Sorting and Searching using

Controlled Density Arrays

by
Robert Melville
David Gries

TR 78-362

Computer Science Department
Cornell CUniversity

Ithaca, New York

This research supported in part by National Science Foundation

Grant MCS 76-22360

-1=

Abstract

higarithms like insertion sort run slowly because of -costly
szifting of array elements when a value is inserted or deleted.
Trte aaocunt of shifting, however, can be reduced by leaving gaps --
unused array locations into which new values can be inserted -- at
regular intervals in the array. The proper arrangement of gaps is

miintained by periodic adjustment.

me dcmonstrate this technique with a stable compariscn sort
aigoritna wita expected time O(NlogN), worst case time O(N /N),
and space requirements 2N. We conjecture that, by using an inter-

7712137 search, *he expected time can be reduced to O(NloglogN).

2y cxzparison, Quicksort takes expected time O(NlcgN), worst case

-

-
ize QUNT) and space NelogN.

Second, we show that for any fixed d22 a table management al-
garitna can be constructed that can process a sequence of N in-
structions chosen from among 1INSERT, DELETE, SEARCH, and, MIN in

wirst case time 0(N"1/d).

Experiments with a version of the algo-
ritne using dz2 show a wmarked 1improvement over balanced tree

scheses for N as large as several thousand.

1.Introduction

We Dbegin by presenting our simple idea behind sorting, which
may be all the educated reader will need. Following this, we out-

line the rest of the paper.

We want to perform a varifation of insertion sore 1v,80-b14.
At each step, there is a sorted portion all:n) of array a zand ar
untouched portion aln+1:N). Each step consists of fincing the
correct position al j), 1<j$n+1, into which ainel] is t> be placed
and then shifting the elements aj j:n) up one p>sition *t2> make rcoz
for it. This shifting, however, can *taxe time 0(n), ieaaing %2 an
O(Nz) algorithm. Shifting, and not searcning, i1s tne eyxpensive

operation.

In order to reduce the amount of shifting, we introduce 2als

into the array: empty elements into which new valuee can be in-

]

serted. For example, suppose at one point +the aireazy sorte:

18

values V1,V2,...,Vn appear in a[1:m), where m=2n, with exactly ore

gap before each value:

gap, V,, gap, V,, ..., gap, V., gap, ¥V, (¢))

and suppose for the moment tha®t the values Vn",....vh are stored
elsewhere. Then with a suitable encoding of gaps the place aij}
to put Vn.‘ c;n still be determined {n time 0(1log n) using binary
search. But insertion of V"" requires no shifting since i* can
fill a gap. Likewise, tnsertion of vn¢2'vn03"" will bJe cheap.
One readily recognizes the similarity tc hashling with linear prode-
ing 11,518-521). Provided the *able does not get tod full (pro-

vided not too many gaps are filled) and given 2 uniform distridu~

-3=

*ion of values, the expacted number of shifts required when {in-

-serting a new value {s 0(1).

At s22e point, however, table all1:m) will become too full and
shifting wili become costly. It is then time to gonfigure, to ar-
range the sdrtea values into form (1) with a gap between each

value. Thus, the dasic algorithm {is:

inftiaiize al1:m] to contain V1 and have form (1);
43 ndN =>
g2 table all:mj is not too full ->
N n:= n+1; insert V_ into al1:m]
2325

if ndN -> configure [n=N -> skip f£4

% zrevizs 49 *~ deteraine what "not too full" means. The right
tzlance :e?yeeﬁ inserting and configuring must be found so that
nzi*ner, in t2%3l, 2verrides *the other. We analyze this problem
in Sezrtisn 2. in sec*tion 3 we give the algorithm in detail and in
t2n 4 we discuss a version that allows deletion as well as
inzer®i?n -~ 1.&., *hat operaten in the netting of "table manage-

=27t aigoritrnas®™, where balanced trees have previously been used.

Ctzner configurations of gaps are possible. For example, the

eriginal icea cevel->pea by the first author was:

/n valuves, /u gaps, ..., J/n values, /i gaps

" /n times

Tais fora leads nicely to a recursive construction that for any

i P

given d22 supports a sequence of N operations in worst case time

O(N‘*”d). This 1is presented in section 5.
We close in section 6 with some empirical results and gererail
remarks.

2.¥orst case time and expected tige analysis

The algorithm outlined in Section 1 contains three {mporrtant
parts: searching al1:m) to determine the element al jl where a
value x should be placed; inserting x, including shifting vaiues
al jl,al je1l,... up cne pesitien to make roosm for x; and cone

figuring a[1:m] when it becomes too gense.

Assuming a suitable enccding of gaps, binary searcn c¢can de
used to search a[i1:m] and, since the secarch dccurs oace far each
element to be inserted, total search time will be JiNlogh). A

mixture of binary search and interpolation search (7! can te

and we conjecture that this achieves worst case time O(NlogN) and
expected time O(NloglogN) for searching. This will save rize aniy

if N is extremely large and we do not discuss {t further.

Let us consider inserting and configuring toagether singce
their costs are related. We present in table 1 worst case asyip-
totic bounds for the algerithm using three different s!rs!egici
for scheduling configurations. The bounds for the first rwa
methods are proved in Theorems 2.1 and 2.2. The third zethac,
used 1in the algoritha of section 3, is a combination of the firsc

two. Theorem 2.3 proves the bound O(NY N) for the third strategy.

-5-

configure after{configure after|configure after n'/2
va' insertions |{n'/2 insertions|insertions or when more
than 2/n' shifts needed
for an insertion,
whichever comes first
configure N /N N N /N
tnsere NN n? N /N
scarvh NlogN NlogN Nlogh
p— 2
Yotal NN N~ N /N
n': number of elexents in sorted portion at last
configuration
N: total numbder of elements to be sorted
adrst case bdunds for three strategies.

Tabie 1.

n

Iceorsx 2.1 Let n,

te the number of values in the table just after

the 1-th configuration, with nosl. Suppose that ¢ /nt values are
inserted between the t-th and {e1-st configuration for some fixed
e>C:

no z 1, "101 e nloc /n1 for 01
where by fﬁl we mean the square root truncated to an {nteger.

Tnen the %total worst case times for configuring and inserting are

praportional to N VW,
?

2ro2f Let there be e configurations, so that n’ <N n.oe /n‘.

-6-

Each n, satisfies ni<N. The number of values inserted is N, where

e e e
N > 1+ % n,-n z 1+ 3 e/ n > e /n
121 1711 1oy {1 11 §-1
= s

The total number of values rearranged during all configuratisns 1s

e e e e

Z2n = 2 n +2e/n_ . < N+ 32 n,

1=1 ¢ 1=y =1 1=1 1-1 1=1 1
e [

< N+ 7 ﬂr/T::j = N+/VN7Z J?j:j < N ¢+ N/T/c
i=

1 i=1
Hence the worat case time for all configurations 18 no> warse *narn

o(N /N).

The worst case time for inserting occurs when ‘the =zaxic-u

<]

number of shifts’ {is made at each step. Eetwren the foen a-

“

i+1-st configuration this is:
0+2+...+(cV n,-2) < (e lni)(cl ntol) z cznioc /;1

shifts. The total number of shifts over all insertians 1is trus

bounded by
s .2
2 (c nl¢c/n1)
1=0
2 ¢ - 2 2
Ce" Zn,+c 8 /M < cSe+cNescN/Necaeld
1=0 1 i=0 b

Hence the worst case for insertisns {s O(N /N). G.E.D.

Ibeorem 2.2 Let ny be the number of values in the table just after
the 1-th configuration, with n°=l. Suppose for some fixeg x, 0 <
x < 1, that an, values are added between the 1-th and jetles® cona

figurations:

t 4
n, = 1, Ny * Nys2n, = (lea) for 07214

-7-

Inen the totil worst case times for configuring and inserting are
pr2porticnal to N and “2' respectively.

Er22f Let there be e configurations so that n‘ <N ne»une. Thus

(1+30% < x £ (1+a)°". The total number of values rearranged dur-

ing all configurations 1s:

e e
1 (3e3) -1 N
151("’) * Qeador - $ o

Hence all configuring takes linear time.
The worst case for inserting occurs when the maximum number
°f snifts 1is made at each step. This happens, for example, when

“he values are in reverse order. Given ny values, with a gap

bevween each pair, to> insert n, new values takes at most

0 2 + 4 & ... & (Zanx-z) < aznf-cxnt

srifts. Tre total number o>f shifts over ail insertions is bounded

by
e . e . e
b3 (x‘ni—:nib = xz 3 (1otx)d - x 3 (!oc:)i
i=0 i=0 i=0

H 12 - X o alelegi:l ‘\ (:‘)e;
(1ex) a1)=

e
Lex)® e xe2 2

< 2
X = X + X X+ 2 2 0«'2

R ooxe=E2 2
Xeg X+ 2

iznce *'re insertiosns in.the worst case take time O(NZ). Q.E.D.

aasares 2.3 Let ny be °he number of values in the table just after

tae il-*n configuratiosn, wito nocl. Suppose a configuration occurs

-8~

whenever an insertion causes a shift of 2 /ni or wmore values.

Then the total worst case times for configuring and inserting are
o(N 'N). .

Rroof The time for configuring follows froa Theorea 2.1. The
bound on inserting is determined as follows. Suppose e configura-
tions are performed, each occurring after 11,12,...,19 insertions,
respectively. Note that 1%"2""’1e3l' After 1’-1 (say) inser-
tions the longest possible sequence of values in the array has
length 211-1, 80 that the insertion that oiuses the‘conflguratian
can cost no more than 211 shifts. Hence the insertions that cause

the conriguratioﬂs can require no more than
211¢212¢...+Zie < 2N

shifts. Each of the N-e insertions that does not cause a confi-
guration needs less than 2 YN shifts, so that in total they need

less than 2N VN shifts. Q.E.D.

Next we give an analysis of the average case performance of
the algorithm when scheduling configurations by criterion ,. cur
goal is to show that the average total costs of inserting and con-
figuring are both O(N), which is perhaps a bit surprising. he acd-
mit tha*. the analysis is approximate and suggest how it coula te

improved.

We relate the algoritha to hashing with linear probing, which
is analyzed 1in Knuth - 1L1,518-521]). We first assume that, after
configuring, the values are uniforhly distributed in the even po-

sitions 1in the array. We next assume that each of the values tas

-9-

be inserted has the same chance of being placed at any odd posi-
tica of the array -- the odd positions initialiy being gaps. We
realice this assu:étion i1s suspect since the positions of values
are changea during an insertion. It does, however, yieldbn model
that {s simple encugh to work with. 1t means thﬁt we may deal
with only tne inirial gaps, omitting the values in the even-array
pasitions completely. 1f a sequence of r gaps are filled, then
2r+1 values o3cur without a gap 1n the coriginal problem. Finally,
we consider that a value shifted past the high end of the array 1s
insertea a* the deginning, causing a cyclic shift. This makes the
2odel less efficient than the real problem; it encourages dense-
ne3s at “he 1low end, while in the real problem a shift past the

hign end reduces aensity by introducing a new gap (see Secticn 3).

Thus we z:>del the analysis of inserting N (say) uniformly
distridutea <values into the sarted array by the analysis of hash-
ing N uniforzly cistributed values, with linear probing used to
hancle c2llistions. Knuth [1,527-530) shows that the average

nurder of skifts necessary to insert a new value is :
1 2.,2 "
2(10(1.")) x=g/n

where X is the load factor or density, g is the number of gaps
filled, and n 1is the initial number of gaps. Translating this
back }o the so>rting problem, and letting x=z(n+g)/2n be the density

of the array, > insert a new value will cause on the average:
1,2
"‘1-&’ shifts.

Thus, if tne tatle is 3/4 fyll -- i.e., half of the gaps are

filled -~ the average numdber of shifts ts §.

-10-

Asuming the model we propose, an algorithm that configures
before the table is « full, for 1/2 < @ < 1, will spena oniy C(N)

total time shifting to sort N values.

Now let wus consider the expected time for canfiguring.
Knuthl 1) gives a formula Pk e for tne probadility that exactly xe+1
’

shifts will be needed on the C+1-3t insertisn in a hash table b

size M:
Pryc = M U(B(M,C k) +g(M,c ket)u. . sg(H,c,c))

where

g(M,e,x) =[§] (ke 1) "V (Moco1) (Maka1)CmkT

Using this, for a given S, Ctne can readily determine a forzuia
for:
the expected number of insertions 1{ into an eapty hasn
table of size M until a shift of s or more vaiues ‘s
needed for an {nsertion.
We would like to show *hat if sz VM then {=aM for some 0<x<1, Ge-
cause application of Theorem 2.2 would then yieled the aesirea «x-
pected time O(N) for configuring. Unfortunately, tnise analysis
has eluded us and instead we have settled for the following. we
will show that:
if the hash table of size M i{s half full, then the pro-
bability of needing more than /¥ shifts in the nexs
insertion is small -- of order 2~ fﬁ/“.
The probability ot'needlng more than +h shifts on the (M/Z2+1)-st

insertion is:

elta

M/2

2 @
ks /M k,M/2

M/2
2 (k- /Me1) g(M,M/2,k)
ke /N

= "—HIZ

y-/2 ";2 (k= /He1)(M/2) 1 (ke1) K (M/2-1) (M-k-1) "/ 2K

ks /R (ke1)l (M/2-k)1

Arplying Svirling's foraula:

n+1/2

n
e

nt ~ /2%

and sizpiifying yields:

slMsz-1) Vg M2 (k= /H21) 2 M/2 kel M/2-k-1
vz S/ (ke1)3/2(us2-x) 372 M/2-k
Tra vera 2792 . write as
2-(k.1)/u 2-3(&01)/“ 2-H/2—k-1

Tais rewriting, along with Lemma 2.4 given below, allows wus to

tound the cesired sum from above by:

a(M/z-1) VHIZ ";2 (k= /H=1) - (ke 1) /8
—
Vel ks /M (ke1)3/2(n/2.1)372
whicr simplifies to:
2(us2.1) 7 T ";2 K= /H=1 - (k=7Hir1) /4
7z

. ke /R (ke1)3/2(n/2.1)372

-12-

Each of the terms in tho sum 18 boundud from above by 2/M so that

the sum 1{tself is bounded by 1. ltence the probability that more

than /M shifts will be needed 13 bounded by:

ey 2,372 /0. /T
e? (wr2-1) /W73 27 TN eI L =372 TM/A
T S
2
e- |, ,-3/2- /M/u«B/Dlogh
on 2
= oc z-f’i/ls)_

Lenma 2.4 Given M>1 and any k such that OSkM/2:

2-H/2-k-1 2-3(k+1)/“ (M:k:l)HIZ—k-l
M/2-k

Preef Direct inspeection with k = M/2 and kK = M/2-1 yields tre
desired result. Consider 0Sk<M/2-1. Substituting k =z M/2-t-1, so
that t satisfies 0<t{M/2-1, and rearranging yields, for the ieft

hand side of the inequality,
3M/2+¢ t
((l) 4t liHLZ)
2 te+d
which has the form (o (t+M/2)(t+1))%. The result follows if we
can show that, for 0<tgM/2-1,
: 1
T (te1) S 1%y

since (10%)‘ < e for all integers t. Thus we must show that:

fteM/2) (te1)
7 (ter) v S0

or

~13-

Since

it suffices to prove:

Lhrebi2) 1 teMs2 _ ,(3M/24t) /4 o

Y2
For t=M/2 the expression

L2 ,(3M/2et) /4t (4)

-
+
bz

fas the value 0. we will show that (4) is an increasing function
in *he range 0<t<M/2. Taking the derivative of (4) with respect to
¢ yielas:

Mo, 3hdn 2 ,(3M/724t) /4t

s 5°2

wnich in the range 0<t<M/2 has the same sign as:

‘3—%;—5 27/‘0 . 23&/5!'

This clearly is a decreasing function of t. In the range 0<t<M/2
it is -positive, which means that (4) 1is increasing in the range

0<t{M/2 and *he lemma is proved.

-14-

3.A stable sort algorithm
Given an array al0:2%N+1) where N21 and alN+1:2%N) contains a set
of values V1,...,VN the algorithm given here sorts a|N+1:29%5].

Upon termination:

al1:m) contains a sorted permutation of lV1,...V~) to-

gether with up to N "gaps™ and m<2*N
The sorted sequence can be recovered 2casily in linear tize.

To facilitate sSearching, a gap cont;ins the value of *re array
element to 1its right. Thus for a gap aLil), ari) = aji+l!. Tre
algorithm uses a boolean function isgap(i) with tne meaning ™z 1
is a gap"™ for 0<i<m+1.

Remark If the values V,',VZ,...VN are positive, the sj

each element can be used to represent the fun:*ion isgap; negative

% bit in

2]

numbers represent gaps. 1f the Vt are all distinc® then n> ex*ra
bit 1is necessary and isgap(i) will always have the vz..«

1> mor (1 £/ mand ati1) = afi+1)). See belaw. =epg 2f regzrg

The variables used are:

n, 14n¢N : the number of v1 alreaay sorted. Those not
yet processed are in alN+ne1:2N]).

m, n{m<2N: the sorted values Vl, sy Vn are in a(':m) withn
at most one gap between each acjacent pair.

r, r= £n : Just after a configuration, r 1{s an
approximation to the square rodt of n.

’shlrts : the length of the last run of values detected
during inaecrtion,

maxn tmin(N , Yeflonr(amw)) for predetermined o e Y20 ey,

-1y

T> zaxe z>re precise the contents of array a we give the following
invariant P (the bounds on variables are given above). ﬂota that
tcere is a delimiter at each end of al1:mj, which eliminates spe-
cial tests of boundary conditions. Note also that gaps can only

occur in oc¢d pasitions ali]), ail3), ...

1....,vn: < ai1:m) and @-n values in a[1:m] are g8aps;

iy

n",...,vil = alNenst1:20N);

{sgap(z+1) a2z not isgap(0);

(Af: 1gi<m: even(1i) => pot isgap(1));

(A1: 1<igm: tsgap(i) => a(1] = ali+1]);

CAd: 1<i<3: aLtl) aliet));
Tne 1ﬁvari|nt of the main loop {s Pi below. The third conjunct
indicates that if k#N there 1is exactly one gap between each pair;

the array Las just been configured:

2

P1: P and r© ¢ n < (roi)z and (n = N or 2%n = a).

-16-

The program:
atol,al1),at2):= alR+1],alN+1]),alNe1]); i
iagap(o),isgap(i).lssap(z),1s&ap(3):s false, true, false, true;
n,m,r,shifts,maxn:= 1,2,1,0,81n(N,2);
{P1}
don o N >
{(P1}{(P)
4o n < maxn gpd shifts 2%r .
niz n+1; x:= aln+N];
insert x into ali1:a] to reestablish p
od;
{p}
if n < N <> configure J n 2 N > skip £4
{p1}
od
{P1 and n 2 N}

Algorithm configure is given below. The purpose of the first icop
is to spread out the n values in al1:m) into a|1:2%n] sa that one
gap precedes each value. In the locp, all:1) contains the partion
still to be configured while al J+1:2%n)} contains the alreacy con-
figured portion with each odd position a gap. Let g be the

number >f gaps in ali:i). Then 1-g is the nuaber of V., in ayrist

k
Part of the invariant is:

0<2%(1-g)=j and 1-g 2 g and not isgap(i).

Hence 1<j. When i2) we have t=2%g, which means that there nre.

Just as many 8aps as values in alt1:i]) and alt1:1) is configured.

-17-

da i £ 3 >
atJ-1],at Jyl:= aliy,altl;

isgap(j-1),1sgap(J):= true,false;

1,3:2,1-1,9-2;
d2 tsgap(i) => 1:= 1-1 od

243

c,shifts,zaxn:z 2%n,0,2in(N,1+floor(x*2%n));

isgapi=etr):= true;
2 (ren)€ X n 2> rizr e 1 od

tFY}

The algoritham to insert x into al1:m) has three main steps.

First the pasition J where x belongs is determined. The invariant

€or tre binary search loop 1is:

1<h<Jj<m and alh) < x < alJ)

ana the ldep termtnates with al j-1)<x<a[Jj].

This means that ‘upon

terzination al j-1) is not a gap and that x belongs in position

aijl.

The second step shifts the sequence alJj...]

x as it progresses, until a gap is found.

nuaber af shifts required {s countod. The final

its place. Note that if x delongs after alm), o

t> fnclude ba2th *he new value and a new gap.

upwards, changing
the same time the
stop stores x in

is increased by 2

-18-

lnsert x into a[1:m] to reestablish P:

Find the position al j)] to place x:

-

£ a(m]<x => J:= me1

at1I>x => ji= 1

[I] l

al1)<x<alm) ->
Find J such that al J-1)<x<al 1 by binary searcr:
h,J:= 1,m;
49 heldj ->
e:z (h+j) diy 2;
if alel<x <> h:= e
I ateld>x -> 3:: o
1
£1;
shifts:= j;
do not 1sgap(J) -> alJl,x :3 x,alJ); § := Je1 og;
shifts:z j-shifts;
Insert x at alJj). Note that J is odd and Jim:
if <m ;) aly):= x
§ @ <> m:z me2; maxn:= nin(N,1+floor(a'm));
alm),alm-1):= x,x;

isgap(m-1),1sgap(m),1sgap(me1):= true, faiss, srue

19«
4. Eractical table managctwenl uaing controlled depaity

The alg»ritha of Section 3 can be modified to delete as well
as insert values. This yields an algorithm that supports the

operations INSERT, DELETE, SEARCH, and MIN as defined in |3].

Care {3 required to maintain gaps, because there may be more
tran one gap in a row after a deletion. Let us represent a gap by
trhe closest real value to its right, so that each gap sequence
192k like:

? ’ Yy Yy Y 0 oeeey Y y

2% 1szap, isgap, tsgap, isgap, ..., isgap, npnot isgap

insertisn, as shown earlier, causes no problems because it changes
oriy a leftzost gap into a value. To maintain gaps during a dele-
tisn, nowever, all the gap values to the left of the value being
ceietel must be cranged. This takes time proportional to the
nuzper Of gaps tdo be changed. Hence configuring should take place
wrnenever a gap sequence Oof length 2 f;; or a value sequence of
iengtn F /7?; i3 detected. Note that configuring is more compli-

ca%ed because it could cause the portion alt1:2n) to shrink.

«20-
5-A ¢class of table management alsorithas

The technique of interspersing gaps with data values can be
extended to a recursive construction with scme fixed number d

.(say) of levels.

The resulting data structure supports INSERT, DELETE, MIN,
and SEARCH in total time LO(N"‘/d) for N operations. 1n this sec-
tion we describe a workable implementation of this idea and give
an informal worst case running time analysis. The practicali utile

ity of these algorithms is qQuestionable for d>2.

The data structure consists of a one dimensional array A con-
taining data and gaps, together with d-1 arrays of indices into A.
The array A is partiticned 1into Segments, segments into sub-
segments, etc., with the array itself regarded as a level 0 seg-

ment. For n values and 0Sk<d a level k segment satisfies:
(1) the level k segment has nlld

ing with n”d gap areas;

cdata areas alternat-

(2) a gap area haa length sn(d'k)/d;

(3) a data area is of length z(d-k)n(d'k)/d and con-

tains n‘ld level k+1 segments;

(4) the beginning of the i-th data area {s indexed by
da(k)li] and the beginning of the i-th gap area is
indexed by ga(k)Lt];

(5) a gap area 1is never empty.

The smallest segments are on level d and are contiguous se-

quences of data values of length n‘,d. Note that the sizes of

-21-

scegments are balanced so that the numbder of subsegments in a seg-
ment is always n"d. This choice of constant ratio across all lev-

~els is optimal for this arrangement of segments.

As in the earlier algorithm the data area is sorted and a gap
¥S a rarked copy of the value following it. A SEARCH operation,
tnhez, can be done in time 0{(la2g dn) = 0(log n) for n items astored
irn the tabie. An INSEKRT operation determines by SEARCH the proper
loqa!lan for the new {tem, then searches forward for the closest
83p -~ by the arrangement of the data structure this takes time at

1/d). 1f insertion of the item does not cause a level d-1

=>s? O(n
83ap area t> be filled, the insertion is finished; if a level d-1
£2p area is filled, the level d-1 Segment containing the new item

is configured using n”d

space from the gap area of the containing
ievel d-2 segment. 1If taking the space from the level d-2 gap
area uses wup this gap area then the level d-2 segment is config-
urel using space from. the containing levle d-3 segment » ete. All

this maripulatiosn references and modifies the pointer arrays da

ard ga.

A configuration at level k costs O(N(d'k)/d). In a sequence
Sf N operations a configuration at level k occurs no more often
than once every O(I‘d'k")/d) Steps, 30 can happen at most
O(TT;:=:777;) times. The total cost for N operations chosen from
x:?, SEARCh, and 1INSERT {s then

£.0C N(logaw) « w4y

d-1

(d-k)/a N__
2 :0(N = <)
e u(d-k-1)74d

-22-

1/4 1+1/4 1+1/4

L 0(¥) + 0(dN) = 0(N).

As discussed for the earlier algorithm a deletion can be pro-

grammed in several different ways but any reasonable cnsice shouyig

not disturb the asymptotic bound.

6.Empirical results

Versions of our algorithm were compared with Heapsort s GQuicksore
and a balanced tree scheame taken from (&4}, 411 progranmzing was
done in the C programming language running under UN1X on a PLpP-11,
The times reported here were obtainea with tne UMIX "time" ¢cozzanz
and sﬂould be accurate to a resslution of about 0.1 seconds. Tes-
data described as random was obtained from the UMNLX library ®rarnc®

function. Each number reported for ‘randam input represcents an

average over ten trials.

The Quicksert progam taken from (5) was preogrammes recursive-
ly <- an fterative version might Eun-s!ill faster. The balances
tree data structure was implemented with an array -- aga:in &

pointer implementation might run faster.

As described above, the controllea aensity algorithms
schedule configurations by two conditions:

(1) density of data in array 2 «;

(2) shift costs more than square root of size 5! array

at last configuration.

‘80 @ {3 a parameter of the algoritha. The storage required by tne
algorithm i1s always < 2N but 1{s typically much less -- the maximue
result of storage used is called M and i3 reportea along with +the

running time.

-23-

Imzirical Resulss
A

Sorting Algnrithms

Pazdza Data
3 Heapsort Suicksort Controlled Density
alpha=2/3 alpha=3/4

tice* time time M time M
)
)

5 $G0 4.8 0.9 1.7 9 234) 1.7 8 264
1

7 222 7.8 1.3 2.4 11813 2.3 12 789
-]
Screed Data '
4 :
Ll
.
)

3 2Co 5.2 11.5** 10.2 9 902 ; 10.3 9 898
1

T e 8.6 22.8% 16.9 13 808 E 17.1 13 804
[}
]
1

Balanced Tree Comparison
Ealenced Tree Controlled Density
tize tine
8.8 2.0 6 592
13.0 9.0 7 830
13.1 1.5 6 732

« All times in seconds.

** Probably 1ue to unsophisticated shoice of
partition element.

.24~

1. Commenta

(1)

(2)

(3)

(4,

This class of algeorithms was suggested by our
work with some fast Turing Machine constructions
151, L61].

These algorithms would seem to be a particularly
attractive alternative to balanced trees in pro-
gramming languages that do not allow easy manipu-
lation of 1linked structures and pointers. If a
link and an array entry take the same amount of
Storage then the controlled density array has
less than half the space overhead of a balanced
binary tree.

Balanced trees are very flexible data structures
and other operations from [3) such as SPLIT and
MEKGE are hopelessly awkward with arrays.

The periodic configurations are expensive. This
would discourage use of the controlled density
algorithms when some bounded "response time"™ is
required.

=25=

References

11
[2]
3]

(4]

[5]

(6]

(7]

Knuth, D.E., The Art of Computer Programming, Vol 3 (Sorting and
Searching), Addison-Wesley, Menlo Park, California, 1973

Perl, Y., A. Itai, and H. Avni. Interpolation search - a loglogn
search. CACM 21 (July 1978), 550-553.

Aho, A., J. Hopcroft, J. Ullman. The Design and Analysis of Computer

Algorfthms, Addison-Wesley, Menlo Park, California, 1974,

Guibas, L. and R. Sedgewick. A Dichromatic Framework for Balanced
Trees. 19th Annual Symposium on Foundations of Computer Science,
October 16-18, 1978, 8-21.

Sedgewick, R. The Analysis of Quicksort Programs. Acta Informatica,
Vol. 7, Fasc. 4, 1977, 327-360.

Melville, R. An improved simulation result for INK bounded Turing
machines. Technical Report 78-348, Department of Computer Science,

Cornell University, Ithaca, New York.

Hennie, F. and Stearns, R. Two tape simulation of Multi-tape Turing
Machines. JACM Vol. 13 No. 4 (Oct. 1966) 533-546.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif

