*
THE 711 PROBLEM

David Gries

TR 82-493
May 1982

Department of Computer Science
Upson Hall

Cornell University
Ithaca, New York 14853

*
This work was supported by NSF grant MCS81-03605.

The 711 Problem

David Gries
Computer Science Department
Cornell University

Introduction. The United States is filled with swall grocery stores that, for
convenience, are open at all hours of the day and night. In the south, these
are called 711 stores, because originally they were open from seven in the

morning until eleven at night.

One day, a customer bought 4 itewms at a 711 store. The cashier bagged them
and said, M"that will be $7.11, please."™ The customer asked, "Is it $7.11
because this is a 711 store?"™ "No", repliec¢ the cashier, "I multiplied the
prices together and got $7.11." "But you're supposed add them, not multiply
them™, said the customer. "Oh, you're right!™ exclaimed the cashler. "Let me
recalculate ... that will be $7.11."

What were the prices of thne 4 items?

From this puzzle we can extract the following problem. Vrite a program
that, giveu two positive integers I and I, will find 4 integers, called

bs cs ds €s satisfying

(1) 0<bsc,sd
b+c+d+e
b*c*d*e

eSﬁ,

AR

"
=

1]
vt
a2

Call such a tuple (bscsdse) a sgolution. If no solution exists, indiczte
that in some fashion.

For the original puzzle, use ¥ =711 and =711000000, anc if (bs cs ds e)
is a solution the prices are b/100, ¢/100, ¢/100 and e/100.

i

M 1is likely to be much larger than K, as

1

s Ene czse 1o the 711 problem,

i
so an O0(il) algorithm is not as good as an O(N”) or even an O(H") algo-
rithm. So let us put aside possible algorithms that deal with finding prime
factors of M. Instead, think of searcuing the space of 4-tuples (b, csdse)
for a solution. The problem is to organize the search efiiciently. We give
two O(Nz) (in the worst case) sclutions.

The First Algorithm. Consider a iixed pair bs,c. If (b,C»,dse) is a solu-
tion, we have
b+c+d+e = 11 and b¥cxd*e = ii.

Solving the first equation for ds substituting for < in the second, and
rearranging leads to

(2) bcxe? - LTH (U-b-C) ke + 1= 0.

If this equation has an integer solution e satisfying O<es<H and
0 < N-b-C-e <, then (b, C»li-b-c-e» e) is a solution to the problen.

It is now easy to write an algorithm that searches through pairs (bsc) »
looking for a solution e to (2). However, this algorithm will involve find-
ing a square root of a rather large integer at each steps so let us look for a
better algorithm.

Towards a second algorithm. Any solution can be arranged in the form
(bs cs ds e) where bSc<d<e, so consider searching only the space of lexi-
cally ordered 4-tuples. At any stages four variables ©,cs, ds e will contain
integers, and it will be known that no 4-tuple with first component <b 1is a
solution. The proilem, given fixed b , 1is to search the space of ordered

tuples (cs ds e) so that not all ordered tuples need be tested.

Kotice that cne of the components in a sclutions say e s is completely
determinec by the other three: e =N-(b+c+d). Thus, for fixed b we need
search only through pairs (c¢sd). Tc find & way of reducing the order of
execution even further, let us look at Saddleback Search.

Saddleback Search [1l, page 215]. Given is an array i[{C:m,0:nl. Each row and
each column is ordered (in ascending order). A value = lies in f; the
problem is to determine its row and column number (if x is in £ more than
once, find any one of its positions). The following neat algoritim solves the
problem in time linear in the number of rows plus the nuaber of columns in the
worst case, and this is about the best one can do. The algorithm begins by
identifying a rectangular section of f in which x appears, then itera-
tively reduces the size of this rectangle, always maintaining the fact that =
lies in it. In another sense, it begins looking for x at the upper right
element f[0,n] and proceeds towards the lower left element flw,0]; the fact
that the rows and columns are ordered allows the search to proceed effi-
ciently.

isj:: Osn;
{inv: 0<ifu A 0= jsn A zeflim,0:3]}

+
.
B

{bound function: m-1i

do f[i,jl>x » j:= j-1
0 flisjl<x » i:= i+l

od

{x=£[1,3;1}

Using Saddleback-Search in the 711 Problem. In the abstract 711 problem, for
fixed b we must search pairs (c.d) satisfying 0<b<£c=£d=l-b-c-d for
one that szatisfies a certain property. Consider a two-dimensional array
flb:l,b:N]. The value flcsd] is b¥cxd*(l-b-c-d), the product of the com-
ponents of 4-tuple (b, cs,d,li-b-c-d). If each row and column of f is
ordered, we can use Saddleback Search to determine whether X is in f. This
would reduce the time to search the 4-tuples (b, cs, ds B-b-c-d) for fixed b
to O0(N), thus reducing the time for the complete algorithm to O(K").
Further, since each array element is a function of its subscripts, there is no

need to maintain the array itself.

Array f does not have the desired property (rows and columns ordered),
Y

but it is close enough so that a Sacdleback-like seerch can still be used.

The Second Algorithm. A discussion follows the algorithm.

bs Cs de esms= 050,0, i, 03
{invariant: PO}
{bound function: H-4*i}
do m#H A 4*x(b+l) <H +
b:= b+l;
cs ds e:= by £loor ((E=2%b)/2), ceil((i-2%1)/2);
m:= bxckdke;
{inv: P}
{bound function: d-c}
do m#l A c<d

L: if n>¥ V d=e + d, e:= d-1, etl; m:= brcxdke
Dm<k A d<e + cye:= ctl, e-l; m:= b¥cxd*e
fi

od
{PO A (m=H VvV c=d)}
od

The algorithm begins with (bscsdse)=(0,0,0,1i). BEachk iteration of the
main loop of the algorithm increases b by 1 and sezrches the 4-tuples with
first component b for a solution. A variable w 1is used to contain tne
value b*c*d*e. Thus, the invariant of the main loop is

PO: 0<b A b*c*d*e=m A
no ordered sclution with first comporent <b exists, unless
(bs cs ds e) 1is an ordered solution

A bound function of the wmain loop is L-4*b. If the Gtody of the wain lcop

maintains PO, it is clear that the algorithmn is correct.

The inner loop searches for a solution among all 4-tuples with first com-
ponent b. It maintains c¢=<d<e=K-b-c-d; further, any ordered solution
(bs Ts ds li-b-C-d) satisfies c<c<d<d. Each iteration increases c¢ or
decreases ds at the same time changing e to waintain b+c+td+e=NH. The
invariant of the inner loop is therefore

P: 0<bscsdges A
btctd+te =N A b¥*ckd*e=m A

no solution with first component <b exists A

A

any ordered solution (b, Cs ds H-b-C-d) satisfies c<cs<d<d

We now investigate the correctness of the body L of the inner loop,
assuming that the loop guard is true. L must satisfy

mZM A c<d AP = yp(L,P)

Clearly, execution of L 1leaves the first three lines of P true. Hence
we need only prove the invariance of the last conjunct of P. Let us consider

each of the guarded commands of the alternative commeand, in turn.

Because execution of the first guarded coumand reduces d, 1t must be
shown that no ordered solution exists with first component b and third com-
ponent d. Suppose m >H. Below, we list all 4-tuples with the current
values of » and d that satisfy b+ctd+e=1H, in increasing lexical order:

(0) (bs0, dsetc)
(1) « o

(2) (bsc-lsdse+l)
(3) (bscs dse)
(4) (bsct+lsdse-1)

(5) « o o

(6) (bsctjsdse-j) (either c+j=d or e-j=d)
(7) (b:C+j+lsda€'j’l)

(]_0) e o o

The 4-tuples given by (C)-(2) have second compornent less then ¢ , and iavari-
ant P indicates that these cannot be ordered solutions. The products of the
four components of the &4-tuples (3)-(6) are ir increasing order (since c<e),
and since m =b*c*d*e >li, none of these tuples can be solutions. Finally,
each of the tuples (7-11) is not lexically ordered, since either c¢+j=d or
d=e-j. Hence, none of the tuples (0)-(10) are orcered solutions and no
ordered solution with first component b and third component d exists.

Now suppose that d=e. We agaln investigate 4-tuples with first component

b and third component d , in increasing lexical order:

(0) (bs0s dsd+c)
(1) o « o
(2) (bsc-1lsdsd+l)
(3) (bscs dsd)
(4) (bsctlsdsd-1)
(5) o « &

By invariant P, tuples (0)-(2) cannot be ordered solutions. Decause the
guard of the main loop is true, the product of the components of tuple (3) is
not 1, so tuple (3) is not a solution. Further, tuples (4)-(5) are not
ordered, so they are not ordered solutions. Hence, no ordered solution exzists
with first component b and third component d.

Now consider the second guarded commande. For it to maintain the last con-
junct of P , no ordered 4-tuple with first two compontents b and ¢ can be
a solution. We leave it tc the reader to show this by examining the list of
lexically ordered 4-tuples with first components b and ¢ uncer the assump-

tion that the guard wm<M A d<e 1is true.
Thus, under all ceses execution of L leaves P true. Since
m#EM A c<d AP
implies that at least one of the guards of L 1is true, abortion cannot occur.
Hence execution of the loop body performs the desired task.

The inner loop terminates with
{PA(m=tVc2d)}

true. If m=H then a solution has been found; if not, c¢c=d and, with the
help of imvariant P , we see that no ordered solution with first component b
exists. Therefore, execution of the body of the wain loog leaves PO true,
and the algorithm is correct.

This algorithm was tramslatec into Pascal and executec on a VAX. For the
initial 711 problem, the single solution ($1.20, $1.25, $1.50, $3.16) was
determined.

Acknowledgements. I am grateful to Don Edwards of USIISU, Dahlgren, Virginia,
for bringing the problem to my attention. The first algorithwm is due to Jay
Misra.

References.
[1] Gries, D. The Science of

Springer Verlag, llew York, 1981.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif

