Developing Two of Arsac’s Funny
Algorithms*

David Gries

TR 85-711
November 1985

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract: In Some Funny Program (Ecole Normale Supérieure, Paris, June
1985) .J. Arsac discusses several algorithms, but not from the standpoint of their
development. Here, we develop the algorithms given their specification using the
methods espoused in The Science of Programming.

* This research supported by NSF grant DCR-8320274.

Arsac's Longest Common Prefix Problem
David Gries
Computer Science, Cornell University
6 November |985

Two days agqo, Douq Mcllroy told me of the following
programming problem, which he attributed to T. Arsac. Given
two matural numbers, find the natural number whose decimal
representation is the lonqest common prefix of the decimal
representations of the qiven mumbers, (The decimal rep-
resentation of 3ero is the emply sequence; the decimal rep-
resentation of a posﬁ‘ive ‘m‘fec\er is the sequence co‘ns'ns‘l'\'hq of
its decimal digits, From most- to least-significant, with mo
leading 3eroes.)

I record my algorithmic clevefopmen'f here net because of
the immensity of the problem or the difficulty in finding o solu-
tion but because it is @ fine illustration of an important tech-
nigue : beqin the development with a search for o suifable
formal sPECi'Fica.ﬂo*n. A suvitable specification will be free of
unecessary defail. It may actuvally make a solvtion almest
obvious. Life it or net, different forms of specification may
s uqqest different solvTjons,

I beqan worh on the problem by pondering ~just thinding
about it, becoming Familiar with it. T then took my Mont Blanc
pencil (this note is being written with my Mont Blanc fountain
pen) and tried to specify the problem in terms of the
conventional definition of decimal representation: for a %o,
it is The Sequence a(o..4-1) that satisties

(o) ofe,; <10 For o0 sd<A,
a2 $(¢: 08 < 'y Q_‘.,p'o‘)

*A %0 = Q_&--) *0

Trying to deal with form (o) was Frustrating; three in‘l‘eqers}

the two qivens and the resolf) had teo be expressed in +hat form,
and the SuEScr‘iFfS) Su,:erScrir‘l‘s_, and summations just gst in the
way, 1 resolved to eliminate them and did so a.s Follows. (Below,
characters from the beginning of the olphabet are inteqer vari-
abless those from the end, sequence variables, For 3 o sequence
variable, 3.0 denotes jts first element (or the empty sequence, if

3 is empty). The symbel A denctes catenation of sequences, Finally,
for inteqer a, Qi dendtes its decimal representation,)

The specific::&ion of the i\\fw"' numbers Aacnd B is

Q: A;o = X "2 A (for some sequences
L Z
Bo s XY 4 %Y, ard B
(22Y:[] v 20 #Y.o)

Thus, X is the desired common prefix, and we can formulate The
postecondition as

R: Qg = X
where inteqer variable a contains the desired result,

Now an idea Pre5eh+5 itself Start with a =A and
iteratively delete elements from the end of o, —by execu-
ting a= a+jo— until @ = X, Can we do thisl Lets see,

_ ~ Because of the Symme"‘r‘ic hature of A and B (and

Z and Y) in Q) we Tine an invariant P by reP'a.c.iy.o, H)B)
2, andt Y by fresh variables and then, with some retlection,
s+rcn3ﬂ\eninq with twe Ccmjunc*.qz

P: ay = X'\S A 3p_gﬁi_x_a_f Z A (for some 1)

bio = X"y A~ prefixed Y (for some 4)

Using # to dencte “lenqthof*, we write the bound function:
t: #x + #y,

Reducing the bound function is done by deleting the last
clement of a,y or bjy, Deleting the last element of ayq is
done by executing a:= a 1o, But this maintains P enly if
3 4+ [1, Some reflection yields P a a>bh = 3# [, So we can
use a>b as the quard of ai=z a+1o, This leads directly
to the proqram

Cz.)b‘-'& H)B}

do asb > a:x=a+10
I bsa—- b:z= bi10o

d

§PAQAa=b; Hence m=b=X}

lO

Remard The invariant was found by replacing expressijons in
the precondition, net the postcondition, because all the
structure of the problem appears there, 0

Remard There Mmay be a tendency to terminate the loop as
Seon as one of a and b becomes © —Using Ciua.v‘d.é arbro
anot b>a >0, ILf meither o« mor b is o inif‘iaHy) this change
saves exquy ona iteration at the cost of quqrcls +hat are twice

as expensive, This is net recommended. []

Remartk After vvrif'ma ‘H\is) T received o <opy of T Arsac's paper

“Some Tunny programs’’ which discusses this and o ther o..lc}orinu

(2)

Arsac’s Modulo-a-Power-of-fwe Problem
David Gries
Computer Science, Cornell University
I4 November 1985

Consider writing an alqorithm for the following problem.

G-iven are three positive integers b, c, and d satistying

(o) Q: b>o A odd.b
G >0

d is o power of &
Find fn'feciers x amnd q satisfying

(N R: bxx +c¢ = c%*d,

One solution is Found easily, An answer is Anown fo exisT
satisfying 0sx <d, osq ¢ max (b, c), Consider the function
f(x,q) = bkx +c - q#d, It is increasing in X and decreas-
ing in g, Therefore, the Saddlebacf Search ‘f‘echhique cen be
used to find o 0 of F in the space given above in Time
Properﬂona.l to d + max(b,c), See [31 for Saddleback Search.

However) the res+r£cfiow on d may allow a 'Fa.s+er cx\?ori‘H\M,
The presence of powers of & often yield]oo,qr}fhw.n'c_ solutions.
Let's aﬂ""em,{f‘ to develop ancther algorithm.

A 'OOP (0\" recursien) Is ne.edecl) So let's look for o IOOP
imvariont P P is offen derived Frem R by replacing o constant
by a ¥resh variable, What should we replace —bc orct (or
a comwmbination of them)? The fact that d is the power oF X

focuses attention om d, and we try
P: bxx + c = gk,

This assertion can be established by X,q,4 1= 0,c,1, Here, 4
=1 is a power of 2, and o can be roised to d by 103.c|

(0)

mU,-f-;P),‘CQ_‘f'ioy,sv C,ou[d ‘Hni.s be. Co S‘—\Qele'l’oyw o‘F o 'o%a.r-
ithmic alqorithm? Let's see. First rewrite P fo include infor-

mation about

P: bkx + ¢ = g#d A alise poweret 3 A 1¢.a4d
And letls give a bounmd Function:

t: [ocl.cl -]oq./.v
We write the Q.‘%or”‘lﬁm

x,%),a_:: O)C)U
Y
do A +d — Establish P, 5 := 2¥2 od
=S WA 2
Now> how do we establish PA—::/.\. o,iven PaA = *d:

P . bkx tc = g¥aks 2 ' fa ¢ 2k ok
ke’ = % R A A IS e Power ° A 1£2ka€
The enly otifficolty is in establishing bkx+c = graxe, If g is
even, +his can be downe B\/ Qxecu'}‘iw1 cB:-_: 3.:.3. But whet if 3 is
odal Perhaps we can mafe it even, Note that b is odd) so add-

ing b to odd 3 makhes q even, Let's in€S+i?=\+€.1

bxx + < = g%
brx + bka + C = gk + bx o
bk (x+4) + ¢ (3+L)*,<»

Il

hi
I

Hence, it 3 is odd, then execoTion of X,9'= Xt %H: mataes
3 _rven amnd Mmaintains P, So we have +he o\l%orﬁkm

x,9,<:= 6,¢,1;

do a #d — if oddig = x,q:5 Xt0,q+b
[eveng - skip
ey
zP A even.Q}

ﬂ:: C‘-E—};
Aim A%

Note that X < .o and 3 <btc are loop iy\varioud‘s) so that vpon
termination x < d awnd g < bt+c.

This oloorithm was developed by T Arsac —TI cowt Anow

b\/ what mmethed. Prsac discussesl the quorJ'Ham im [1] anct at
o svummer (985 *mee‘)‘)m, of WGA3 of TFIP from « Comfle'/‘e/y

different viewpoiut: Givenw the algorithm Conly), how could one
deterwmine what it dit? After shiwming his analysis iw U711,
I +tried to clevc’op the al%orf+\m FTrom its .spcci'fic«'fio\ (o) and
(1), awot the above deve,opmeu‘f is the resvlt

The development wasnt as straightforward as it sovnds!
by srevd several hours on False foﬁkr +hot came From thinding
aboul sSome of +he ‘FOVMU}A; +hat Arsac vsel jw [1]1. I+ was
ov\”\/ whew I L—L%Q«M to ca»\.sc_aou.rly q”ly the)oriuciple; I
espouucl im L) that « develo?men"‘ beqqh Qmerﬁ,‘na, I L\ope

t+his exfe(“itv\ce serves me well (w _S‘a)vi\m:’ Ftotore ProLlcw\s.

'Re erences

IR A A\"sa.c) J. Sowe 'Fvvm\/ preqrams, Ecele Normale Supe'rieou'e)

quis, 3 June 198Y,
[2) Gries, D. The Science of Prograwmming, Spf‘ivxqer Verlag,

N Y 19¢l,

(3)

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif

