform rule
specifies the construction of a T representation for an expression, then it has to specify the values
of parameters of T'. For example, assume that T has one parameter p and one abstract variable a.
If a rule specifies the T representation of an expression and the associated value of parameter p
is twice the value of p that is associated with T'ja, then the notation {T'(2 * Tjp) is used for the
representation part of the rule. The value of the parameter of the resulting representation can be
a function of the parameters of the transforms that are associated with transform references only.

An example of a transform

Figure 1 contains an example of a transform for the transformation of variables of type bool. Its
abstract variable is of type bool, and its concrete variable is of type nat. The transform provides
a way of replacing a variable of type bool by a variable of type nat and ways of replacing boolean
expressions that contain the operators V, A and — by new ones that do not contain these operators.
The parenthesized numbers on the left side of the transform rules are used only for reference
purposes and do not appear in an actual program.

We discuss some points about transform BN.

e Transform BN has no parameters. The precondition of each rule is ¢rue and is omitted.
Each one of the rules (1) to (7) prescribes the construction of a BN representation, so the
symbol “;BN” is omitted from the end of the rule.

e Transform BN contains rules that define the BN representation of boolean constants true
and false (rules (1) and (2)). According to BN, one representation of true is natural number 1
and one representation of false is natural number 0.

e Transform BN contains rules that define the BN representation of boolean expressions that
are formed using operators V, A and — from the BN representations of their subexpressions
(rules (4), (5) and (6)). For example, let e; V ez be a boolean expression that appears in



transform BN,

(0)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
9)
(10)
(11)
end

var b:bool into var j:nat
{Coupling invariant: CI(b,j) =b=j > 0}
[ [true:bool] = 1
[ [false:bool] = 0
[ [(BNib)] = (BNyj)
[ [BNibil vV BN;bj2] =  BNjjil + BNyji2
0 [BNibijl A BNib;2] = BNjjil x BN{j;2
| [-BNjb] = if BNjj >0 then 0 else 1
[ [exp-z:bool] = if z then 1 else0
[ BN;b into BNjj >0
| BNjbijl := BN;bj2 into BNjjil := BNjj;2
[ if BNib then stmt-s; else stmt-s; into if BNjij > 0 then s; else s
| var-v:bool := BNib into v:= BNjj >0

Figure 1: An example of a transform for the transformation of variables of type bool.

a program (where e; and e are boolean expressions). If e; has a BN representation r; (say)
and ez has a BN representation r2 (say), then according to rule (4), the BN representation
of e;1 Vegis ry + 7ro.

Rule (7) prescribes the construction of a BN representation of any expression of type bool.
It is a conversion of representation from the default representation of an expression (which is
the expression itself) to its BN representation.

Rule (8) prescribes the construction of a transformation of an expression that has a BN
representation. If expression e has a BN representation r, then according to rule (8) the
transformation of e is » > 0.

Rule (9) prescribes the construction of a transformation of a statement that involves abstract
variables that have BN representations.

Rule (10) prescribes the construction of a transformation of an if statement whose boolean
expression has a BN representation. (This rule is not needed in BN and is presented only as
an example).

Rule (11) prescribes the construction of a transformation of an assignment statement whose
right-hand-side expression has a BN representation. (This rule is not needed in BN and is
presented only as an example).

The correctness of BN can be shown by proving each rule correct, using coupling invariant CI,
as discussed earlier in this section. For example the correctness of rule (5) of BN is shown as
follows.

b1 A by
= <K CI(b1,j1), CI(bg,c2) >



J1>0A352>0
= < since ji, jo2 are of type nat >
Jixj2>0

i.e. CI(b1 A b2,7j1 % j2).

Transform directives

A transform directive specifies a transform to be applied to a variable and gives values to the
parameters of the transform. There are two kinds of transform directives.

The directive
change 7 using T'(w)

specifies transform T' to be applied to variables . T is applicable to T only if the types of 7 are
the same as the types of the abstract variables of 7. When a transform directive is processed, ¥ is
replaced by new variables that have the same types as the types of the concrete variables of T.
Different variables of the same type may be transformed with different transforms.

For example, if abstract variable a:bool is to be transformed with BN, the transform directive
would be:

change a using BN.

Transform BN is applicable to a since the type of variable a is the same as the type of the abstract
variable of BN. When this directive is processed, a is replaced by a new variable a. (say) of type nat.
Transform BN has no parameters. If BN had one parameter of type int, then a transformation
directive would had been

change a using BN (10).

A second kind of directive may be given for the transformation of variables and expressions.
When the transform directive

default ¢ using T'(w)
is given, then, by default, every variable and every constant of type t that is not expressly trans-

formed by a directive is transformed with 7. In addition, every expression of type t is removed
from the program.

An example of use of a transform

Consider transform BN of Figure 1 and suppose that a program contains the following definitions
and directives:



var a:bool;
var b:bool

change a using BN;
change b using BN

According to these directives variables a and b are transformed with transform BN. BN is applicable
to a and b since the type of the abstract variable of BN is the same as the type of a and b, namely
bool. The definition of a is replaced by

var ac:nat
and the definition of b is replaced by

var b.:nat

where a. and b. are the concrete variables that correspond to a and b, respectively. Variables a.
and b, are the BN representations of a and b, respectively.

Suppose that the abstract program contains subexpression
aVb.

According to rule (4) of transform BN, the BN representation of the above expression is
ac + b

since a. is the BN representation of a and b, is the BN representation of b. Rule (8) of transform BN
can be used to construct the following transformation of the above expression:

ac+ b, > 0.
Employing rule (9) of transform BN, a transformation of statement
a:=aVb
is
Q¢ := Q. + be.
Suppose that variable c is defined in the abstract program as
var c:bool

and no directive is given for its transformation. Then statement
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c:=aVb
gets transformed to

c:=ac+b.>0
as prescribed by rule (11) of BN. On the other hand, statement

c:=cVb
gets transformed to

c:=cVb.>0.

It should be emphasized that a transform can be a partial implementation of a data type [Pri87].
Consequently, it may not provide implementations for all operations of the data type. In addition,
different transforms may provide different partial implementations of the same data type. A given
transform is useful in the implementation of an abstract data type that is used in a program if it
provides implementations for all operations of the data type that are used in the program. For
example, it would be acceptable if transform BN did not contain any representation rule for V.

In that case, BN could not be used in a program to transform a boolean expression that contains
operator V.

Program transformation

A program is transformed successfully with a set of transforms 7 and a set of transform directives D
if

1. Every list of program variables 7 for which a directive
change 7 using T'(w)

is in D and T is applicable to 7 is replaced by fresh variables v (say) as prescribed by T,

2. For a directive
default ¢ using T'(w)

in D, every variable v:t for which no change directive is given, is replaced using T'(w) and
every expression of type ¢ is removed from the program.

If the source program is type correct and the transforms have been proved correct, then the trans-
formed program is guaranteed to be type correct.

11



3 Overview of the transformation algorithm

The algorithm for processing transforms and transform directives works in two phases. During the
first phase, the source program, the transforms and the transform directives are processed and con-
verted to an internal representation and the necessary lists and tables are constructed. The second
phase carries out the actual program transformation. It processes the internal representation of the
source program and applies the transformations as directed by the transforms and the transform
directives.

In this section, we give an overview of the transformation algorithm, we describe the represen-
tation of abstract tree nodes, transforms and transform directives, and we define functions that will
be used later.

Symbol table entries for variables

The symbol table has an entry for each abstract program variable. It also has an entry for each
concrete variable that is generated as the result of applying a transform directive to one or more
abstract program variables. Each symbol table entry for a variable contains information about the
variable, like its name, its type etc.

'Suppose transform T transforms vy:t; to vo:ta. For a directive
change v using T'(w)

or a directive
default ¢; using T'(w)

a new variable v (say) of type t2 is generated and a symbol table entry is created for it. The symbol
table entry of v contains a reference to transform T', its arguments w, and the corresponding concrete
variable v..

Suppose T transforms 77:%1 to v32:f5. For a directive
change 7 using T'(w)

a list of new variables 7; (say) of corresponding types %2 is generated and a symbol table entry is
created for each one of them. The symbol table entry of each v;, 0 < i < #, contains a reference to
transform 7', its arguments @, every other variable in 7 and the list of the corresponding concrete
variables 7.

Let v be an abstract program variable. The following functions are used later and are assumed
to be primitive:
1. get_conc-vars(v) is the list of concrete variables that are created when transform T is applied

to v,

2. get_abs_vars(v) is the list of abstract variables that are transformed along with v when trans-
form T is applied to v,

12



3. get_trans(v) is the transform that is applied to program variable v.

The generation of concrete variables that result from application of a transform to a list of
program variables is discussed in Section 7.

Abstract tree nodes

As mentioned before, the first phase converts the source program into an internal representation,
which is a tree (henceforth referred to as the abstract tree). A node of the abstract tree (an abstract
node) has one of the following forms:

1. An abstract statement operator applied to substatements and subexpressions. For example, if
stmit_op is an abstract statement operator of arity n and 3 is a list of statements or expressions
such that #3 = n, then stm¢_op S is an abstract statement node,

2. An abstract expression operator applied to subexpressions. For example, if ezxp_op is an ab-
stract expression operator of arity » and € is a list of expressions such that #& = n,
then ezp_op € is an abstract expression node,

3. A node that is labeled with an abstract variable av. For example var v is a node labeled with
variable v,

4. A node that is labeled with a constant ac. For example const ¢ is a node labeled with
constant c,

5. A node that is labeled with a list of declarations of variables and their types. For exam-
ple decl T:t is an example of such node.

We assume that the source program has been type-checked and that each node of the abstract tree
is annotated with its type. Statement nodes have type void.

With each node n of the abstract tree we associate the following values:

1. V(n): indicates if there are any variables that need to be replaced in the subtree rooted at n,
2. C(n): indicates if there are any constants that need to be replaced in the subtree rooted at n,
3. reprs(n): set of representations of node n,

4. trans(n): transformation of node n or L if n has no transformation.

In a later section we discuss how these values are constructed.

For a node n of the abstract tree, the following functions are used later and are assumed to be
primitive:

1. type_of (n) is the type of node n,

2. is_var(n) = “n is a variable”,

13



10.

is_const(n) = “n 1s a constant”,

get_var(n) is the variable at node n,

. get_const(n) is the constant at node n,

mk_stmt_node(stmt_op,T) is a statement node that has operator stmt_op and children 7,
mk_exp_node(exp-op,T) is an expression node that has operator ezp_op and children 7,
mk-var-node(v) is a node labeled with variable v,

mk_const_node(c) is a node that is labeled with constant c,

mk_decl_node(7,t) is a declaration node labeled with variables ¥ that have corresponding
types t.

In the following, the same name is used interchangeably for a node of the abstract tree and for
a subtree of the abstract tree that is rooted at this node.

Transforms

The transforms are represented by a table and three lists of rules. Each transform rule r is repre-
sented by a record that contains the following information:

1.

The pattern of r,

. The replacement of r,
. An indication if r is a representation or a transformation rule,

. If r is a representation rule, the representation that is constructed (i.e. the name of the

corresponding transform and the expressions for constructing the associated parameters).

All representation rules that are not conversion-of-representation rules are kept in a list s;. Similarly,
all conversion-of-representation rules are kept in a list s and all transformation rules form a list s3.
For a rule r, the following functions are used later and are assumed to be primitive.

1.

pattern(r) is the pattern of rule r,
replacement(r) is the replacement of rule r,
representation(r) is the name of the transform whose representation is constructed by rule r,

parameters(r) is the list of replacements for constructing the parameters that are associated
with representation(r),

. trans_of (r) is the name of the transform that contains rule r.

14



For each transform, its parameters, the list of its abstract variables and their types, and the
list of its concrete variables and their types, are kept in a record. For a transform T, the following
functions are used later and are assumed to be primitive.

1. parameters(T) is the list of parameters of transform T,
2. abs_vars(T) is the list of abstract variables of transform T,

3. conc_vars(T) is the list of concrete variables of transform 7.

In the sequel 7 is the set of transforms that are used to transform a program.

The form of transform-rule patterns that are used in the algorithm is the following
p = stmt_op P | exp_op P | Tjajk | stmt-s | exp-e:t | var-v:t | const-c{re}:t | (p).
The form of transform-rule replacements that are used in the algorithm is the following
r=stmt.opT | exp_op T | Ticik | s|e|v|c| Tipik | (r).

Patterns and replacements were discussed in Section 2.

Transform directives
All transform directives are kept in a set D. Each directive of the form
change 7 using T'(w)

is represented by a record that contains an indication that it is a change directive, the list of
variables ¥, the name of transform 7' and the list of parameters .

Each directive of the form
default ¢ using T (W)

is represented as a record that contains an indication that it is a default directive, the name of
type t, the name of transform 7" and the list of parameters w.

For a directive D in D, the following functions are used later and are assumed primitive

. is_change(D) = “D is a change directive”,
. is_default(D) = “D is a default directive”,

. vars_of (D) =7, if D is a change directive,

1
2
3
4. type_of (D) =t, if D is a default directive,
5. trans_of (D) =T,

6

. params_of (D) = w.

In the sequel D is the set of transform directives used for transforming a program.
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Program transformation

The first phase of the algorithm is essentially a front end that processes the abstract source program
and converts it into the intermediate form that is described above [ASU86]. The details are omitted.

The second phase of the algorithm carries out the transformations described by the transforms
and the transform directives. It performs a bottom-up traversal of the abstract tree. At the leaves
of the tree, the algorithm uses the transform directives to construct the representation of the node.
As each node is visited, the representations and transformation for that node are constructed.

Let n be an expression, a variable or a constant node. If =(V(n)VC(n)), then the transformation
algorithm need not construct any transformations for it (but it should construct representations for
the node, if possible, since they may be needed later in the transformation). If V' (n) vV C(n), then
the transformation algorithm should try to construct representations for n and a transformation
for it if there is no directive

default ¢ using T'(w)

in D where type_of (n) = t.

Let n be a statement node. If =(V(n) V C(n)), then the transformation algorithm need not
construct any transformation for n. If V(n) V C(n) > 0, then the transformation algorithm should
try to construct a transformation for n.

To construct a representation of an internal node n of the abstract tree, the algorithm tries to
match the patterns of the representation rules with n. If a match is successful, the correspond-
ing replacement of the rule is used and the concrete representation of the node is constructed as
prescribed by the replacement. Constructing conversions of representation and transformations of
a node is done in a similar way, by using the list of conversions-of-representation rules and the list
of transformation rules, respectively.

After the construction of representations and transformations for the abstract program is com-
plete, the algorithm checks if all directives in D are satisfied: if all variables v for which a change
directive is given in D have been replaced by new ones and if the transformed program does not
contain any expressions of type ¢ if a directive “default t using ...” is in D.

Given a program, a set of transforms and a set of transform directives, it may not be possible
to find a transformation for the program. In such cases, the algorithm returns an indication that
no transformation is possible. On the other hand, it may be possible to construct more than one
transformation for the program. In such cases, heuristic methods can be employed to construct
the most suitable transformation. The complexity of the structure of a pattern, the cost of the
operations involved in a replacement when the corresponding pattern is selected, and the relative
order of the pattern with respect to other patterns can serve as some simple heuristics for choosing
the most suitable transformation rule to apply.
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4 Pattern matching

Let Id be the domain of names and A be the set of natural numbers. Let AbsNodes be the domain
of abstract tree nodes. A binding is an ordered pair of the form (X,Y), where X is a member of
Id + (Id x N') and Y is a member of Id + AbsNodes, i.e. a binding is a member of the cartesian
product

(Id + (Id x N')) x (Id + AbsNodes).

An environment E is a set of bindings that denotes a function, i.e. for each element X of Id+(Id x N)
there is at most one pair (X,Y) in E. The domain of an environment FE is the set

dom(E)={X |(3Y |: (X,Y)€E)}
and the range of an environment FE is the set
mg(E)={Y |(3X |: (X,Y)€E)}.

The empty environment is denoted by §. We distinguish a special environment, the fail environment,
that is denoted by L. The fail environment is different from all other environments, including 0.
Its importance will be explained later, when the definition of pattern matching is given.

In the sequel, notation [X +— g Y] is used for binding (X,Y) in E. If environment E is obvious
from the context, then it is omitted from the subscript of —. If E is an environment and X belongs
to dom(FE), then we write E(X) for the Y in rng(E) for which (X,Y) isin E.

Pattern matching is defined to be a function
match: pattern X node X environment — environment.
Intuitively match(p,n, F) is:

e An environment that augments E by the new bindings that result from the pattern match
of p and n, if p matches n with respect to E,

e 1, if there is no match between p and n with respect to E.

The definition of match is given in Figure 2. ML-style pattern matching is used in the definition.
Function match makes use of three functions, which we describe informally here.
1. has_repr(n,T) = “subtree n has a T representation”,

2. match_re(re, s) = “string s belongs to the language of regular expression re”,
3. rank(c,c) = (1 3]|0 < i< #c:c=r¢[i]).
Function has_repr will be described in more detail later, match_re is assumed to be primitive. There

are efficient algorithms for deciding if a string of characters belongs to the language of a regular
expression [HU79].
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match(p,n, E)
match(p,n, L) —»L
match(stmt_op, P, stmt_op, T, E)
case stmt_op; = stmt_op, A #D = #1 — MatchList(p,n, E)
otherwise L
match(ezp-op; D, exp-op, T, E)
case ezTp_op; = exp-opy A #P = #q A type_of (p) = type_of (n) — MatchList(p, 7, F)
otherwise L
match(Tjajk,n, E)
case (T,k) € dom(E)ANE((T,k))=n— E
case (T, k) & dom(E)A
(has-repr(n,T) V (is_var(n) A #abs_vars(T) > 1A
rank(c, abs_vars(T)) = rank(get-var(n), get_abs_vars(get_var(n))))) —
EU{[(T,k) — n]}
otherwise L
match(stmt-s,n, F)
case s € dom(E)ANE(s)=n— FE
case s € dom(E) — EU {[s — n]}
otherwise L
match(exp-e:t,n, F)
case type_of(n) =t Ae & dom(E) — E U {[e — n]}
case type_of(n) =tAe € dom(E)AE(e)=n— E
otherwise L
match(var-v:t,n, F)
case type_of(n) =t Av € dom(E) A E(v) = get-var(n) — E
case type_of (n) = t A is.var(n) Av & dom(E) — E U {[v — get_var(n)]}
otherwise L
match(const-ac{re}:t,n, E)
case type_of (n) = t A is_const(n) A match_re(re, get_const(n)) — E U {[ac — get_const(n)]}
otherwise L
otherwise L
end match

MatchList(p,, E)
if #p =1 — match(p[0],7[0], E)
 #P > 1 — MatchList(p[1..],n[1..], match(p[0],R[0], E))
fi
end MatchList

Figure 2: Definition of pattern matching.
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5 Replacement Instantiation

As explained in Section 4, pattern matching is defined to be an environment that binds names
and representation references of a pattern to names and nodes of the abstract tree. When a
pattern p matches a tree node n, the corresponding rule that contains p can be used to construct a
representation or a transformation of n. To construct such a representation or transformation of n,
the corresponding replacement of the rule is used along with the environment of pattern matching.

Let r be a transform rule and n an abstract tree node. Let E = match(pattern(r),n,?) and
assume that £ #1. Transform rule r is applicable with respect to environment E if

1. If s appears in replacement(r), where s was defined by stmt-s in pattern(r)

V(E(s)) vV C(E(s)) = has-trans(E(s)),

2. If e appears in replacement(r), where e was defined by exp-e:t in pattern(r)
V(E(s)) VC(E(s)) = has_trans(E(s))
and there is no directive “default ¢ using ...” in D,

3. If v appears in replacement(r), where v was defined by var-v:t in pattern(r), then there is no
directive “default ¢ using ...” in D,

4. If c appears in replacement(r), where ¢ was defined by const-c{re}:t in pattern(r), then there
is no directive “default ¢ using ...” in D,

5. If the syntactic classes of the components that are used in the replacement instantiation are
the same as those that are required for the operator that appears in the replacement. We
distinguish four syntactic classes: stmt, exp, var, and const. Function app’, shown in Figure 3,
is the definition of this requirement. Its type is

wnst: replacement x environment — bool.

kind_of (op,?) is the syntactic class of component i of operator op. We assume that it is a
primitive function.

We write app(r, E) to denote that transform rule 7 is applicable with respect to environment E.
Replacement instantiation is defined to be a function

inst: replacement X environment — node.

Intuitively, inst(r, ) is the instantiation of replacement r with respect to environment E.

For a transform rule r we define inst(replacement(r), E) only for cases in which
E = match(pattern(r),n,0) #L cand app(r, E)

where n is an abstract tree node. The definition of inst, given in Figure 4, makes use of three
functions, which we describe here.
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app'(stmt_op 7, E) = (Ai | 0 < i < #7 : kind_of (stmt_op,i) = kind(7;, E))
app’(exp-op T, E) = (Ai | 0 < i < #7 : kind_of (exp-op,i) = kind(7;, E))
app'(var v, E) = true

app’(const v, E) = true

kind(stmt_op T, E) = stmt

kind(exp-op 7, FE) = exp

kind(Ticik, E) = if is_var(get_-nrepr(E((T,k)),T,c)) then var else ezp
kind(stmt-s, E) = stmt

kind(exp-e, E) = exp

kind(var-v, E) = var

kind(const-c, E) = const

kind(Tipik, E) = exp

Figure 3: Definition of app’

1. has_trans(n) = “n has a transformation”,
2. get_repr(n,T) is the T representation of node n,

3. get_param(n,T,p) is the value of parameter p that is associated with the T representation of
abstract tree node n.

Functions get_param and get_repr will be described in more detail later.
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inst(r, E)
inst(stmt_op 7, E) = mk_stmt_node(stmt_op, InstList(F, E))

inst(ezp_op T, E) = mk_ezp_node(exp-op, InstList(T, E))
inst(Ticik, E) = get_nrepr(E((T,k)),T,c)

inst(s, F) = Comment For s defined in pattern stmt-s
if V(E(s)) VC(E(s)) — trans(E(s))
[ ~(V(E(s)) vV C(E(s))) — E(s)
fi

inst(e, E) = Comment For e defined in pattern exp-e
if V(E(e)) vV C(E(e)) — trans(E(e))
t‘” ~(V(E(e)) v C(E(e))) — E(e)
i

inst(v, E) = Comment For v defined in pattern var-v
mk_var_node(v)

inst(c, E) = Comment For ¢ a constant
mk-_const_node(c)

inst(Tipik, E) = get_param(E((T,k)),T,p)
end inst

InstList(T, E)
if #7 =0 — ]
[ #7 > 0 — inst(F[0), E) ~ InstList(F[1..], E)
fi
end InstList

get_nrepr(n,T,c)
if #abs_vars(T) =1 — get_repr(n,T)
[ #abs-vars(T) > 1 — mk_var_node(get_conc_vars(get-var(n))[rank(c, conc_vars(T))))
fi

end get_nrepr

Figure 4: Definition of replacement instantiation.
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6 The main algorithm

In this section we present the main algorithm that processes program transformations. We assume
that the abstract program, the transforms and transform directives have been preprocessed and
presented to the algorithm in an internal form, as discussed in Section 3. We also assume that if
there is a directive “default ¢ using ...” in D, then no transform in 7 has concrete variable of
type t.

The abstract program to be transformed is presented to the algorithm as a tree n. The set of
transforms 7 and the set of transform directives D are accessed through the functions that were
defined in Section 3. Figure 5 contains the transformation algorithm. Later sections discuss parts of
the algorithm. In particular, functions mk_repr, closure and mk-trans are discussed in subsequent
sections. The algorithm is invoked as

zform(n)
where n is the root of the abstract tree. It returns a tree n', which is the coordinate transformation

of n according to 7 and D if such a tree exists, L otherwise. Tree n’ is the internal representation
of the concrete program.

In several places, the algorithm in Figure 5 has the following form:

Definition of variable v;
if “change v using T'(w)” € D then ...

.T...

The semantics of constructs like the above is as follows: We assume that 7" is bound to the name
of a transform at the conditional expression of statement if and that this very name is used later
on in expressions involving 7.
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Input: Program P, set of transforms 7, set of transform directives D.
Output: Program P’: the coordinate transformation of P according to 7 and D
if such a program exists, L otherwise.

zform(n:node)

trav(n);

if check(n) then return mk(n) else return L
end zform

{ check(n) checks if the tree rooted at n has been successfully transformed, i.e.

1. For every leaf that is not in a subtree of a node that has a transformation and is labeled with
a variable v, no directive in D is applicable to v,

2. For every node m that is not in a subtree of a node that has a transformation there is no
directive “default ¢ using ...” in D with type_of (m) = t.

check(n:node)
check(decl v)
return true

check(var v)
return “change v using ...” € D V “default type_of (n) using ...” € D

check(const c)
return has_trans(n) vV “default type_of(n) using ...” € D

check(ezp_op 7)
return has_trans(n) V —(“default type_of (n) using ...” € D) V
(An | n € T : check(n))

check(stmt_op )

return has_trans(n) V (An|n € T : check(n))
end check
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{ trav(n) traverses bottom-up the abstract tree rooted at n and constructs

}

the representations and transformations at each node of the tree.

trav(n:node)
trav(decl v:t)
if #v =1 then
if “change v using T'(w)” € D V “default t using T(w)” € D then begin
Create new instance v. of type prescribed by T
and make a symbol table entry for it;
get_abs_vars(v) := v;
get_conc_vars(v) := v,
end else skip
else
if “change v using T(W)” € D then begin
Create new instances v. of type prescribed by T
and make a symbol table entry for each one;
foreach u in v do
begin get_abs_vars(v) := v; get_conc_vars(v) := v, end
end

trav(var v)
if #abs_vars(get_trans(v)) =1 then begin
if “change v using T'(w)” € D V “default type_of (n) using T(w)” € D then

V(n) := true
else V(n) := false;
C(n) = false;

reprs(n) = {mk_repr(T, mk_var_node(get_conc_vars(v)[0]),
InstList(parameters(T), [parameters(T) — w]))};
closure(n); mk_trans(n)
end else begin V(n) := false; C(n) := false; reprs(n) := 0; trans(n) := L end

trav(const c)
V(n) := false;
if “default type_of (n) using ...” € D then C(n) := true else C(n) := false;
reprs(n) := 0; closure(n); mk_trans(n)

trav(ezp-op W)
foreach n in 7@ do trav(n);
Vin)=(Vn|nemr:V(n)); Cn)=(Vn|nen:C(n));
reprs(n) := 0; mk_reprs(n); closure(n); mk_trans(n)

trav(stmt_op M)
foreach n in 7@ do trav(n);
V(n)=(Vn|nemn:V(n)); C(n)=(Vn|nen:C(n));
reprs(n) := 0; mk_trans(n)
end trav
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{ mk(n) traverses the abstract tree rooted at n and replaces each
node with its transformation if one has been constructed.
}

mk(n:node)
mk(decl v:t)
if #v =1 then
if “change v using T(w)” € D V “default t using T(w)” € D then
return mk_decl_node(get_conc_vars(v), conc_type(T))
else return n
else
if “change v using T(w)” € D then
return mk_decl_-node(get_conc_vars(v), conc_type(T))
else return n

mk(var v)
if has_trans(n) then return get_trans(n) else return n

mk(const c)
if has_trans(n) then return get_trans(n) else return n

mk(exp-op T)
if has_trans(n) then return get_trans(n)
else return mk_ezp_node(ezxp_op, mkList(m))

mk(stmt_op 7)
if has_trans(n) then return get_trans(n)
else return mk_stmt_node(stmt-op, mkList(7))
end mk

mkList(D)
if #p =1 — [mk(p[0])]
| #9 > 1 — mk(p[0]) = mkList(p[1..])
fi
end mkList

Figure 5: Main transformation algorithm.
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7 Representations and transformation of variables

The transformation of variables is directed by transform directives. A transform directive specifies
the transform to be used for the replacement of an abstract program variable. We assume that
each program variable has a symbol table entry where information about the variable is stored. In
addition, each concrete variable that is generated as the result of applying a transform directive to
a program variable has a symbol table entry.

Suppose T' transforms v1:t; to ve:ty and let v:t; be a program variable. If either
change v using T'(w)

or
default ¢; using T'(W)

is given, then a new variable v. (say) of type ¢ is generated and a symbol table entry for it is
created. The declaration of v is replaced by

var v.:ts

In addition, for every leaf n of the abstract program tree that is labeled with v

true if “change v using T'(w)” or
Vin) = “default ¢t using T'(w)” is in D
false otherwise

and C(n) = false. In addition, the following statements are executed.
reprs(n) := {mk_repr(T, mk-var_node(v.), InstList(parameters(T), [parameters(T) — w@]))};
closure(n);
mk-trans(n)

The T representation of v is variable v. with associated parameters w. Set reprs(n) contains initially

the T' representation of n. closure(n) constructs all representations that can be derived by using
conversion-of-representation rules. Functions closure, mk_repr and mk_trans will be defined later.

Suppose T transforms 77:¢; to vz:f2. As mentioned in a previous section, for a directive
change 7 using T (w)

a list of new variables T; (say) of corresponding types 73 is generated and a symbol table entry is
created for each one of them. The declaration of ¥ is replaced by

var Ug:ts.

For every leaf n of the abstract program tree that is labeled v;, for 0 < i < #7, V(n) = true and
C(n) = false. In addition, the following statements are executed.
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reprs(n) := 0; trans(n) == L

Recall that a transform like T' that transforms lists of variables does not contain representation
rules for expressions.

8 Representations and transformations of constants

Constants of a type are introduced in the type definition. The concrete form of a constant is
described by a regular expression. Constants may appear in a program and may need to be
transformed before further transformation of the program can proceed. The transformation of
a constant c:t can only be directed by a directive

default ¢ using T'(w).

A transform T that transforms v;:t; to ve:ty may contain rules for the transformation of con-
stants of type 1. The pattern of each such rule, const-id{re}:t1, is a regular expression (re) that
describes one or more constants of type ¢;. The replacement is an expression that may contain id.

For an abstract tree node n that is labeled with a constant c:t, V(n) = false and

C(n) = true if “default ¢t using T'(w)” is in D
" | false otherwise.

In addition, the following statements are executed.

reprs(n) := 0; closure(n); mk_trans(n).

9 Representations and transformations of expressions

If » is an expression node ezp_op 7, then

V(in) = (Vn|nen:V(n))
C(n) = (Vn|nemn:C(n))

As mentioned in Section 2, each expression may have more than one representation. A repre-
sentation rule provides a way of constructing a representation of an expression. These rules can be
classified in two categories:

e Rules that provide a way of constructing the representation of an expression from the repre-
sentations and/or transformations of its subexpressions. These rules are kept in a set s;.

e Conversion-of-representation rules, which convert one representation of an expression into
another. All conversion-of-representation rules are kept in a set s.
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Application of a transform rule to a node is a function
apply: rule X node — repr + L
Intuitively, apply(r,n) is

e A representation that is constructed for abstract tree node n using rule r,

e L, if r can not be applied to node n.

Type repr will be discussed shortly. The definition of apply is given in Figure 6. Function apply
uses app whose definition is given in Section 5.

apply(r,n)
var E:environment;
E := match(pattern(r),n,0);
if E#1 cand app(r,E) then
mk_repr(trans_of (r), inst(replacement(r), E), InstList(parameters(r), E))
else L
end apply

Figure 6: Application of a transform rule to an abstract tree node.
Function apply makes use of function mk_repr, which we describe here. mk_repr(T,r,rl) is
a T representation of an expression whose replacement instantiation is r and list of replacement

instantiations 7l for the transform parameters that are associated with the T representation. Each
such representation is implemented with a record that contains the following information:

1. The name of the transform whose representation is constructed,
2. The representation of the expression according to this transform,
3. A list of the values of the parameters of the transform whose representation is constructed.

The values of the parameters appear in the same order as the parameters of the transform in
the transform declaration.

We denote [T,r, rl] such a record. Type repr is the type of these records. Functions has_repr,
get_repr and get_param that were used previously are defined as follows.

1. has_repr(n,T) = (3r,7l|: [T,r,rl] € reprs(n)),
2. get_repr(n,T) = (3rl | [T,r,rl] € reprs(n) : r),

3. get-param(n,T,p) = (3r | [T,r, rl] € reprs(n) : ri[rank(p, parameters(T))]).
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mk_reprs(n)
var t:repr + L;
for r in s; do
¢t == apply(r,n);
if t #1L then
if has_repr(n, representation(r)) then
if 3T, rl | t=[r,T,7rl]:7) > get_repr(n, representation(r)) then
reprs(n) := reprs(n) — {get_repr(n, representation(r))} U {t}
else skip
else reprs(n) := reprs(n) U {t}
end
end mk_reprs

Figure 7: Construction of representations of an expression.

With each expression node n of the abstract tree is associated a set reprs(n) of all representations
of n. At each expression node n of the abstract tree, the transformation algorithm constructs the
set reprs(n) of representations of n from the representations and/or transformations of the subtrees
of n. Function mk_reprs of Figure 7 takes a node of the abstract tree as an argument and constructs
the representations of the node.

If two different patterns match the same node n, then one of the two has to be chosen for the
representation of n to be constructed. Logically, it does not matter which one is chosen. Predicate >
decides which representation is preferable. Since the test for choosing the appropriate pattern to be
used is localized, more elaborate heuristics may be employed for choosing the most suitable pattern.

The conversion-of-representation rules are like the other representation rules, with the exception
that the corresponding pattern has no subpatterns. These rules describe the conversion of one
representation of an expression to another. Before a conversion of representation rule can be applied
to convert the 77 representation of an expression to a T representation, the T} representation has
to be constructed. This can be accomplished by maintaining a set S that contains the conversion of
representation rules that have not been used yet. As mentioned in a previous section, all conversion-
of-representation rules are kept in set s. The algorithm for applying the conversion of representation
rules in the appropriate order, when abstract tree node n is visited is shown in Figure 8. If n is an
abstract tree node, then closure(n) augments reprs(n) with representations that are obtained with
conversions-of-representation rules.

The transformation of an expression is constructed in the same way as the representations
of the expression. The only difference is that set s3, which contains the transformation rules, is
used instead. Figure 9 shows the algorithm for constructing a transformation of an expression.
max, (a,b) is the maximum of a and b with respect to relation >. We assume that a =L for all a.
Again, heuristics can be employed for choosing the most appropriate transformation rule when more
than one rule can be applied to an abstract tree node.

The transformation algorithm performs the following steps when it visits an expression node n:
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closure(n)
var S; := sg;
var t:repr + L;
do
for r in Sy do
t := apply(r,n);
if t #1L then begin
Sy 1= Sy — {r};
if has_repr(n, representation(r)) then
if 3T, rl | t=[r,T,rl]:r) > get_repr(n, representation(r)) then
reprs(n) := reprs(n) — {get-repr(n, representation(r))} U {t}
else skip
else reprs(n) := reprs(n) U {t}
end
end
until S is unchanged
end closure

Figure 8: Construction of conversion of representations.

mk_trans(n)
var E:environment;
trans(n) := L;
for r in s3 do
E := match(pattern(r),n,0);
if E#1 cand app(r,E) then
trans(n) := max, (inst(replacement(r), E), trans(n))
end
end mk_trans

Figure 9: Construction of transformation of an expression.
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reprs(n) := 0; mk-reprs(n); closure(n); mk_trans(n)

10 Transformations of statements

If n is a statement node stmt_op 7, then

V(in) = (Vn|nen:V(n))
Cn) = (Vn|nem:C(n))

The transformation of a statement is constructed in the same way as the transformation of
an expression. When the transformation algorithm visits a statement node n, it executes the
following statements.

reprs(n) := 0; mk_trans(n)

Again, special heuristics can be employed for choosing the most appropriate transformation rule

when more than one rule can be applied to an abstract statement node.

11 Transformations of programs

Let W be the set of abstract tree nodes that are the highest nodes in the abstract tree for which
a transformation has been constructed. The transformation of the original program is successful if

1. For every leaf that is not in a subtree of a node in W and is labeled with a variable v, no
directive in D is applicable to v,

2. For every node n that is not in a subtree of a node in W, there is no directive
default ¢ using T'...
in D with type_of (n) = t.

These conditions are checked by function check that was shown in Section 6.

The transformed program consists of the original tree where each node in W is replaced by its
transformation. Function mk presented in Section 6 constructs the concrete tree.
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12 Correctness

In this section we discuss the correctness of the transformation algorithm. First, we define validity
of a transformation with respect to a set of transforms and transform directives. Then we show
that the algorithm constructs valid transformations of a program with respect to the transforms
and transform directives that appear in the program.

A program P’ is a valid transformation of program P with respect to a set of transforms 7" and
a set of transform directives D if

1. For every directive “change 7 using T'(w)” in D where T € T, all free instances of ¥ have
been eliminated from P, as prescribed by T,

2. For every directive “default t using T(@)” in D where T € T, every variable v:t for which
no change directive is given is replaced using 7(w) and every expression of type ¢ is removed
from P.

We write P =% P’ to denote that P’ is a valid transformation of P with respect to 7 and D.

In this section we show that the transformation algorithm produces a program P’ such that
P =1 P' iff such a program exists.

Let n' be a representation of an abstract expression node n or a transformation of an abstract
statement or expression node n. Define properties Py (n,n') and Po(n,n') as follows:

1. Py(n,n): If V(n) then n’ contains no instances of variables in the subtree rooted at n that
need to be transformed,

2. Pg(n,n’): If C(n) then n’ contains no instances of constants in the subtree rooted at n that
need to be transformed.

Let r be a representation of an abstract expression node n and ¢ be a transformation of an abstract
expression or statement node n. During program transformation, the transformation algorithm
maintains the invariant

I, = Pv(n,T)/\Pv(n,t)/\Pc(n,T)/\Pc(n,t)

at node n.

Lemma 1 Let n be an abstract tree node. If for every descendent m of n properties Py(m,m')
and Po(m,m') hold (where m' is a transformation or a representation of node m), then for every
rule r for which E = match(pattern(r),n,0) and app(r, E), inst(replacement(r), E) has properties
PV and Pc.

Proof: Let n be an abstract tree node for which V(n)V C(n). Assume that for every descendent m
of n properties Py (m,m’) and Pc(m,m’) hold (i.e. I, is true), where m' is a transformation or
a representation of node m. Let r be a transform rule and E = match(pattern(r),n, ).

32



Since V(n) = (Vn|nen:V(n))and C(n) = (Vn |n € m: C(n)), it follows from the definition
of app in Section 5 that whenever rule r such that app(r, E') is used to construct a representation
or a transformation of n, the constructed representation or transformation does not contain any
instances of variables or constants in the subtree rooted at n. Functions apply and mk_trans
construct a representation and a transformation of a node, respectively. When transform rule r is
applied using environment E = match(pattern(r),n,0) (i.e. when inst(replacement(r), E) is used),
condition app(r, E') holds.

Hence, for a representation r or a transformation ¢t of n
Pv(n,’f') A PV(nat) A PC(n’T) /\PC(n’t)

i.e. I, is maintained during program transformation. )
Lemma 2 Let n be a leaf of the abstract tree. I, is true.

Proof: We distinguish the following cases:

1. Let n be a node labeled with variable v:t. If “change v using T'(w)” is in D, then V(n) =

" true and C(n) = false. In this case v is replaced by a new variable v’ as prescribed by T,
and ¢’ is v’s T representation. Hence Py (n,v') A Po(n,v') trivially. In addition, every other
conversion of representation r that is derived from v' can not contain any instance of v, hence
Py(n,r) A Py(n,r). Similarly for a transformation ¢. Hence I, is true in this case.

2. Let n be a node labeled with variable v:t. If no “change v using ...” is in D, but
“default ¢t using ...” is in D, then V(n) = ¢rue and C(n) = false. The proof of this
case is the same as the previous one.

3. Let n be a node labeled with variable v:t. If no transform directive is applicable to v, then v
is not replaced by another variable and V(n) = C(n) = false. Hence I, is trivially true.

4. Let n be a node labeled with constant c:t. If “default ¢ using ...” is in D, then V(n) = false
and C(n) = true. In this case the representations and transformations of n are constructed.
Hence Py (n,n’) A Po(n,n') trivially for every representation and transformation n’ of n.

5. Let n be a node labeled with constant c:t. If no transform directive is applicable to ¢, then
V(n) = C(n) = false. Hence I, is trivially true.

Hence for a leaf n of the abstract tree I, is true. O

It follows from the previous two lemmas that I, is true at every node n of the abstract tree.
This implies that every representation and transformation that is constructed for a node n of the
abstract tree observes all transform directives in D. In addition, the definition of a variable v on
which a transform directive D in D is applicable is replaced by a new definition according D. At
the end, the algorithm checks if the original tree has any variables that ought to be transformed and
they are not. In this case no rules could be used to transform these variables and the expressions
that contain them so the algorithm returns L. Hence part (1) of the definition of validity is satisfied.
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From the definition of app it follows that every expression, variable or constant that is used
in constructing a representation or a transformation of a program fragment is not of type ¢ where
“default ¢ using ...” is in D. At the end, function check checks if the resulting program con-
tains any remaining expressions of type ¢ where “default ¢ using ...” is in D. If not, then the
transformed program is constructed by function mk. Hence part (2) of the definition of validity is
satisfied and we have the following soundness theorem.

Theorem 1 Given a program P, a set of transforms T and a set of transform directives D, the
transformation algorithm produces a program P’ such that P |=% P' if such a program ezists.

Conversely since the algorithm applies all transform rules and constructs all possible represen-
tations for expressions, if there is a program P’ such that P =% P’ the algorithm will construct it.
Hence we have the following completeness theorem.

Theorem 2 Given a program P, a set of transforms T and a set of transform directives D, if there
is a program P' such that P i=g P' then the transformation algorithm will construct it.

13 Complexity analysis of the transformation algorithm

The basic transformation algorithm, which transforms a program fragment that contains no function
or procedure calls, runs in polynomial time with respect to the size of the program and the transform
rules.

Let n be the size of the abstract program P. Program P is represented internally by an abstract
tree that has size O(n). Let also ¢ be the number of transform rules in all transforms in 7', p be
the maximum pattern size, r be the maximum replacement size and k& be the maximum number of
transform parameters a transform may have.

At each internal node n of the abstract tree, the transformation algorithm computes V(n)
and C(n). These values are the disjunction of the corresponding values associated with the children
of node n. Computing V'(n) and C(n) takes time O(w) where w is a constant and is the maximum
number of children a node can have.

Constructing a representation or a transformation takes time O(pn + kr) since both the pattern

and the replacement of a rule are traversed and the matching may require testing equality of subtrees
of P.

Since there are at most ¢ rules, the algorithm spends time O(t(pn + kr)). We assume that
predicate > takes time proportional to the size of the abstract tree. The time spent by > at each
node of the tree is thus O(tn).

Hence at each node of the tree, the algorithm spends time O(¢n + t(pn + kr) + w), which is
O(t(pn + kr)). Therefore, the total time spent by the transformation algorithm is O(nt(pn + kr)),
which is O(n?).
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14 Conclusions

A prototype implementation of the algorithm described in this report has been developed in Scheme.
The preprocessor that processes the abstract program, the transforms, and transform directives and
produces the necessary data structures for the second phase is about 1500 lines of code. The second
phase that carries out the coordinate transformation of the program consists of about 1000 lines
of code. The implementation has been tested on small examples containing transforms like BN of
Section 2.

The pattern-matching algorithm used for program transformations could perhaps be modified to
take advantage of the techniques for tree pattern matching presented in [HO82]. It is not clear how
these techniques could be adopted to the program transformation context and the data structures
used by the program transformation algorithm.

Other issues pertaining to processing program transformations are reported in other articles.
Suppose for example that the abstract program contains a procedure p with one parameter a. If a
call p(z) occurs where z is transformed with transform S, then the transformation algorithm must
construct a fresh copy of p in which parameter a is transformed with transform S. The problem
becomes more complicated if p has more parameters.

Another issue that has been investigated is the case in which one of the parameters or the
concrete variable of a transform S is transformed with another transform 7'. In this case substantial
preprocessing of the transforms is required in the first phase of the algorithm, before the program
transformation is constructed.

Finally the development of good heuristics for choosing the appropriate pattern when two or
more patterns match an abstract tree node, needs further investigation. It seems that a metric
should be defined that depends on the complexity of the structure of the pattern, the complexity
of the operations involved in the replacement, and the structure of the subtree of the abstract tree
that matches the pattern. This metric can then be used for comparing the appropriateness of the
patterns that match a subtree of the abstract tree.
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