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Abstract

We give a rigorous, yet, we hope, readable, presentation of the Hopcroft-Tarjan linear algorithm for testing the
planarity of a graph, using more modern principles and techniques for developing and presenting algorithms that
have been developed in the past 10-12 years (their algorithm appeared in the early 1970s). Our algorithm not only
tests planarity but also constructs a planar embedding, and in a fairly straightforward manner. The paper concludes
with a short discussion of the advantages of our approach.
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1. Introduction

This paper attempts to provide a rigorous and readable presentation of the Hopcroft-Tarjan linear algorithm for
testing the planarity of a graph and building its planar embedding [3]. Their presentation is quite opaque, due in
large part to our inabilities in presenting algorithms in the early 1970’s and to the newness of the algorithm. There
have been later presentations, see for example [4], but we felt the need for a more careful presentation that defined
clearly the problems involved in the algorithm, that attacked each in a more isolated manner, and that made use of
more modern ideas in presenting algorithms and their proofs.

The paper is organized as follows. The rest of this section presents our notation. Sect. 2 develops the basic
planarity algorithm, assuming no particular representation of the graph and data. This a high-level algorithm can be
refined in a number of ways. Section 3 presents some desired properties of the graph representation and refines the
algorithm to take them into account, while Sect. 4 shows how to change the undirected graph into one satisfying
these properties. Sect. S discusses a suitable representation of the planar embedding of a graph and refines the algo-
rithm accordingly, while Sect. 6 makes a final data refinement and analyzes the order of execution time of the algo-
rithm. Sect. 7 concludes with a discussion.

O This research was supported by the NSF under grant DCR-8320274.
1 Visiting Comell from the Computer Science Department, Jiangxi Normal University, Nanchang, People’s Republic of China.



Our algorithms manipulate arrays and sequences. A sequence s = [sg,51, ..., S¢—_;] has #s elements. Element k
of an array or sequence s is referenced using s.k instead of the more usual s[k], in an attempt to simplify notation.
Operation *.” binds tightest and left to right, so that s.k.j = (s.k).j. The notation s. (h..k) denotes the subsequence of s
consisting of s.h through s.k; 5. (i..) = s. (i. #s-1); and s. —i = 5. (#s—i), for positive i, so that s.—1 is the last element
of 5. Finally, s " ¢ denotes the catenation of sequences s and ¢.

We deal with a finite undirected graph G(V,E), where V= {i | 0<i <#V} is the set of vertices and E is the set
of edges. An edge is represented by (#,v) where u is its head vertex and v its tail vertex. The graph has at least one
edge and has no self-loop —i.e. no edge of the form (u, u).

By a (simple) path of G we mean a sequence of vertices p = [vg, V1, ..., Vg,—1] such that each pair (v;,v;,;) is an
edge of G and the first #p—1 vertices are distinct. A path of length at least 2 is a cycle if its first and last vertices are
the same. A path is itself a graph with vertices the v; and edges the (v;,v;;;). We use - to denote extension of a
path: for paths p =[a,....,cland ¢ =[c,d,...,el,p - qis the path [a,...,c,d,...,e].

G0 v G 1 denotes the union of graphs G0 and G 1, i.e. the graph consisting of all edges and vertices that are in at
least one of GO and G1. Graph GO-G1 contains as its edges all the edges of GO that are not in G1. An
undirected (directed) graph is biconnected (strongly connected) if any two distinct vertices lie on a cycle of the
graph.

2. The basic planarity-testing algorithm

G is planar iff there exists a mapping of its vertices and edges into the plane such that each vertex is mapped into
a distinct point, each edge is mapped onto a simple curve connecting the images of its end points, and no two curves
that are the images of two edges share points except possibly for their ends. The mapping is called a planar embed-
ding of G. The following lemmas by Euler and Berge (see e.g. [1]) allow us to restrict attention to graphs that are
biconnected and satisfy #E <3*#V —6 for #V >3, which we do from now on.

(2.0) Lemma. If G is planar, then #E <3*#V -6 for #V >3.

(2.1) Lemma. G is planar iff all its biconnected components are.

Consider testing whether G is planar. Since G is biconnected, it contains a cycle ¢ (say). Partition the edges of
G—c into a set S of segments: two edges are in the same segment iff there is a path from an end point of one edge to
an end points of the other and no vertex of the path is in c. We say that ¢ defines S. The Jordan Curve Theorem
(see e.g. [2]) tells us that a segment is completely on one side of ¢ in any planar embedding of G.

cycle ¢ has the edges w,x,y,z

segment sO has the edges a,b,d,e,.f, g
seam(c,s0) has the edges y,z

spine(c,s0) has the edges a,b,e (or a,b,g,.f)
segment s1 has the edge

seam(c,s1) has the edge w

spine(c,s1) hasthe edge

Figure 0. Illustration of a cycle and two segments

We introduce several terms concerning cycle ¢ and a segment s. (See Fig. 0.) The vertices of s that are on ¢ are
called artachments of s. A segment has at least two distinct attachments, since the graph is biconnected. Since the
attachments are on c, there is a path in ¢ that contains all the attachments and whose first and last vertices are



different attachments —in fact there are as many such paths as there are attachments, since any attachment can be
the head of the path. Arbitrarily call one of these paths the seam of ¢ and s, denoted by seam (c,s). By the defini-
tion of s, there is a path in s from one end vertex of seam (c,s) to the other. Arbitrarily call one of these paths the
spine path, spine (c,s). Note that seam (c,s) - spine (c,s) is a cycle.

In embedding the segments in the plane around c, some of the segments will be inside ¢ and some outside. We
now describe conditions under which two segments must be on different sides.

(2.2) Two segments interlace (see Fig. 1) iff either of the following holds:

(a) There are vertices w, x,y,z on c, in that order, such that w and y are attachments of one segment and x and
z are attachments of the other, or

(b) The two segments have at least three attachments in common. O

s0

cycle ¢ cycle ¢

Figure 1. Illustration of interlacing of segments s0 and s1

Interlacing segments cannot be embedded on the same side of cycle c. We call the set of segments S defined by
¢ bipartite iff it has a partition (S/,SO) (standing for the Inside and Outside sets of segments) such that no two seg-
ments in S/ interlace and no two segments in SO interlace. If S is bipartite, (S/,SO) is called a bipartite partition. It
has been proved [0] that

(2.3) Theorem. Biconnected graph G with cycle c is planar iff

(a) The set S of segments generated by ¢ has a bipartite partition;
(b) For each segment sin §, ¢ vsisplanar. [

Theorem (2.3) is the germ of a recursive algorithm for testing planarity. However, it requires testing whether
¢ v s is planar, and it will be useful to analyze this test further. The subgraph seam (c,s) v s (see Fig. 2) has the
cycle seam (c, s) - spine (c,s), and this cycle defines a set Q (say) of segments, just as ¢ defined a set of segments of
G. We can now prove Theorem (2.4).

_____ 0q2 cycle ¢ =seam(c,s) - d.
s = spine(c,s) v Q where
Q=q0vglug2v.. and

each gi has attachments only to seam (c, s)
Spine(c,s) - spine (c, s), as shown by dotted lines.

d seam(c,s)
“ogl

Figure 2. The composition of ¢ and s



(2.4) Theorem. c v s is planar iff
(a) seam(c,s) v s is planar;

(b) Let Q be the set of segments of seam (c, s) v s defined by cycle seam (c, s) - spine (c,s). Q has a bipartite
partition QP = (QI, Q0) such that no element of QO has an attachment to an inner vertex of seam (c, s).

Proof. Let d =c —seam(c,s) (see Fig. 2). The graph ¢ v s has the cycle seam (c,s) - spine (c, s), and the set of
segments generated by this cycle is {d} v Q. Therefore, by Theorem (2.3), ¢ v s is planar iff

(a) {d} v Q isbipartite and

(b) For each segment t of {d} v Q, seam(c,s)v spine(c,s) vt is planar.
This we can write as

(al) Q has a bipartite partition (Q/, QO), for which

(a2) d interlaces with no segment of QO (so that d can be placed in QO);
(b1) for each segment ¢ of Q, seam (c,s) v spine(c,s) v t is planar;

(b2) seam(c,s) v spine(c,s) v d is planar.

By Theorem (2.3), (al) and (b1) are together equivalent to ‘seam (c, s) v spine (c,s) v s is planar’, which is part (a)
of the theorem we are proving. Further, (b2) obviously holds. It remains only to show that (a2) is equivalent to (b)
of Theorem (2.4), which we now do by showing that — (a2) = — (b):

d interlaces with a segment ¢ of QO
= {Since d has only two attachments to seam (c, s) - spine (c, 5)}
d and ¢ satisfy part (a) of interlacing definition (2.2)
{Since d attaches exactly to the end vertices of seam (c,s)}
t attaches to inner vertices of both seam (c, s) and spine(c, s)}
= {Since, by construction, ¢ attaches to an inner vertex of spine (¢, s)}
t attaches to at least one inner vertex of seam(c,s) O

We give in (2.6) a recursive procedure for testing planarity, the body of which is little more than a rendering of
Theorems (2.3) and (2.4) into procedural form. In studying (2.6), it may help to refer to Fig. 2.

A call on Planarity is given a partially constructed bipartite partition SP of some of the segments defined by a
cycle c, together with the seam and spine of another segment. The purpose of the call is to test the planarity of the
new segment and to add it to SP. At this stage, we make no statement about the representation of SP.

The first statement of the procedure body helps test part (a) of Theorem 2.3. Next, the loop determines whether
seam(c,s) v s is planar (Part (a) of Theorem (2.4)), where p = seam (c, s), and sets x to false if it is not. At each
iteration of the loop, QP contains a bipartite partition of the segments of p v s that have been processed thus far, and
each iteration processes one of the segments. The invariant of this loop is given in (2.5). The last statement of the
body checks part (b) of Theorem (2.4).

(2.5) Invariant: QP is a partition of ((the set of segments defined by p - sp) — Q),
x = ‘QP is bipartite’

(2.6) {SP is a bipartite partition of some of the segments defined by a cycle ¢ (say).
Path p is the seam and sp the spine of a segment s (say) defined by c, and s is not in SP.
Variable x is true.
If ¢ v s is planar and s can be added to SP, then add it; otherwise, set x to false.}



proc Planarity(value p,sp: path; var x: Boolean; var SP: Partition);
begin Extend bipartite partition SP with s (if not possible, set x to false);
var Q := The set of segments of s defined by cycle p - sp;
var QP : Partition := (D, ®);
do x ~ Q#P > varq: segment;
Choose (¢,Q); Q= 0-{q};
Planarity (seam (p - sp, q), spine(p - sp, q), x, QP)
od;
Rearrange QP to satisfy part b of Theorem (2.4) (if not possible, set x to false)
end .

It remains to show how to call Planarity the first time to test for the planarity of G. Consider an arbitrary vertex u
of G. Since G is biconnected, some cycle begins and ends in u. Further, each segment defined by the cycle has at
least two attachments and thus has an attachment that is not u. Let path p be [u] (i.e. p has no edges) and spine sp
be the cycle beginning with an edge leaving u. Assuming the existence of a virtual cycle [u, u] consisting of a self-
loop, the following builds a planar embedding of G:

{uis a vertex of G}
©var x := true;,
var SP: Partition = (O, D),
Planarity ([u], some cycle beginning with u, x, SP)

3. Defining a suitable representation of the graph

Algorithm (2.6) contains operations for which we have a choice. There may be several possible spines to com-
plete a cycle, and the order in which the segments in QP are processed is arbitrary. We now define a representation
of the graph in which these choices are already made. The edges of the graph will be directed and its vertices
renumbered so that at each invocation of procedure Planarity the spine and the order in which to process the seg-
ments are predetermined. Further, we give a theorem that simplifies the test for the interlacing of a new segment
with those in an already-formed bipartite partition. We rewrite Planarity to make use of this representation.

The original graph G, with vertices V =0.#V -1, is undirected. Instead of G, our algorithm processes a
corresponding directed graph that is constructed by giving a direction to each edge of G. We use a conventional
adjacency-list representation A. (0..#V 1) in which A.i is a sequence of all neighbors of vertex i in the directed-
graph representation. Our purpose here is to state properties of A so that several parts of procedure (2.6) can be
refined. It will be advantageous to state the properties entirely in terms of the seam p and the spine sp that define a
segment s at the beginning of execution of the procedure body of (2.6). Only enough properties are stated to allow
us to refine the procedure body, but remember that the properties hold each time the procedure is called.

The directed edges and renumbered vertices are to satisfy the following:

(3.0) (a) In the directed graph, s v p is strongly connected.
(b) The edges of path p - sp are directed in that order. The vertex numbers of the path are in increas-
ing (but not necessarily consecutive) order, except for the last (remember, p - sp is a cycle).
(c) The only directed edge from p to s is the first edge of the spine path; it is called the root edge of
the segment. It leaves the highest attachment of p and s. All other edges joining p and s are directed
from s to p.



One of the tasks of Planarity is to construct a spine. Consider an inner vertex v of a spine. Its neighbors are given
by the sequence A.v. Imposing the following constraint simplifies construction of a spine:

For v an inner vertex of a spine, the first element of A.v is also in the spine.

This constraint and (3.0) have two consequences. First, path p and spine sp need not be parameters of Planarity.
Instead, only the first two vertices u and v (say) of the spine are needed. For example, the following algorithm
stores the sequence of inner vertices of the spine in variable spi and the tail of the spine in w. The loop guard is
correct because, by (3.0b), inner vertices of sp are > u and, by (3.0c), u is the highest attachment of p and s.

B.1) spi,wi=1[], v;
{Inv: u " spi * wis aprefix of spine sp}
dow>u—spi'=spi "w; wi=Aw.0 od.

Second, by construction, for each inner vertex y of the spine the following holds. The first element of A.y is a
vertex of the spine. For each other vertex z in A.y, (y,z) is the first edge of a spine path of a segment g defined by
cycle p - sp. Hence, the loop over elements of the set of segments Q of algorithm (2.6) can be written as

(32) fory e spidovark:=1;
dox ~ k<#A.y — Planarity(y, A.y.k, x, QP); k= k+1 od
“od.

It remains to choose an ordering in which to process the segments of Q. The segments with the higher-numbered
attachments will be processed first. For two segments with the same highest attachment, the one with the lowest
attachment is processed first. If two segments have the same highest and lowest attachments, we have a third way
of ordering them. Definition (3.3) introduces the term may precede to help describe the ordering; Fig. 3 illustrates
the four cases of (3.3) in order to provide a gentle introduction, but remember that (3.3) is the definition.

(3.3) Definition. Let at.s denote the set of attachments of a segment s to p - sp. Define

h.s = max (at.s) (= the highest attachment of s)
l.s = min(at.s) (= the lowest attachment of s)
ll.s=min(ats—-{ls}) (= the second lowest attachment of s) .

Segment s may precede segment ¢ if
(@) h.s>ht, or
(b) hs=ht and lt>1ls, or
(©) hs=ht, ls=It, and hs=Ill.s>Ilt, or
) hs=htls=1t,~(hs=l.s>Il.t),and —~(ht=1l.t>lls). O

Ls(<lt)

cycle cycle

(@ ®

Figure 3. Illustration of four cases of Definition (3.3)



‘May precede’ is defined so that when s may precede ¢ a test for interlacing of s and ¢ can be done in terms of the
spine of ¢ only —the other attachments of ¢ need not be considered, as Theorem (3.4) shows.

Note that at least one of ‘s may precede £ and ‘¢ may precede s’ holds. However, if part d of the definition
holds, then s may precede ¢ and ¢ may precede s. This is mandated by the need to sort segments in linear time
according to this ordering when constructing the directed graph (see Sect. 4). If we require that only one hold, then
a linear-time sorting algorithm may not be possible.

(3.4) Theorem. Suppose segment s may precede segment z. Then s and ¢ interlace iff there is an attachment v of s
satisfying h.t >v > L.t

Proof. 'If there is no such v, then, since all attachments of ¢ lie in the range l.z..A.t, s and ¢ do not interlace. Suppose
there is such an attachment v. A four-case analysis based on definition (3.3) shows that s and ¢ interlace:

Case 0. h.s > h.t. The four points hA.s > h.t > v > L.t form the sequence w, x,y, z of definition (2.2a) of interlacing.

Case 1. h.s=h.t ~ l.t>ls. The four points h.t>v > Lt >ls form the sequence w,x,y,z of definition (2.2a) of
interlacing.

Case 2. hs=h.t » Ls=1t ~ h.s=Ils>ll.t. Since the second lowest attachment of s is also the highest, v does not
exist and the case does not arise.

Case 3. hs=ht ~ ls=lt » =(hs=lls>lt) ~ —(ht=Ilt>Ils). There are four subcases to consider. If
h.s=I1ls=I1Lt, then v does not exist and the subcase does not arise. If h.s>Il.s>IlLt, then the four points
h.t > ll.s > Il.t > l.s form the sequence w, x,y, z of definition (2.2a) of interlacing. If h.s > ll.s=Il.t, then s and ¢ have
the three distinct attachments A.s, /l.s, and s in common and hence interlace. If h.s > ll.t > Il.s, then the four points
h.s > Il.t > ll.s > 1.t form the sequence w,x,y, z of definition (2.2a) of interlacing. O

As mentioned earlier, this theorem allows us to test for interlacing of two segments by considering all attach-
ments of one segment and only the two attachments of the spine of the other. We order the neighbors of an inner
vertex of the spine to take advantage of this property:

(3.5) For y an inner vertex of spine sp, A.y. 0 is the next vertex on the spine. For each other element A.y.i,
(y,A.y.i) is the first edge of the spine of a segment. Further, for each i, 1 <i <#A.y, the segment
given by edge (y,A.y. (i—1)) may precede the segment given by edge (y,A.y.i).

We give in (3.6) procedure Planarity, modified to take into account the above analysis. At the same time, we add a
parameter cstart, whose purpose will become clear in a later modification; it is introduced now just to reduce the
number of different levels of modification to be presented. Note that the loop that builds QP is simply a refinement
of the corresponding loop of version (3.2), processing the segments in an order given by Definition (3.4). In addi-
tion, it sets spi, the sequence of inner vertices of the spine, to the empty sequence.

(3.6) {Global directed graph A satisfies (3.0) and (3.5).
Parameter cstart is the lowest vertex in a cycle ¢ (say) and SP is a bipartite partition of some seg-
ments defined by c.
Edge (u,v) is the first edge of the spine sp (say) of a segment s (say) defined by c, s is not in SP, and
all segments in SP may precede s.
Parameter x is true.

If ¢ v s is planar and s can be added to SP, then add it; otherwise, set x to false.}



proc Planarity(value cstart,u,v: vertex; var x: Boolean; var SP: Partition);
begin var spi: seq (vertex);

var w: vertex;

Store the inner vertices of the spine in spi and its end vertex in w (see (3.1));

Add s to SP (if not possible, set x to false);
var QP : Partition;
{Build bipartite partition QP for the segments (see (3.2))}

QP = ((I),(D);
dox ~ spi#[]—> vary, spi:= spi.—1, spi. (0..#spi-2);

var k= 1;

dox ~ k<#Ay — Planarity(w,y, Ayk, x, QP); k= k+1 od
od;

Rearrange QP to satisfy part (b) of Theorem (2.4) (if not possible, set x to false)
end

The sequence of statements to initiate the planar embedding of a graph G is transformed into

var x := true;
. var SP:Partition = (P, D);
Planarity (0,0, A.0.0, x, SP)

4. Constructing the directed-graph representation A

We assume that undirected graph G is given as an adjacency list A in which, for each vertex v, A.v is a sequence
of all vertices adjacent to v. That G is undirected means that an edge (u,v) is represented twice: u isin A.v and v is
in A.u. This section presents an algorithm that directs the edges of A and renumbers its vertices so that A satisfies
(3.0) and (3.5) for all cycles and segments identified in recursive procedure Planarity. This directed graph depends
on the spanning tree generated during a depth-first traversal of G. (Since the original and resulting graphs differ
only in that edges have been directed and vertices renumbered, one is planar iff the other is.) Written under the
assumption that the reader has knowledge of depth-first search and its properties, this section is quite terse.

We begin by defining a palm graph derived from G and prove in Theorem (4.1) that it satisfies (3.0). An exam-
ple of a graph and an associated palm graph is given in Fig. 4.

(4.0) Definition. A spanning tree of undirected biconnected graph G is a tree whose edges are in G and
whose nodes are all the vertices of G. The edges of G that are not in the spanning tree are called
fronds. A path consisting of a sequence of zero or more spanning-tree edges followed by a frond is
called a span-frond path. A palm graph P for G (based on a given spanning tree of G) is a version of
G with all edges directed and vertices renumbered to satisfy:

(a) Each spanning-tree edge of P is directed from parent to child; for such a directed edge
(u,v), u<v.

(b) Each frond (v,w) is directed so that v > w.

(c) In each span-frond path p = (u,...,w) of P where w is not an inner vertex of p, w <u. O

One can prove that a palm graph is strongly connected if the graph from which it is formed is biconnected. We
leave the proof to the reader.



l A
5 )
graph G Palm graph P, with fronds dashed

Figure 4. A graph and an associated palm graph

(4.1) Theorem. Palm graph P can be iteratively decomposed so that each subcomponent satisfies (3.0).
Proof. The proof is by induction on the structure of A. The following first decomposition satisfies (3.0):

(a) Virtual cycle c is [0, 0],

(b) Segment s consists of the whole graph P.

(c) Seam p is [0] and spine sp is any cycle beginning at vertex 0 (remember, P is strongly con-
nected).

Now consider any subgraph g of P that satisfies

(4.2) gis strongly connected and consists of a cycle ¢ together with all span-frond paths leaving c.

Note that the first decomposition of P satisfies (4.2). We show how to decompose g into ¢ and a set of segments s,
each of which has a seam seam (c, s) and a spine that satisfy (3.0). Further, s v seam (c,s) will also satisfy (4.2) (so
that it can be decomposed as well, and by induction the whole graph can be thus decomposed.)

Consider an edge (u,v) not in ¢ but with u in ¢. Define the segment s corresponding to (u,v) to consist of all
span-frond paths with (, v) as the first edge. Note that each edge of g that is not in ¢ belongs to exactly one such
segment, because the spanning-tree edges of s form a subtree of the whole spanning tree. Since g is strongly con-
nected, s has attachments to ¢. By property (c) of Definition (4.0), u is the highest attachment of s and c. Let the
lowest attachment be w, and let p = seam(c,s) be the path in ¢ from w to u. Let sp = spine(c, s) be any span-frond
path in s from u to w.

Now, (3.0a) holds because s v p is strongly connected. Second, (3.0b) holds because p - sp is a span-frond path
and each spanning-tree edge (x,y) satisfies x <y. Third, (3.0c) holds because any attachment w of s and p is
reached from u only by span-frond paths whose first edge is (4, v), and these all satisfy (4.0c). Finally, by the defin-
ition of s, (4.2) holds for the subgraph s vp. O

Hence, a palm graph as defined in (4.0) satisfies (3.0). We now discuss the construction of a palm graph. A
depth-first search of undirected graph A identifies a spanning tree. During the search, an array N. (0..#V—1) can be
constructed that contains in each element N.v the number of vertices processed before vertex v. Thus, N.r =0 for the
root r of the spanning tree, N.v=1 for the next vertex v processed, and so forth. Finally, A can be changed during
the search so that each spanning-tree edge is directed from parent to child and each frond (v,w) is directed so that
N.v > N.w. (Directing an edge between vertices x and y means deleting either y from A.x or x from A.y.)

Algorithm (4.3) performs a depth-first search, directing the edges of A and producing new vertex numbers in N.
(It also contains three statements B, C, and D, to be described later, which deal with arrays L and LL.) We claim,
without further proof, that assigning the number N.v to each vertex v of the result of such a depth-first search yields
a graph that satisfies (4.0).
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(43) varL,LL,N: array [0.#V-1] of 0.#V -1,

L.0,LL.0:= 0,0;
foric0.#V-1 doN.i = -1;
N.0:=0;

var n = 1;

DFS (0, A.0.0);

{Node u is numbered and v is not: 0SN.u <nand Nv=-1.
There is no path (u, ..., w) (for any w) satisfying N.u < N.w whose inner vertices are unnumbered.
Thus far, n nodes have been assigned distinct numbers from 0..n—1.

Assign v the number n. Direct edge (4, v) from u to v (i.e. delete u from A.v). Traverse in depth-first
order all edges reachable from v along paths of unnumbered vertices, assigning numbers to vertices
and directing edges as required in the discussion above.}
proc DFS (value u,v: vertex);
begin N.v = n; ni= n+l;
B{see (4.4)};
var k := 0;
do k <#A.v — var w = A.v.k; {w is the next neighbor of v to process}
ifw#u ~ 0SNw <Ny — {(v,w) is a frond}
C{see (4.5)) ; k= k+1
Ow=u v Nv<Nw — {(v,w)istobe deleted}
Delete A.v.k from A.v
ONw=-1 — {(v,w) is a new spanning-tree edge}
DFS (v,w); D{sce (4.6)} ; k:= k+1
fi
od
end

After execution of (4.3), the vertices of A have to be renumbered as given by array N and A has to be modified to
satisfy (3.5). Thus, for each vertex v, A.v. 0 should be a vertex of a spine path and the elements of A.v. (1..), which
define segments defined by the spine path, should be in an order given by (3.3). A.v.0 can be a vertex of a spine
path iff it is possible to reach the lowest vertex of the seam from A.v. 0 along a span-frond path.

To help in modifying A to satisfy (3.5), algorithm (4.0) is augmented to calculate two arrays L. (0..#V-1) and
LL.(0..#V-1), whose values upon termination of (4.0) will be as follows:

L.v is the minimum value N.w for vertices w reachable from v along span-frond paths;

LL.v is the second minimum value N.w of vertices w reachable from v along span-frond paths (or v if
there is no such second value).

The following statements for B, C, and D in algorithm (4.0) take care of calculating L and LL. We leave to the
reader the correctness arguments.

(44) B: Lv,LLvi=v,y
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45 C:ifNw<Lv -»Lyv,LLv:=Nw,Lv
0 Nw=L.v — skip
ONw>Lv - LLv:= min(LLv,Nw)
fi

46) D:ifLw<Lv ALw<LLw —LLv:=min(Lv,LLw); Lv:=Lw
OLw<Lv AnLw=LLw —LLv:=Lv; Lvi=Lw
OLw=Lv ~n Lw<LLw —LLv:= min(LL.v,LL.w)
OLw=Lyv ~ Lw=LLw — skip
OLw>L.v — LLv = min(LL.v,L.w)
fi

After execution of algorithm (4.0), we have directed graph A and arrays N, L, and LL. The neighbors A.v of each
node v have to be sorted into the order defined by (3.5). This means that they should be in the order given by array
L. But if two neighbors have the same L value, then, by (3.5), priority is given to those neighbors w satisfying
LL.w = w; otherwise, their order is immaterial. We can use a radix sort to sort all the edges (v, w) according to this
ordering in time proportional to the number of edges. Consider the function

2*N.w if (v,w) is a frond
" O((v,w)) =4 2*L.w if (v,w) is a spanning-tree edge and LL.w=w
2*Lw+1 if (v,w) is a spanning-tree edge and LL.w <w

Then ©((v,w)) < ©((v,u)) means that w may precede u in A.v but if O((v,w))= O((v, u)) their ordering does not
matter. We build an array Bucket. (0..2*#V —1) of sets of edges, where all edges with the same ©-value j (say) are
placed in set Bucket.j. Having done this, we can then move the edges back into A in the order given by array
Bucket, renumbering them as we do in (4.7). The complete algorithm to change undirected graph A to satisfy (3.0)
and (3.5) is then (4.3); (4.7). Note that it takes time O (#E).

(4.7) {Construct directed graph A satisfying (3.0) and (3.5)}
var Bucket : array [0.2*#V — 1] of set (edge);
for j € 0.2*#V —1 do Bucket.j := ®;
for (v,w) an edge of A do Bucket. (®(v,w)) := Bucket. (8 (v,w)) v {(v,w)};
fori ¢ 0.#V-1doA.i= O;
for j:= 0to 2*#V—-1do for (v,w) € Bucket.j do A.(N.v):= A.(N.v) “N.w

5. Embedding segments and testing for interlacing

We now transform Planarity so that it produces as well as tests for a planar embedding. We define a representa-
tion of the planar embedding, introduce a representation for a partition SP, and refine Planarity accordingly.

Before we begin, it will help us to determine exactly how many different spines, segments, and attachments are
created during execution of Planarity. This information will be useful in defining arrays and in discussing execu-
tion time. These numbers are actually quite easy to determine, using the fact that the directed graph is a spanning
tree together with a set of fronds. The spanning tree connects all the vertices, using #V -1 edges, so the rest of the
edges, #E —#V +1 of them, are fronds. Since each frond is the tail of the spine of a segment, we have the

(5.0) Lemma. Graph G has #E —#V +1 different segments and spines of segments.
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A planar embedding describes, for each cycle ¢ determined during execution of Planarity, on which side (inside
or outside) of ¢ each segment defined by c is to be placed. Let us number segments in the order in which they are
processed during execution of the first call Planarity (0,0,A.0.0,x,SP): segment O is the one defined by the edge
(u,v) = (0,A.0.0), segment 1 is the one defined by the second and third arguments in the first recursive call, etc.
We use a global array Side and a global variable N_Side as defined in (5.1). Upon termination, all segments will
have been embedded on one side or the other of their respective cycles.

(5.1) (N_Side segments have been numbered O, ..., N_Side -1, and, for 0<i < N_Side,
if segment i has been embedded, Side.i = ‘segment i is on the inside’.}
var Side: array [0.#E—#V] of Boolean;
N_Side : integer

Remark. From Side itself it is impossible to draw the graph in the plane. It is necessary to execute a procedure like
Planarity, but without all the processing of SP, in order to determine the segment numbers again. Alternatively, one
could maintain more information with each segment number, for example, the first vertex of the cycle defining it
along with its root edge. O

Now consider a call Planarity (u,v,x,SP), where Planarity is defined in (3.6), whose execution adds s to SP.

It is useful to decompose SP into blocks such that segments in different blocks do not interlace, while segments
in the same block interlace in such a way that the placement of one of them (inside or outside c¢) determines the
placement of all of them. (At this point, we deal with relations between blocks only, leaving until later the investi-
gation of the contents of the individual blocks.) Note that, by Theorem (3.4), s can interlace with a segment in SP
only if the segment has an attachment less than «, so testing interlacing requires considering only blocks with such
attachments. Also, ordering the blocks in a special way will simplify testing for interlacing and merging blocks
(when necessary). We gather the properties of this part of the representation of SP in the following definition.

(5.2) Representation of certain segments of SP.
(a) The segments in SP are partitioned into blocks: no segment of one block interlaces with a seg-
ment of another block and, within each block, the interlacing of its segments is such that the place-
ment of any one segment inside (or outside) ¢ determines the placement of all them.

(b) Variable b is a sequence of representations of the blocks of SP that contain a segment with an
attachment less than u. Each segment i in SP that is not in a block of b has been embedded, so that
Side.i has its final value.

(c) For each i, 0 <i < #b, each segment in blocks b. [0..i —1] may precede each segment in block b.i.

We now investigate placing the new segment s, with highest attachment A.s =u, in SP. In the investigation, we say
that a block interlaces with a segment s if at least one of its segments interlaces with s.

(5.3) Theorem. Segment s interlaces with a segment of SP iff it interlaces with the last block B (say) of b.

Proof. By (5.2b) and Theorem (3.4), s does not interlace with segments of SP that are not in a block of b. Suppose
B does not interlace with s, and consider any other segment ¢ in another block of . Using h.b and I.B to denote the
highest and lowest attachments of any segments in block B, we have

(a) No segment of B has an attachment w satisfying h.s > w > s (by Theorem (3.4)).

(b) h.B=h.s >1.s21B. (The first relation holds because the segments of B may precede s. The last holds
because of (a) and because, by definition (5.2b), B has an attachment that is less than u =h.s.)

(c) ¢ has no attachment w satisfying A.s > w > L.s. (Since ¢ does not interlace with B, by Theorem (3.4) ¢ has no
attachment w satisfying 4.B > w > [.B; the result follows from (b).)
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(d) ¢ does not interlace with s (because of (¢) and Theorem (3.4)). O

If B does interlace with s, then s should be placed in B. However, then the previous block b.—2 may interlace with s
as well. Therefore, the following, more general, theorem is needed; its proof is similar to that of (5.3) and is left to
the reader.

(5.4) Theorem. Let the representation of SP satisfy all of definition (5.2) except that segment s, which is in the last
block of b, may interlace with some segment of b. (0..#b-2). Then s interlaces with a segment of b. (0..#b-2)
iff it interlaces with b. —2.

We now investigate the contents of a block B of b. First, let us give an example declaration of sequence b:

(5.5) type BlockT = record A:seq(vertex); S:seq(0.#E—#V) end;
var b: seq(record I,0: BlockT end);

Field B.I (B.O) of a block B (say) of b contains information concerning segments of B that are (currently) on the
inside (outside) of cycle ¢. In the field, we place two kinds of information. First, B.1.S (B.0.S) is a sequence of
numbers of segments that are inside (outside) c. These sequences will be used to update array Side when the seg-
ments in the block can be embedded. Second, in order to test for interlacing with s, a block contains certain attach-
ments of the segments to cycle c. Just how these segment numbers and attachments are stored and the properties of
this répresentation are given in (5.6):

(5.6) Representation of the blocks in b.
(a) For each block b.i, b.i.l.S (b.i.0.S) is a sequence of numbers of its segments that are inside (out-
side) cycle c.

(b) For each block b.i, b.i.l.A and b.i.0.A are sequences of attachments x of the segments of the block
that satisfy u > x > cstart. The attachments in b.i.l.A (b.i.0.A) are tails of edges that are embedded
Inside (Outside) cycle c.

(c) Sequences b.i.I.A and b.i.0.A are in nondecreasing order.

(d) For each i, 0 <i < #b, the attachments in b. (i —1) are at most those in b.i.

Let us discuss the fact that attachments = cstart are not recorded in b (part (b). Since cstart is the lowest point of the
cycle c, each attachment x of the segments satisfies x > cstart. Consider a segment s, not in b, with lowest attach-
ment w 2 cstart, such that all segments described in b may precede s. By Theorem (3.4), s interlaces with a segment
of b iff the segment has an attachment x satisfying u > x > w >cstart, which means that x > cstart. Therefore,
attachments = cstart are not needed to test for interlacing. One could record such attachments, but not recording
them is essential for the efficiency of the algorithm, as pointed out later.

Parts (c) and (d) are important for efficiency of the algorithm, in that they allow a constant-time test for interlacing.

In Planarity, (5.7) below, and the main program that first invokes it, the representation b of SP given by (5.2)
and (5.6) is established by the initialization SP O of the main program and is maintained by execution of the (only)
two statements SP 1 and SP 2 within (5.7) that change b.

Local variable g of Planarity represents QP in the same way that b represents SP, with variable w, the tail of the
spine, playing the role of cstart: only attachments > w should be placed in q. Statement QP 0 initializes ¢, and each
inner call of Planarity adds a segment to QP (which by recursion maintains the representation). Execution of
Purge(q,y) just before a call of an inner Planarity deletes attachments from g that are >y, thus ensuring that
representation part (5.6b) holds as required of the call of Planarity.
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(5.7) {Global directed graph A satisfies (3.0) and (3.5).
N_Side segments have been assigned distinct numbers from 0..Nside —1.
Parameter cstart is the lowest vertex in a cycle ¢ (say), and b represents a bipartite partition SP of
some of the segments defined by c, as given by (5.2) and (5.6).
Edge (u,v) is the root edge of the spine of a segment s (say) defined by c, s is not in SP, s precedes
none of the segments in SP.
Parameter x is true.

If ¢ v sis planar and s can be added to SP, then add it; otherwise, set x to false.}
proc Planarity(value cstart,u,v: vertex; var x: Boolean; var b: seq(record I,0: BlockT end));
begin var spi: seq(vertex);
var w: vertex;
Store the inner vertices of the spine in spi and its end vertex in w (see (3.1));
SP1: Add sto SP (see (5.8));
var q: seq(record I,0: BlockT end);
{Build bipartite partition QP for the segments (see (3.2))}
Qg = [1; {Implement QP = (O, )}
dox ~ spi#[]— vary:= spi.—1; spi:= spi.(0.H#spi-2);
Purge(q,y) (see (5.10)) ;
vark:=1;
dox ~ k<#Ay — Planarity(w,y, Ayk, x, q); k= k+1od
od;
SP2: Check Theorem (2.4) part b and add attachments to b (see (5.11))
end

The sequence of statements to initiate the planar embedding of a graph G is transformed into

var Side: array [0.#E—#V] of Boolean;
var N_Side: integer := 0,

var x = true;

var b: seq(recordl,0: BlockT end);,
SPO: b:=[]; ({ImplementsSP = (®,D)}
Planarity (0,0, A.0.0, x, b)

Let us now investigate the four operations that deal with SP or QP.

Operation SP0: SP := (®, ) (also QP = (¥, ®)). This operation initializes SP (QP) to contain no segments. In
terms of the representation b of SP, this is performed by b= [] (g := [1). Trivially, these maintain definitions (5.2)
and (5.6).

Operation SP1: Add s to SP (see (5.8)). This operation is performed in Planarity just after the spine (u, v, ...w) of
s has been constructed. The operation is performed in terms of b by the following algorithm, which we explain sub-
sequently.
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(5.8) SP1: ‘Addsto SP’
‘Build a new block v to contain s’
var v: record I,0: BlockT end;
vIA:=[]; vOA=[]; v.I.S:= N_Side; v.0.8 = [];
ifw>cstart > vIA'=vIA “w
[l w=cstart — skip
fi;
N_Side '= N_Side +1;
bi=>b "v;
dox ~ #b > 1 cand Lace (b.-2.1.A) cand Lace (b.—2.0.A) — x:= false
[x ~ #b>1 cand —Lace (b.—21.A) cand Lace(b.—2.0.A) — Merge
Ox ~ #>1 cand Lace(b.—2.1.A) cand —Lace (b.-2.0.A) —
b.-21,b.-2.0:= b.-2.0,b.-2.I; Merge
od

where

Lace (t) = { = ‘a segment whose attachments are in ¢ interlaces with s’}
t#[] cand t.-1>w

and -

Merge = {sisin b.—1.J, and s interlaces with b.—2.0 but not with b. -2.1.
Merge b.-1 into b.—2) and reestablish invariant (5.9)}.
b.-21A'=b.-21A " b.-11A;
b.—-20A:=b.-2.0A " b.-1.0A4;
b.-218:=b.-218 " b.-11S;
b.-2.0.8:=b.-2.0.5 " b.-1.0.5;
b:= b.(0.#b-2)

The invariant of the loop of algorithm (5.8) is

(5.9) P: segment s and its attachment w (if it is # cstart) is in b.—1.1,
—x = SP has no bipartite partition, and
x = b satisfies (5.2) and (5.6) except that s may interlace with segments
of b. (0..#b-2), so (5.6.d) may be violated.

The purpose of (5.8) is to assign s a segment number and to place it, along with its lowest attachment w, into the last
block of b, which is the representation of SP, and to reestablish invariants (5.2) and (5.6). Later, all the other attach-
ments of s to ¢ will be placed in the same block.

The first statement of (5.8) places a new block with one segment (in the field 1.5) in b; the new attachment w, the
attachment of the spine of segment s, is placed in the block only if it is greater than the lowest vertex of cycle c, as
required by representation (5.6b). The statement trivially establishes invariant P.

Suppose all the guards of the loop are false. Then either x is false, which from the invariant means that SP has
no bipartite partition, or s does not interlace with b.—2. In the latter case, by Theorem (5.4), s interlaces with no
segment of b. (0..#b-2), and we conclude that (5.2) and (5.6) hold —note that the new attachment w is > the largest
attachment in b. -2.

Now consider an iteration of the loop. If the first guard is true, then s interlaces with a segment of b.—2 on the
inside of ¢ and with a segment on the outside, so SP has no bipartite partition. Thus, setting x to false maintains the
invariant. In each of the other cases, exactly one of b.—2. and b. (#b—2).0 contains a segment that interlaces with
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s. The inside and outside are swapped, if necessary, so that segments in b.—2./ do not interlace with s, and blocks
b.—2 and b.-1 are merged.

Operation Purge(q, y). Variable q is the sequence of blocks representing QP within Planarity. Just before a call
Planarity(w,y,...), ¢ may only contain attachments that are less than y. Thus, before the call, it is necessary to
purge attachments >y from q. The following operation performs this service. If purging creates a block with no
attachments, then the block interlaces with no other segments still to be processed, so the segments of the block are
embedded (by assigning to Side). Note that if the last block of ¢ contains a value <y, then, by (5.6d), no previous
block contains an attachment > y.

(5.10) Purge(q,y) = (Delete attachments >y from g}
' var h'= (g #[);
{invariant: h = ‘The last block of ¢ may contain an attachment >y’}
do h — Deletefrom(q.—1.1.A);
Deletefrom(q.—-1.0.A);
ifg.-11A=[] » q.-1.0.A=[] — FixSide(q.—1.1.5, true);
FixSide (q.—1.0.8, false);
q'=q.(0.#9-2); h'= (g #[])
0g.-11A#[] v q.-1.0A#[] > h:= false
fi
od

where

Deletefrom (t) = {Delete from ordered sequence ¢ all elements that are >y}
dot#[] cand t.-12y —¢:= £.(0.#-2) od

and

FixSide (t,X) = {Side.i:= Xfori e t; t:=[]}
dot#[] > Side.(t.-1):=X; t:=t.(0.#:-2) od

Operation SP2: Check Theorem (2.4) part b and add attachments to b (see (5.11)). This is the last statement of
procedure Planarity. Part b of Theorem (2.4) requires that Q have a bipartite partition in which all attachments to
inner vertices of seam(c,s) —i.e. attachments x satisfying u > x > w— are in the inside of cycle seam(c,s) -
spine (c,s). Sequence q describes a bipartite partition of QP. Further, it contains exactly the attachments x to
seam (c,s) that satisfy u >x > w. Hence, the attachments = u should be deleted and each block q.i checked to ensure
that b.k.0 can be made empty. If this is not possible, if both b.k.J.A and b.k.O.A contain an attachment, then part b
of Theorem (2.4) does not hold and the graph is not planar.

At the same time, the attachments in ¢ that are < u should be placed into b.—1.1.A, since they are attachments of
s. The algorithm to do this is presented in (5.11).

We can now explain the reason for not recording attachments in ¢ that are = cstart (see the paragraph following
(5.6). If they were recorded, some of the sequences of attachments O.A for blocks in ¢ might not be empty but
would contain the value w. This would seriously jeapordize the efficiency of this part of the algorithm.
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(5.11) SP2: {Check Theorem (2.4) part b and add attachments to b}
Purge(q,u);
var t: seq (vertex):= [];
dox ~ g#[] > Make_O_empty;
FixSide (q.—1.1.5 ,true);
FixSide (q.—1.0.8, false);
t'=q.-11A " t;
q = q(0.#9-2)
od;
b.-11A'=b.-11A "t
where

Make_O_Empty = ({Swap q.-1.Jand q.-1.0, if necessary, so that q.—1.0 A is empty;
if not possible, set x to false }
ifg.-11A#[] ~q.-1.0A#[] —x:= false
0g.-11A=[]+q-1.0A%[] —>4q.-11,q.-1.0 = q.-1.0,q9.-11
0q.-1.0A=][] — skip
fi

6. Representing sequences of blocks, of attachments, and of segments

It remains to show how to implement various sequences so that we can claim linear running time of the algo-
rithm. The sequences we have to implement are:

Sequence variable b in the main program,

Local sequence variables spi and q of Planarity,

The sequences I.A, 1.S, O.A, 0.5 within the blocks of b and local variable g,
The sequences v.I.A, v.I.S, v.0.A, and v.0.S of variable v in (5.8),

Local sequence variable ¢ within algorithm (5.11).

We have written the operations on these variables in a style that allows each one to be implemented by a reversed
linked list (using Pascal’s new and free operations, say) with head and tail pointers (see Fig. 5). Each sequence
variable s: seq (T) (for some type T) is replaced by a variable s’ declared by

var s’: record head, tail : ptr end
where type ptr is defined by

type ptr = T record v: T; prev: ptr end;

s’ tail v  prev v prev v prev  s’.head

| —={slast| —= .. — 51| —= 5.0 | ni ]<—-t—— |

Figure 5. Reversed linked-list representation of sequence s

The relation between abstract variable s and its implementation s” is as follows:
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(@) If s =[], then s”.tail = nil

() If s #[], then s”.headT.v=s.0, s”.head T prev =nil,
s’ .tailT.v=s.-1, and for each i, 0 <i < #s, if pT.v=s.i then p T prevT.y = 5. (i-1).

Let us show the implementation of each operation on a sequence in terms of the concrete variables. Below, s and ¢

Operation on s

have type seq (T) and e has type T, for some type T.

Implementation

s=[1, s#[] s’.tail =nil, s’.tail #nil
s=1[] s’ .tail := nil

{s#[1) s.-1 s”.tail Ty

{#s21} #5>1 s”.tail T prev # nil
{#5>1) 5.2 s”.tail T.prevT.v
s=5"e var pt; new (pt);

ptTv:=e; ptTprev:= s 1ail;
if s”.tail = nil — s’.head = pt
[l s7.tail # nil — skip

fi;

s’.tail *= pt

{s#[]1) s= 5.(0.#5-2) var pt = s’.tail;
s’.tail := ptT.prev;
free (pt)
si=5 "t if s’ .tail =nil — s’.head,s’ .tail ‘= t’.head, t’ .tail
[ s’.tail #nil ~ t’.tail=nil — skip
0 s’.tail #nil ~ ’.tail #nil — t’.head T prev = s’ tail;
s’ tail := ¢’ tail
fi

s=t"s if t/.tail =nil — skip
0 ¢’.tail #nil ~ s’.tail=nil — s’.head, s’ .tail ‘= t’.head, t .tail
0 ¢’.tail #nil ~ s’.tail #nil — s’.head ™ prev = ¢ 1ail;
s’ .head ‘= t’.head

fi

We now analyze the order of execution of Planarity (5.7). We examine the total time required by the various opera-
tions of (5.7), in the order in which they occur textually, over all recursive calls needed to embed a planar graph G.
For a loop, this requires bounding the number of iterations it makes over all recursive calls and bounding the total
work required by all iterations. Our result will be that the time is O (#E), where #E is the number of edges of the
graph. Since #E is linear in #V (see (2.0)), the algorithm is O (#V). Remember that the graph contains #E —#V +1
spines, segments, which also means that there are at most #E —#V +1 distinct attachments. (see (5.0)).

Operation ‘Store the spine in sp and its end vertex in w (see (3.1))’.

One execution of this operation takes time proportional to the number of edges in the spine. Over all recursive
calls, the operation processes each edge exactly once, so the time required is O (#E).
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Operation ‘Add s to SP (see (5.8))’.

Adding the new block v to b takes constant time. This is done once for each segment (in all recursive calls), so
the total time is proportional to the total number of segments, which is #E —#V +1.

Consider the loop of (5.8). Each iteration takes constant time, because of the implementation of the sequences as
linked lists —note that swapping b.kJ and b.k.O takes constant time because each part consists of four pointers.

Each iteration either causes termination of the algorithm (by setting x to false) or merges two blocks. Merging
blocks reduces the number of blocks by one, so merging can not occur more than the total number of blocks created
during all recursive calls, which equals the total number of segments, i.e. #£—#V+1. Thus, in total, (5.8) contri-
butes time O (¥E —#V).

Operation ‘Build bipartite partition QP ....
Over all calls, the inner-loop body calls Planarity once for each segment except the first. Hence, the total

number of times the inner loop body is executed is #E —#V. We do have to determine the total amount of time con-
tributed by operation Purge; that is next.

Operation ‘Purge(q, y)’.

The purpose of Purge is to delete attachments from ¢ that are at least y. Secondarily, if a deletion means that
block g.—1 contains no more attachments, then the block is also deleted.

Each iteration of the loop of Purge either removes a block of ¢ or causes termination of the loop (by assigning to
h). Hence, in total, the number of iterations is at most the number of calls on Purge plus the total number of blocks.
For each segment, Purge is called once in the nested loop that builds QP and once in (5.11), in checking that
Theorem (2.4) holds. Therefore, it is called 2* (#E —#V +1) times, so the total number of iterations of the loop is
O (#E).

Deleting an attachment takes constant time. The total number of attachments is #E —#V +1, and each is deleted
once, so deleting attachments takes time O (#E —#V +1).

We have to analyze the time required by the calls FixSide (¢,...) within the loop of Purge. Such a call embeds
each segment i of ¢ (by assigning to Side.i) and deletes i from ¢; this takes constant time. In total, each segment is
embedded in this fashion exactly once (and then removed from ¢), so that, over all executions, FixSide takes time
proportional to the number of segments, i.e. to #E —#V +1.

Finally, as mentioned earlier when analyzing (5.8), the total number of blocks created is also #E —#V +1, so that
deleting a block can be done at most #E —#V +1 times. Hence, in total, Purge is O (#E).

Operation ‘Check Theorem (2.4) part b ... (see (5.11))’.

This operation is invoked once for each call of Planarity, which is bounded by #E. Eliminating from considera-
tion the calls on FixSide, which were analyzed previously, each iteration of the loop takes constant time. Further,
each iteration removes a block from q. Since the total number of blocks created is #E —#V +1, the number of itera-
tions is bounded by #E —#V +1. Hence, this operation is O (#E).

7. Conclusions

This is not an easy paper to read, for The Hopcroft-Tarjan planarity algorithm is difficult and subtle. Yet, we
believe this presentation is an advance over others, for several reasons. First, it isolates the various concerns of the
algorithm and presents them in a ‘top-down’ fashion. For example, a general algorithm is first given in Sect. 2 and
later refined in Sect. 3.
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Further, throughout the paper, the goal was always to present the properties upon which the next refinement was
built before the refinement. For example, in Sect. 3, properties (3.0) and (3.5) were developed and analyzed first,
before giving refinement (3.6). This follows our principle that proof of correctness and program should go hand in
hand, with the latter leading the way —although we haven’t given a formal proof, we believe that we have given a
balanced, understandable presentation from which a more formal proof can be developed. The principles behind
program correctness were used, if not the formal details. This is in direct constrast to other developments, where the
algorithm is given and thereafter one tries to glean various properties of it, often with too many operational argu-
ments, leading to real confusion.

In Sect. 3, once properties (3.0) and (3.5) are understood, the task of refining the algorithm to make use of them
is almost trivial; it is these properties that one should analyze and remember, and not the algorithm. The same holds
for the representations (5.1) and (5.6) of a bipartite partition.

A prime principle is to structure an algorithm to reflect the structure of the theory upon which it is based. In this
case, Theorems (2.3) and (2.4) give the theory. Correspondingly, Planarity tests planarity of seam (c,s) v s using
the theorems, and, within Planarity, Planarity is called once for each subsegment of seam (c,s) v s in order to test
its planarity. Within the body, a mixture of iteration and recursive calls lead to a simple algorithmic description. In
the original Hopcroft-Tarjan planarity algorithm, this correspondence between theory and algorithm was not as evi-
dent. In fact, the purpose of their recursive procedure was never precisely stated.

Another key point was to write the algorithm in Sect. 5 completely in terms of sequence notation. A separation
of correctness concerns (in terms of sequences) from efficiency concerns (in terms of linked lists) was extremely
important —although the astute reader will notice that the algorithms in Sect. 5 were written in a particular style that
was conducive to refinement of sequences by linked lists. At some point, it is hoped that our languages will allow
the algorithm of Sect. 5 to be essentially the final one; through a simple command like ‘implement b by Rever-
sedLinkedList’, it should be possible to direct the system to implement automatically sequence b using a previously
written reverse-linked-list module.

The original Hopcroft-Tarjan planarity algorithm used global arrays to implement the sequences, instead of
Pascal-like pointers. This was a much more confusing data structure to work with, as a reading of the original paper
[3] will show. We are currently implementing both a pointer version and a global-array version in Pascal to com-
pare the two experimentally.
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