IN-SITU INVERSION OF A CYCLIC
PERMUTATION!

W.H.J. Feijen2
A.J.M. van Gasteren2
D. Gries3

TR 85-703
September 1985

Department of Computer Science
Cornell University
[thaca, NY 14853

This research wis supported by British Petroteum cnces 0= BE Ventare Research Procvinm anag oy ine NSE nder
orant DCR-8320274.
Dept. of Mathematios and Compatime Science, Universits of Technotoss 5600 MB EINDHOVEN the Nerheriods,

Dept. ot Computer Science, Cornetl University  Irhac VY TE8520 1753



In-situ Inversion of a Cyclic Permutation’
by

W.H.J. Feijen?, A.J. M. van Gasteren? and D. Gries®

Abstract

An algorithm is developed for the in-situ inversion of a cyclic permutation represented in an array.
The emphasis is on the quo modo rather than the quod; we are interested in finding concepts and nota-
tions for dealing more effectively with formal developments and proofs of such algorithms, rather than in
this particular algorithm itself.

Introduction

Let P be a permutation of the elements of a finite, nonempty universe, i.e. a one-to-one function from
the universe onto the universe. The inverse permutation P of P is the permutation defined by

Pj=1i = P.i=j foreachi and j in the universe.

(Throughout, ““.” is used for function application; f.i is the result of applying function f to argument i.)

We want an algorithm invert that changes an array H containing a permutation to its inverse*:

(0) {H =P} invert {H=P}.

An algorithm for this problem is given in [1], but without explanation. This is typical of the current state
of affairs with algorithms that deal with arrays in a complicated fashion. They are not explained at all,
they are explained informally in terms of pictures, or they are explained more formally but in such a way
that irrelevant, overwhelming detail crops up at the wrong places, making the proof less than convincing.
(An example of the latter phenomenon appears in [0].)

1 This research was supported by British Petroleum under its BP Venture Research Program and by the NSF under grant DCR-
8320274.
2 Dept. of Mathematics and Computing Science, University of Technology, 5600 MB EINDHOVEN, the Netherlands.
3 Dept. of Computer Science, Cornell University, Ithaca, NY 14853, USA.

Conventionally, an array H is thought of as a set of variables Hfs), where i ranges over some contiguous set of the integers. We
prefer to think of an array as a function from its subscript values i to the array values .1, and there is no reason, in general, to res-
trict its domain.



In this note, we attempt to present some concepts and notation to make the development and proof of
one such algorithm more convincing and appealing. We develop a solution to (0) similar to that of 1] but
restricted to the case that P is a cyclic permutation, since this is where the heart of the problem lies.

Notation and Nomenclature

Consider a finite, non-empty universe. Elements of the universe are denoted by lower case letters,
sequences of elements by upper case letters, the empty sequence by empty, and catenation of sequences
(and elements) by juxtaposition.

For sequences, function rev is defined by
rev.empty = empty

rev.r

rev.(X Y) = (rev.Y) (rev.X).

For any nonempty sequence X of distinct elements, [X] is called a ring; its elements are the elements of
X. By postulate, rings satisfy the

Rule of rotation: [X Y] =[Y X].

Relation between cyclic permutations and rings

A ring [X] and a cyclic permutation P can be related using the convention that each element i of [X]
is followed by P.i. Of importance is the fact that the inverse P of P is then likewise related to the ring
[rev.X]:

Pj=i
= {definition of inverse}
Pi=j

= {by the convention}
in ring [X], 7 is followed by j
= {by the definition of rev}
in ring [rev.X], j is followed by 1 .

Having thus identified cyclic permutations and rings, we carry out the rest of the discussion in terms of

rings.

Representational convention

We couple a ring h and an array H so that they represent the same cyclic permutation using the fol-

lowing

Representation invariant: for each element r and all sequences X and Y satisfying
h = |X r Y], Hr = the first element of sequence ¥ X r .

With this convention, an application of the rule of rotation does not affect the value of array H.



Development of the algorithm

The specification. For ring & and array H coupled by the representation invariant, we wish to con-
struct a program invert with specification

{h = [U]} invert {h = [rev.U]}
and whose ultimate text is expressed in terms of H. Since rings are nonempty, we can write this as
{h = |U p|} invert {h = [p rev.U]}.

Further, for the moment, let us assume that A contains at least {wo elements, and let us develop program
invert to satisfy

(1) {h =[Up q]}invert {h =[q p rev.U]}.

The loop Invariant. To start, we choose as an intermediate state of invert! a generalization of its initial
and final state. We do so by introducing two sequences X and Y and requiring that

PO: h=[¢ X p Y]

be maintained. The initial state of invert (see (1)) then corresponds to X = U and Y = empty; this fol-
lows from

¢ Xp Y]
={X=U A Y = empty}

l¢ U »p]
= {rule of rotation}

[Up q].

The final state of invert (see (1)) corresponds to X = empty and ¥ = rev.U (by substitution). The ini-
tial state can be transformed into the final state by shrinking X one element at a time until X = empty.
To enforce that the final state satisfy Y = rev.U, we notice that initially rev.X = rev.U and require
that the following be maintained as well:

P1l: (rev.X) Y = rev.U

The algorithm. Using PO and P1 as invariants and attempting to shrink X one element at a time leads
to the algorithm

(2) X, Y:= U, empty
{invariant: PO A P1}
; do X # empty
— with r and Z chosen to satisfy X = r Z:
massage h
X, Y= 2,rY
od.

The invariance of P1 follows from the fact that, for X = r Z,



wp ("X, Y:= Z, r Y, P1)
= {axiom of assignment}

(rev.Z) r Y = rev.U
= {definition of rev}

(rev.(r Z2)) Y = rev.U
={X=r2Z}

(rev.X) Y = rev.U
= {definition of P1}

P1.

We still have to define massage h so that PO is maintained by each loop iteration. From PO and
X =r Z we conclude that its precondition is h=[¢gr Z p Y], and its postcondition is
wp(“X, Y= Z,r Y”,P0), whichis h = [¢ Z p r Y]. Hence, massage h has to satisfy

(3) {h=|[gr Zp Y|} massage h {h=1[qZprVY]}.

Replacing ‘‘thought’’ variables by references to H. Our purpose now is to replace all references to
variables b, U, X, Y, and Z of algorithm (2) by references to variables p, ¢, r, and H. (This is known
as a coordinate transformation.)
We first see how to implement massage b in terms of H. The representation invariant together with
the precondition of (3) implies
H.p = the first element of sequence Y ¢

Hqg=r
H.r = the first element of sequence Z p .

The representation invariant together with the postcondition of (3) implies

Hp =r
H.qg = the first element of sequence Z p
= the first element of sequence Y ¢ .

This, together with the observation that the successors of the elements of Y and Z do not change,
allows us to implement massage h in terms of H by (recall that p, ¢, and r are distinct)

Hp, Hq,Hr:= Hgq,Hr Hp .
Finally we observe, using the represention invariant, that

e in the initial state of invert (see (1)), ¢ = H.p ;
e by PO, the guard X 7 empty is given by H.qg % p ; and
eby POand X =r Z,r = H.gq .

Hence, thought variables 5, U, X, Y, and Z can be eliminated, yielding the ultimate program:

{p is any element of the ring to be inverted}
q = Hp
;do Hg #p
—r:= Hgq; Hp,Hq,Hr:= Hgq,Hr Hp
od .

Finally, it is a simple matter to verify that the program is correct for a ring containing a single ele-

ment.



Concluding remarks

The development of the algorithm consisted of introducing the ring as a suitable representation of a
cyclic permutation, coupling the ring and array representations using a representation invariant, develop-
ing an algorithm in terms of rings, and applying a coordinate transformation to arrive at an algorithm in
terms of the array representation.

The non-standard activity in the development was the introduction of the notion of a ring, and we give
a short history of this introduction. In a first effort to give a neat presentation of the above algorithm,
the first two authors characterized the elements of a cyclic permutation in terms of its array representa-
tion H, using expressions like H*.p. These expressions diffused in vast numbers throughout the text, the
mathematical formulae became almost unmanageable, and the resulting treatment, suffering from ‘‘index-
itis”’, failed miserably to convince. In a next effort by the last two authors, the elements of a cyclic per-
mutation were characterized in terms of a sequence s, yielding expressions like 8,. These expressions also
diffused in vast numbers throughout the text, and again indexitis led to a treatment that failed to con-

vince.

. The source of the trouble became clear: the conventional representations of cyclic permutations were
not geared to our manipulative needs. The remedy then became clear as well: abandon convention. We
chose a different name for cyclic permutations —calling them rings— and started to design a ring cal-
culus. The design of that calculus immediately revealed that for the sake of manageability few elements
of rings should have a name. In the conventional notations for rings, each element is named, and, in the
presence of such overspecific nomenclature, even a simple rule as the rule of rotation becomes awkward to
formulate.

The above exercise again confirms many a computing scientist’s impression that in designing algo-
rithms the development of adequate mathematical notations is a key issue, an issue that is hardly
addressed by traditional mathematics.

Acknowledgements.

The members of the Eindhoven Tuesday Afternoon Club and the Cornell programming methodology
group are acknowledged for pertinent comments.

References

[0] Gries, D. The multiple assignment statement. IEEE Trans. Software Eng. SE-4, 2 (March 1978), 89-
93.
[1] Huang, B.-C. An algorithm for inverting a permutation. IPL 12 (Oct 1981), 237-238.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif

