Developing a Linear Algorithm for
Cubing a Cyclic Permutation*

Jinyun Xue
David Gries

TR 86-780
September 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

*This research was supported by the NSF under grant DCR-8320274.

Developing a linear algorithm for

cubing a cyclic permutation

Jinyun Xue and David Gries
Computer Science Department
Cornell University

September 1986

Abstract

A linear algorithm is developed for cubing a cyclic permutation stored as a function in
an array. This continues work discussed in [0] and [1] on searching for disciplined
methods for developing and describing algorithms that deal with complicated data struc-
tures such as linked lists. Here, a different representation of a cyclic permutation reveals
a simple algorithm; then, an equally simple coordinate transformation is used to yield the
final algorithm.

Introduction

A permutation of a finite set of elements is a one-to-one function on the set. For exam-
ple, viewing a function as a set of ordered pairs, the following is a permutation P on the
set {a, b, c,d}:

0) P = {a,b),(d,d),(c,a),(dyc)}.

Thus, Pa = b, P.b = d, Pc = a,and P.d = c, where “.” denotes function application.
The product P*Q of two permutations P and @ of the same set is defined by

(P*Q).r = P.(Q.r) .

Further, P° is the identity permutation and, for k¢ = 0, P¥*! = p*pt = pk+p,

T ..
This research was supported by the NSF under grant DCR-8320274.

Permutation P is cyclic if for each r in its domain the set of values P'.r for i = 0 is the
whole domain. Any permutation can be viewed as the composition of its cyclic com-
ponents.

Our problem is the following. Given is an array II containing a permutation P —i.e.
IL.r = Pr for all r in the domain of P. We desire an algorithm S that cubes IT —i.e. that
changes IT to P3. Thus, the specification of S is

(1) {I=P S {II =pP3}.

Because cubing a permutation can be done by cubing its cyclic components, we restrict our
attention to permutations P that are cyclic.

Specification (0) is of little help in the development of S. In order to develop the algo-
rithm, we introduce a second representation of a permutation that does lend insight. We
develop an algorithm in terms of this second representation. We then manipulate the
algorithm so that a suitable coordinate tranformation can be used to yield an algorithm in
terms of array II.

Remark on notation. Sequences are denoted by capital letters and individual elements
by small letters. Catenation of sequences and elements is denoted by juxtaposition. For
sequence s, s = 5.0 5.1 ... s(#s—1), and s(1.) denotes sequence s without its first ele-
ment.

An algorithm for cubing using a second representation

A cyclic permutation P can be represented by a sequence (consisting of elements of the
domain of P) in which the follower of any element r in the sequence is the value P.r (the
follower of the last element of the sequence is the first). For example, permutation P
given in (0) has the cyclic representation a b d c.

Second, any permutation can be represented by a two-line scheme where the top line is
a sequence K giving its domain, the bottom line is a sequence H giving its range, and for
each i the pair (K.i, H.i) is in the permutation (see Knuth)[3]. For example, for permuta-
tion P of (0) we have:

K abcd
P=1a =lbda
We sometimes use the more manageable, linear, notation P = H:K. For example, the
permutation given above can be written as (b d a ¢):(a b ¢ d). Note that there are many

two-line representations of P, each derived by reordering the top and bottom sequences in
the same manner. For example,

bdac

abeced
dbca bdcal:

e - o

The rightmost representation has a particularly interesting property: the top sequence
K = a b dc is itself a cyclic representation of P. Further, the bottom sequence H is
derived from K by rotating K one position to the left. Also, P? is H:K, where H is the
result of rotating K two positions to the left. This important property is generalized

further in the following lemma, whose proof is left to the reader.

(2) Lemma. Let function rotl.s yield sequence s rotated one position to the left. Let K be
a cyclic representation of cyclic permutation P. Then, for all i, i = 0,

P' = (rotl'K):K .

This lemma gives us a simple algorithm for cubing a cyclic permutation P = H:K where
K is itself a cyclic representation of P. By the lemma, H = rotl.K , and P can be found
simply by rotating H two positions to the left!

An algorithm in terms of H and K

For the moment, suppose the domain of P contains at least three elements. Introducing
names for some of the components of P, we write

@) PO: K=xyzW.
Lemma (2) tells us that

P = H:K isequivalentto H =y z W x
P3 = H:K isequivalent to H = W «x yz,

so that an algorithm that cubes P represented by H:K where K is itself a cyclic represen-
tation of P can be specified by

PO NH=yz2Wx} S (PO AN H=W=xyz}.

A simple way to rotate H is to move the pair y,z past one element of W x at a time.
Introducing two fresh variables U and V, we use the invariant

Pl: H=UyzV AN UV =W«x.
and write the algorithm:

4) U,V:=[]LWax
doV #[]>varov,V':= V.0,V(1.);
H=Uvyz V'
Uu,vi=Uv V'
od .

Writing an algorithm in terms of II

Given P = HK, the above algorithm changes H to establish P> = H:K. Our desired
algorithm is to be in terms of array IT, where I1, H , and K are coupled by the following
representation invariant:

(6) It 11 = HK .

We use invariant / to help rewrite algorithm (4) in terms of 1. Note that an iteration of
the loop of (4) changes H from :

UyzvV' to UvyzV'.

This requires a change in the elements of II, but which elements? To answer this ques-
tion, we introduce fresh variables p, g, r to denote elements and fresh variables U, V to
denote sequences and define them by

P2: K = UpqV AN #U=#U0 A r=(VUpO.
Then, when H is changed as above, the permutation

ﬁp qr %% — _
(for V' defined by V. = r V') .

Uvyz V'

l7pqr‘7'

Uvzov| 18 changed to

This means that only the values I1.p, I1.g, and I1.r have to be changed —to v, y, and z,
respectively.

Let us first change algorithm (4) to reflect the introduction of the new variables defined
by P2. Note that whenever an element is appended to U a change in U, p, q, r, and V is
required, because the the lengths of U and U are the same (by P2).

(6) U,Vi=[1Wx;
p,q,r, U, Vi= x,y,2,[1,W;
doV z[]—>varv,V':= V.0,V(1.);

od .

Making the coordinate transformation

We are now ready to replace references to U, V, H, W, V', U, V, V', y, and z by refer-
ences to IT using representation invariant I as well as the invariants PO, P1, and P2.
Only the variables II, p, q, r, and an arbitrary element x of the domain of P remain.

First, consider the initialization. Initially, from the fact that K is a cyclic representa-
tion of permutation P and from I we have y = [1.x and z = I1.y. Hence, the initialization
becomes

p=xq:= Ilx;ri=Ilgqg .

The following derivation shows that the expression V # [] is equivalent to r = x:

V=] [(by P1 and P2)
(U p).0 (by P2)

x (by PO and P2) .

v
r
r

The statement H :

U v yz V' calls for a change in I1. II is being changed from

ﬁpqu
UyzoV'

[7[)(]!“7

Uvys Vv where #U = #U .

II = to II =

5

Hence, II.p, I1.q, and I1.r are the only values of I that need to be changed, and the
change is effected by the assignment

p,Iq,I.r := ILr,Ip,Ilq.

Finally, in the assignment to p, g, and r, we need to replace the reference to (V U p).0,
by a reference to IT.r.

The final algorithm is

(N p:=2xq:= Ilp; r:= Ilg;
dor#x »>1Ilp,Ilq,Il.r := I.r,Mp,Ilq;

p,q,ri= q,r,Ilp
od .

Let us now consider the cases where the domain of P has size one or two. In both cases,
P = P3. In both cases, execution of algorithm (7) stores the same value in p and x and
then terminates after 0 iterations of the loop, so IT remains unchanged and contains P3.

Remark. The extension to compute P* for some & = 0 should be obvious.

Acknowledgments
Thanks go to Rett Bull for comments on earlier drafts of this report.

References

[0] Feijen, W.H.J., AJ.M. van Gasteren, and D. Gries. In-situ inversion of a cyclic per-
mutation. TR85-703, Computer Science Department, Cornell University (accepted for
publication in IPL).

[1] Gries, D., and J.F. Prins. McLaren’s Masterpiece. TR86-729, Computer Science
Department, Cornell University (submitted to IPL).

[2] Gries, D. The Science of Programming. Springer Verlag, New York, 1981, pp 265-
274.

(3] Knuth, D.E. The Art of Computer PRogramming, Vol 1, Addison-Wesley, Menlo Park,
1973.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif

