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PROVING PROPEZRTIES OF PARALLZEL PROGRAMS:
AN AXIOMATIC APPROACH
Susan Cwicki :
David Gries
1. Introcducticn
- -

The importance of correctness proofs for seguential programs
is widely recognized; with parallel programs the need is even
greater. When several processes are executed in parallel, their
results can cdepend on the unpredictable order in which actions
from different processes are executed. Such complexity greatly
increases the probability that the programmer will make mistakes.
Even worse, the mistakes may not be detected during program testing,
since the particular interactions in which the errors are visible

may not occur. It is important to structure parallel programs in

a way which eliminates some of the complexity, and to verify their
correctness with proofs as well as by program testing.
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Hoare's syntax and axioms for parallel programs [4]. We £ind
Hoare's languace attractive because it restricts the interactions

between parallel processes in a way which leads to intellectually

for formal program proofs, tut it also can be used informally
and is more reliable thaen most informal metheds.
But Hoare's axioms for parallel programs have certain weak-

nesses. They are intended only for prcofs of partial correctness
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with r when B éo S

has the following interpretation: r is a resource, B is a

Boolean expression, and S is a statement which uses the variadbles

of r. When a process attenpts to execute such a statement it &
delayed until the condition 3 is true and r is not being used b

another process. When the process has control of r and 2 is ¢r

S is executed. Upon termination r is free for further use by othe

s
Y

1Y
u

e,

processes. When several processes are competing for a particular

resource we make no assumptions about the order in which they
receive it. Critical section statements can only appear inside
parailel processes, and critical sections for the  sarme resource
cannot be nested.

Much of the complexity of parallel programs stems from the
way processes can interfere with each other as they use shared
variables. The critical section staterment reduces these prob-
lems by guaranteeing that only one process at a time has access

- to the variables in a rescurce. The following syntax restric-
tions ensure that all va:iable§ which could cause conflict are
protected by critical sections.

1. If variable x belongs to resource r, it cannot agzsaar

in a parallel process except in a critical section for

2. If variable x is changed in process Si, it cannot apgea

in S. (i#3) unless it belongs +o a resource.
J J

0
<

These restrictions can easily be enforced by a comziler. 7T
greatly reduce the complexity of parallel programs and their
correctness proofs.

Even with these restrictions, the results of executing a

parallel program still depend on the relative speeds of the



parallel processes. ¥%e introduce the term computation to
correszonéd %0 one pariticular instance of program execution. In
o5t cases there are many different computations for a given
paralliel program, and each one may result in different values
for the pregranm variables. Since we are interested in interme-

dipte stages in program execution as well as the f£inal result, .

we allow ccmputations which represent only partial execution of

In general a parallel program may have any nunber of
‘ccbecin stétements and resources. In the interests of cla:ityi
we will restrict our attention to simple programs with just one
rescurce ané cotegin statement. Our results are valid for more
complex procgrams, but they are easier to state and prbve for the

restricted case.

3. The Axioms

The axioms defined by Hcare [2] give the meaning of program

" statements in terms of assertions about variables in the program.

{Q} expresses the partial correctness of state-

to asszertions P and Q: i. e. if P is true

and 3 halts, then Q is true after cxecuting

S. P is called the pre-condition, ¢ the post-condition of S.

Hoare [2,4] cives a set of axiems and inference rules for
formal proofs cof partial correctness formulas. Since we are
mainly concerned with parallel programs here, we will be informal
abcut secuential statements, and provide formal rules only for

paralliel statements. We will rely on an intuitive understanding
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conditions are set off by braces { } and interspersed with the
program statements. Ia our proofs of mutual exclusion and

other properties, we will write pre(S) and post(S) to denote

the pre and post conditions of statement S, and these asse:éions
will be used extensively. They are valuable because oI the
following fact. Suppose S' is a statement in program §, and
pre(S'), post(S') and I(r) are derived from a proof of {P} s {Q}.

In any computation for S which starts with P true,

1. pre(S') is true whenever S' is ready to execute;
2. post(S') is true whenever S' £finishes;
3. I(r) is true whenever no critical section for r is

being executed.

4. Auxiliary Variables

Unfortunately the axioms given above are inacdeguate foxr
many simple programs. Figure 2 shows the program add2, for which
{x=0} add2 {x=2} is certainly true. Eowever this cannot re
éxoved using the axioms given so far: we cannot even prove that
{0 < x < 2} is a valid invariant for resource r. Now-considé:‘
the program addl in Figure 1. It has the same effect on x as
2dd2, but it is possible to prove {x=0} addl {x=2} because of the
extra variables y and z. The program addl has essentially %the saze
behavior as add2, in spite of the fact that it contains statements
and variables which do not appear in add2. This is because the
adéitional variables, and the statements using then, ¢o not
affecct the flow of control or the values assicned to x. Variables

which are used in this way in a program will be calleé auxiliary
e Y



variatles, The need for auxiliary variadbles in proofs of parallel

programs has teen recognized dy Brinch Hansen [1] ané Laver [5].

we would like to be able to conclude from the proof of
{%=0} addl {x=2} that {x=0} add2 {x=2} is also true. In order
to 2o this we need an axiom which allows us to use auxiliary

iables.

Definition: Let AV be a set of variables which appear in program

S cnly in assignment statenments of the fornm
xX:=Z whe:e x € AV, and any variable may be used in E.

Then AV is an auxiliary variable set for S. '

I£ AV is an auxiliary variable set for S, let S' be obtained
from S by deleting . all assignments to variables in AV (and possibly

some redundant begin end brackets). Then if {P} S {Q} is true

and P and Q co rnot refer to any variables from AV, {2} s' {Q}
is also true. (Tae xules for deleting statements are defined

more -ma’ly in [7)).

This axiom can be applied to {x=0} addl {x=2} to yield a
£roof of {x=0} add2 {x=2}. Auxiliary variables can be a very
powerful aid in pregram proofs. Starting with a program such as
add2, new variables ané statements using then can be added to
give a program like add2 for which a prcof is possible. Then the
auxiliary variable axiom can be applied to yield a proof for
the original program.

Even with auxiliary variables, the axioms given herc are not

strong erough for all partial correctness proofs. Ia [7 ] we give

an additicnal axiom which allows the use of auxiliarv resources.
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dining philosophers: begin
comnent af[i) is the number of forks available to
philosopher i;
af := 2;

r——————

resource forks (af): cobegin 20 // ... // DP4 coend

|

DPi: for j := 1 step 1 until Ni do
begin |
getforks i: with forks when af[i]}=2 ¢o
begin af[iel] := afliel]l=l;
af(iel) := af[ielj-1:
end
_eat i: "eat";
releaseforks i: with forks do
begin af[iel] :=-af[iel]+l:
af[iel] := af[iel]+l;
end

think i: "think":;

@ and © indicate arithmetic modulo 5

Figure 4. Dining Philosophers Program



{true}
dining zhiloscphers: becin

is an auxiliary variable,

1 when pnilosophrer i is eating, 0 otherwise;

{i1=0, i=0 ... 4}
eating): cobegin DPO // ... // DP4 coend

{eating{i}=0)

D2i: for j:=1 steo 1 until Ni do
begcin {eating(i]=03}
getforks i: with forks when af[i}=2 do
{eating[i]=0 A af{i)=2 A I(forks)}
becin afligl):=af(iel)~-1l; af(iel):=afliel]-1;
eating([i]):=1
end
Jeating(i]=1 A I(forks) };
{eating{i]l=1}
eat i: "eat";
{eating{i)=1}
release forks i: with forks do
{eating[i]=1 A I(forks)} )
tecin afligl):=af(iel]l+l; af(i®l]:=af[i6l]+l;
eating(i]:=0
end
{eating[il=0 A I(forks)};
{eating[i]=0}
think i: "think";
{eating[i)=0}
end
{eating(i)=01}
I(forks) = {{0% eating{i]s 1 A (eating(i)=1=> af(i]=2) 4

)

af[i]=2 - (eatingli€l]+eating[i®l])] 0 < i < 4}



excliusio

ocZesses

1]

{2} s {Q}.

of

ocf

S
2

Zfrom

erived

a

and

-
-

O Xesodurce

Dol

lcal sectic

ide a critl

nct ins

are

52

and

S,

T£
i<

false, then

=>

(P, A2y A I(x))

there

xclus

e

ive

eacnes a

-

true and

?

with

starts

~t

ich

at whi

int

2

have a con

er C we

1)

2

n, since

ictio

ocess S'

M

3]
ke

M
-l

3

somie

tement

sta

tion

ls casc

PN
(2o S

in

oceed as

derive C',

To

is

when S

O
o
[e]

by

computat

rccess except

no

h

£inis

not

el

. C

r

resource

variables in

s
tne

reicrence to

any

X

maxes

at this point ancé a

el

ned by s

-
3
4

[e}<]

ing S'

e exactly as

conti



bles
ta-

ompu

-~

varia

-~

i

the other

1,
i

orocesses:
change any
and
t

x

(3

e
NOW

() £ n
el . (9] ‘ o 0
ua ¢] - 4 e [} (4]
o ~ o] (9] R [¢] £ (3]
= ] [ 0 ~ ] Q o
X 8 0 4 4] [ ) 31
[¢] (e} + o] 0 4 s 4 « [N
o A 2 4} s 0 e} 4 81 +
3 1) [e] (=] 13 Q uy 3 S 0] 84
[STI [N ] 6] o [S TR 4]
4+ ] O Q ¢ o
1 3 (9] . » 3 K 4
[8] 23 o3 %] o~ ol o) 4+ [e]
£ £ 18 ] wn [¢] £
St e} s ot — o —t el §e) o
o 8] £ 49 —~ Q ) a$
St = (5] s @ o} o Q)
et Q r4 - (o] —t 0 o) 10}
o Y4 Q 15 (] — ~ o~ 4 O 1)
12 (e} [¢) [} 2 th ] 5 0, o
[e] . 3 w 3 o] o« 18] [N O
2 o] N R N, Q [e) @
(6] Q [\ 43 9] (8} 4 0
R [ B ] s b (¢} 3 (4}
~ 4 $4 1) = [¢] (3} 42 le) "
et ] u 0 o
53 Y R n [} ~{ 191 f
g - o «§ [ [ (@) [d]
(9 U< 6] o~ o =i Q I "
I 3] 0 ) n [ 4 ~ [ —
Ay [¢] o : ol 1 ns
0 o~ 4] i [ «© 44Uy
8] Q ot Q q] -
O ] S} 4 ~ [oH "
(SR IR o ' ol e
N ] [ 0 (0] « Q
Q (V) wm [N ~- e 1Y N m
X 2] [ o (o)) O
> N i (3 'Y Kel le) le) Q
X [ %4 o $4 ot w
— « ol A, ol e 0 o3
o u ] £ o5
B -~ 3w (SIS
2] (o) (V] [] — ] @
3 £ - N R & Q
¢ 49 o~ Q « ot
© M DX 0w wn
[S Y] o x v a v
1Yl [} + ot (3 < [o] ¢} ] 9] o]
« Q . o 3 a0 9] 0 4] NeJ
—_~ th 9] 9 ” o~ [N FB) 5 3] O
(2 BN ¥ R ] [V ot U] ] [SI ]
2B S L R ] n | I B R § S5
a 3 s < I8 Q et a0
L$} e e 1Y “t KH Q 0. .Q N
° (V] 3 ] li -t N~ 4 o [
o Q o 4 e 3} o ) O X
£t G T B o I$ 0 O L
-t nl unoon -t ot Q O A
(5] [ O Q m 1] X
n Q > [3) o
g et - [¢] 31 )] 5] "y
[ - S | Y] orf . £ ny ]
L w 2]} (2] (%] 9 a o




15

In most cases blocking is harmless: a process rmay be blocked
and then unblocked many times during program execution. However
if an cntire program is blocked there is no way to recover. This
is a situation to be avoided, and in this section we describe
a way of proving that it cdoes not occur in a given program. Cnce
again the method is based on assertions obtained from a partial-

correctness proof.
Thacorem: Suppose program S centains the statment

S' = rescurce r: cchbegin Sl /] e /7 S ccerd.

Let the with-when statements of process Sk be

J 2 with ] J b 123
Sk with xo when Bk éo Sk, =l ... .

3 . :
Let pre(SQ), post(Sk), and I(r) be asserxtions derived from a proof

{r} s {Q}. Let

o
n

A (post(S,) V (V(x s,z A p‘.'e(S?;)))) )
. /(=3

A >

3 A 3
\j/ (= By pre(sk))

Then if D, A D, A I(r) => false, S canrnot be blocked if ? is true
ES

2

when execution begins.

Prcof: Suppose S is blocked for some ccngutation C which stars
with P true. Since S can only be blocked at with-when statenents
in S', C has begun parallel execution of the S{. Tor each process
Si’ either C has f£inished Si or Si is blocked at on2 of the Sz.

In either case, no critical sections are in executicn, so I(x)

holds. Also, if C has finished S;, post(S;) holds, and if S, is
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. 3 3 j . . 5 . .
blocxed at s?, pre(S;) A = 32 nolds (S7 must be blocked because
i i i

Bi is false, since no critical sections are in execution). Thus

D, m=ust held after C. ince at least one of the Si is blocked,
Dz must holé after C. This means that D, A D2 A I(r) holds after
C, but this is impossible since Dl A D, A I(r) => false. So no

such 'C-exists, anéd S cannot be blocked.

Applying this theorem to the dining philosophers problem

= A {post(DPi) V (pre(getforks i) A aflil#2) Vv

(pre(releaseforks i) A = true)l

= A leatinglil=0 Vv (eating(i]=0 A af[i]#2))

i
. => A eatingl[il=0
i
Dy A I(r) => A af[i)=2)
i
Dy = Vv {prelgetforks i) A af{il#2) Vv

- . rprelreleaseforks i) A = true))

=> 3i(af(i]#2)

So Dl A D2 A I(forks) => false, and the dining philosophers program

cannot be blocked.

. 7. Termination

rogram termination is an important property for both parallel
ané seguential preograms, although there are correct parallel programs
which €o not terminate. Various technigues have been suggested for

proving termination of sequential programs (Hoare [2], Manna [61),
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are generally tco long %o be reasonably done by hand, the axiomat:
method would be well suited for an interactive program verifier,
in which the programmer provides the resource invariants and some
of the pre and post assertions, and the program verifier checks
that these satisfy the axioms.

A sccond possibility is informal proofs, like the ones given
in this paper. The techhicues are easy to use, and are relatively
reliable. Although mistakes are possible in any informal prcof, ¢
structure of the axioms reduces +he probability of errcr. Cnce th
programmer has defined his reséu:ce invariants, the xeasoﬁing )
involved in the proofs is strictly sequential, and *hus easy tc
do. In contrast many informal proofs inveclve arcuments atout the
orcer in which statements can be executed -- in these it &
dangerouély easy to overlook the one case in which the progran
performs incorrectly.

Finally, the language and the axioms give cuides for tre
construction of correct and comprehensible prcgrams. The use of
resources isolates the areas in which programs can interfere with
each other, and the resource invariant states exslicitly what
each process can assume about the variztles it shares with cther
processes. The programmer who takes the time to define a resource
irvariant andé check that i+ is preserved in each critical sectien

is using a valuable tool for producing correct programs.
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