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Abstract

We give an algorithm, its correctness proof, and its
proof of execution time bound, for finding the sets of equiv-
alent states in a deterministic finite state automaton. The
time bound is Kemen-log n where K is a constant, m the
nurber of input symbols, and n the number of states. Hop-
croft [3] has already published such an algorithm. The main
reason for this paper is to illustrate the use of communicating
an algorithm to others using a structured, top-down approach.
We have also been able to improve on Hopcroft's algorithm by
reducing the size of the algorithm and correspondingly complica-

ting the proof of the running time bound.

fThil research was supported by NSF Grant No. GJ-28176.
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Introduction
In [3], Hopcroft gives an algorithm for minimizing the
number of states in a finite automaton. The running time
has a bound Kem*n-<log(n) where K is a constant, m is
the number of input symbols, and n is the number of states.
Previous algorithms ran in time proportional to mn2 or worse.
Hopcroft's algorithm is thus a significant achievement.
Unfortunately the algorithm, its proof of corre?tness and
the proof of running time, are all very difficult to understand.
We present here a "structured", top-down approach to the pre-
sentation of the algorithm which makes it much clearer. One
technique in achieving this is to present the correctress proof
and algorithm hand-in-hand. 1In fact, once a few details of the
proof are known, the algorithm is obvious. The correctness
proof itself consists of a few simple lemmas each of which can
be proved in a few lines.

. Sucﬁ a structured approach to presenting an algorithm
seems to be longer and require more discussion than the con-
ventional way. If the reader wishes to complain about this,
he is challenged to first read Hopcroft's original paper and
see whether he can understand it easily. The advantages of our

approach will then be clear.
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¥hile we present the algorithm in top-down fashion, the
reader should realize éhat 1t.wasn't fully developed in this
manner. A proof of a theorem may bé neat and elegant, but
this does not say that the proof was actually thought of in
the same manner as it was presented. The same holds for pro-
grams and their descriptions.

The proof of the time bound is‘based on Hopcroft's work.
However, it is important to notice that part of the proof given
here depends on proving that a relation between values of var-
iables remains invariant during execution of the algorithm, and
this proof turns out to be significantly easier to follow than
Hopcroft's. We have also been able to significantly cut down
on the size of the proéram and the data structures needed, by
complicating the proof of the running time. Our algorithﬁ is

therefore different in a few aspects from Hopcroft's.

Problem Definition

Let A = (5,I,§,F) be a deterministic finite automaton,.
where S 1is a finite set of states, I is a finite set of input
symbols, & is a mapping from S x I into S, and FC s is
the set of final states. No initial state is specified since
it is of no importance in what follows. The mapping § is
extended to S x I* in the usual manner where 1I* denotes the
set of all finite strings (including the empty string €) of
symbols from I.i States s and t are said to be equivalent
if for each x € 1* , &(s,x) € F if and only if &(t,x) € F.

We denote the empty set by ¢. We want an algorithm which finds



equivalent states of a f{nltc automaton. . .

Example: Consider the automaton with ' § = {a,b,c,d,e},
I={0,1} , r={a,e} , and & given by the arcs of diagram
of Figure l‘ih the conventional manner. a is not equivalent
to b since &(a,0) € P, &(b,0) B F . The final states d
and e are not equivalent since &§(d,0) € F but &(e,0) £ F.

8 = {a,b,c,d,e)
I = (0,1}
FP= (d,e)

Sets of equivaignt
states: ’

{a,c},{b},{a), (e}

Figure 1 Finite state automaton

The basic algorithm ) -

We are now ready to begin our discussion of the algorithm,
The following discussion may seem siightly circuitous. We pre-
sent it in this way so that the final algorithm is easy to under-

stand and easy to prove correct.

Definition 1. A partititioning of the states into blocks B

1 [
By eeey ﬁp is aéceptable if (a) no block contains both a final

and a nonfinal state, and (b) if 8 and t are equivalent states

then they are in the same block.
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As an example, we present the following lemma:

Lemma 2. The gartiti&ning By =F . By = S-F {is aécegtable.

Proof: Part (a) of definition 1 is clearly satisfied. Secondly,

since a final and a nonfinal state cannot be equivalent, (b)

is satisfied. Q.E.D.

We wish to write an algorithm which generates the single
partitioning such that two states s and t are equivalent if
and only.if they are in the same block. The following lemma
characterizes this partitioning.

Lerma 3. A partitioning Bl' 32, esey B gives the blocks of

P
eguivalent states if and only if (a) the partitioning is accept-

able and (b) for each pair of blocks Bi' Bj and symbol a €1,

(1) s, t € Bi , 6(s,a) € Bj implies ¢&(t,a) € Bj .

Proof: Suppose a partitioning is not acceptable. Then either a
block contains a final and a nonfinal state (which can't be
equivalent), or two equivalent states are in differgnt blocks.
In either case, the partitioning obviously doesn't yield the

blocks of equivalent states.

Suppose (b) doesn't hold and the partitioning is acceptable.

Thus we have (for some s, t, Bi’ Bj and a)

s, t €B, , §(s,a) € Bj , 6(t,a) & Bj

Since §(s,a) and &(t,a) are in different blocks, they can-

not be equivalent. Hence there exists a string x € I such



that . ' o .

- 6(8(s,a),x) € P, and &8(8(t,a),x) £ P (or vica versa)

' Hence &(s,ax) € P ,. §(t,ax)  F and s and t are not

equivalent but are in the same block.

To prove sufficiéncy, suppose that both (a) and (b) hold.
Consider any two states 8 and t in a block Bi « We need
only show that s and t are equivalent. We can easily prove
by induction on the length of the string x, that é(a,x) and
§(t,x) are always in the same block. Since a block cannot
contain both a nonfinal and final state, the theorem is proved.

Q.E.D.

.

We can restate Lemma 3 slightly to describe how one can

refine an acceptable partitioning to get another one:

Lemma 4: let Bl' Ry Bp be an acceptable partitioning.

Suppose there are two blocks Bi and Bj and a symbol a

such that

(2) s,t € 81 » 8(s,a) € Bj » but &(t,a) ¢ Bj .

Then s and t are not equivalent states, and ve get a new

acceptable partitioning by replacing B1 by the two blocks

3) (s € Bilc(s,a)“é Bj) and (s € Bilc(s,a) £ Bj) .

We leave the proof to the reader. This splitting of Bi as

described is called splitting B1 with respect to the pair

(Bj,a) or simply splitting B, wrt (Bj,a). We now write
the following algorithm:
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(4) By «F B,+S-P [initially there are two blocks]
while I a, By, Bj such that (2) holds do
SPLIT: split Bi wrt (Bj,a)

end

The algorithm must terminate since each execution of the loop
statement SPLIT adds a new block, and the number of blocks in
an acceptable partition can be no greater than the number of
states of the finite automaton.

To show that after execution the partitioning yields the
block of equivalent states, we use the following theorem about
loops of the form "while B do s end” where S is a sequence

of statements and B and P are relations (see Hoare[l]):
(5) PAB({S}P implies P {while B do S end} PAaB

which means: 1If the truth of relations P and B before
execution of sequence S implies the truth of P after execu-
tion of S, then the truth of P before executing "while )
B do s end” implies the truth of P and falsity of B
after execution, providing the loop terminates,

Por algorithm (4), let P be the relation "the partition-
ing is acceptable". By Lemma 2, P is true just before execution
of the while loop, while by Lemma 4 execution of S always yields
an acceptable partitioning. The relation B is "3 a, Bi' Bj
such that (2) holds". Thus, P and = B hold after execution
of the loop, but these are the sufficient requirements described

in Lemma 3 for the final partitioning to be the desired one.
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Note that exeéution of algorithm.(l) says nothiﬂ; about the
qtde;.in which the triples (a,Bi,Bj) are chosen for splitting.
Hence the order does not matter. Let us get closer to our final
algorithm by describing something about this ordering. Our re-
finement (6) determines all splittings wrt a pair (Bj,a) and

then performs all these splittings at the same time.
(6) Bl + F; 82 +8S-F

while & a, 8i' Bj such that (2) holds do
Determine the splittings of all blocks wrt (Bj,a)y
Split each block as just determined.

end

The algorithm is not very efficient, since we must at least
check every triple (a,Bi,gj) for a pair s,t such that s,teni,
8(s,a) € By but §(t,a) § By. 1In fact it looks like at least an
mn? algorithm. Let us consider the possibility of maintaining a
list L of all pairs (Bj,a) wrt which some blocks may have to beA
split. Another way to put it is that if we know it is not neces-
sary to split any B (including Bj itself) wrt a pair (Bj,a) we
won't put that pair on the list. We can then keep splitting un-
til the list L becomes empty.

We must of course prove that we can correctly maintain such

a list L. But let us first look more closely at what splitting

does, and some consequences we can draw from this.

(7) The result of splitting all blocks wrt (Bj,a) is that any

future block B (including the final blocks) satisfies one
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of the following: ) :
(a) for all s € B &(s,a) € Bj' or
(b) for all s € B 8(s,a) ¢ Bj

Assertion 7 certainly holas for the blocks resulting from the
splitting, and since each future block is a subset of one of
these, (7) must continue to be true as the algorithm progresses.
It should also be quite clear that this is the only result that
splitting accomplishes. This discussion yields the following
simple lerma.

Lertma 5. Suppose all blocks have been split wrt (Bj,a).

Then there is no need to split any future block wrt (Bj,a).

This next lemma is important; without it, we would not be

able to have running time proportional to m°n‘*log(n).

Lerrma 6. Suppose a block Bj is split into blocks Ej and Sj' Con-

sider a symbol a. Splitting all blocks wrt to any two of the three

pairs (Bj,a), (ﬁj,a), and (ﬁj,a) performs the same function as split-

ting all blocks wrt all three pairs.

Proof. Suppose we split all blocks wrt (Bj,a) and (Ej,a). This im-

plies that each future block B satisfies one of the following:

s € B implies &(s,a) € Bj and §(s,a) € Ej; or
s € B implies é&(s,a) € Bj and S(s,a) ¢ ﬁja or
s € B implies §&(s,a) ¥ By and $(s,a) ¢ §j) or
s € B implies &(s,a) ¥ Bj and §(s,a) € Ej

e e ey e o AR~ - e
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Since Ej.U ﬁj - Bj and §5 n Ej = g, we infer that one of the fbl-

_lowing holds:

s € B implies ¢(s,a) € Ej ,

8 € B implies §(s,a) § §j
This is precisely what splitting all blocks wrt (ﬁj,a) accomplishes
(see(7)). We leave to the reader to prove the rest of the theorem
(in the same fashion) -- that splitting wrt (§j,a) and (ﬁj,a) ac-
complishes the task of splitting wrt (Bj,a); and that splitting wrt

(B,,a) and (B,,a) accomplishes the task of splitting wrt (B;ra).
3 3 Q.E.D

As an example of the use of lemma 6, we have the following:

-Lemma 7. Let the two initial blocks be B.=F and 82=S-F. For a

== = X0 22 tlal D-0cks be 5
given symbol a, it is necessary to split all blocks wrt only one

of the gaifs (By,2) and (By,a).

Proof. Consider lemma 6, with Bj-s, Ej-r, and ﬁjas-r. We already
know that é&(s,a) € Bj for any symbol a, so it is not necessary to
split wrt (Bj,a). Hence we need only split wrt either (ﬁj,a) or

(§J.,a), but not both. Q.E.D.

Now let us give the modified algorithm using a list L, and
also state precisely the meaning of this list.
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(8) B, ~F; 52¢s-ri L=gf

for each ¢ € I do

if B, is smaller than B, then add (3),c) to L '
else add (Bz,c) to L;
end

while L # # do

b: Pick one pair (Bj,a) € L;

c: Determine splittings of all blocks wrt (Bj,a);
d: L+L - (Bj,a); :

‘e: Split each block as determined in c¢;
f:

/*Fix L according to the splits that occurred in step e*/

for each block B just split into B and B (say) do t

for each ¢ € I do
if (B,c) € L then

S 4 L+L+ (B,c) + (B,e) - (B,c)

else

if B is smaller than B then add (B,c) to L
else add (ﬁ;c) to L ’
end )

end

end

The for esch statement can be interpreted
contain elerents I.,I ""'Ik‘ o N eoricens

Let I
ment for each ¢ € 1 d5s s end as

Then we can rewrite the state-

J+1; whileJ <kdoc+1I; 8 J+T+1 end

UV MVSVN
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(9) Meaning of List L: L is a list of pairs (Bj,a) wrt which

we must attempt to split all blocks so that either (7a) or
(7b) will hold for each block. 1If Bj is a block and
(Bj,a) £ L for some a , then either (7a) or (7b) already
holds, or we are assured by other means that either (7a)

or (7b) will hold when the algorithm terminates.

Now compare the modified algorithm (8) with its predeces-
sor (6). The only change is the introduction of the list L and
the statements to manipulate L. If we can show that the main
while loop of (8) terminates, and that (9) is invariantly true
before and after execution of this loop, then indeed the al-
gorithm performs the desired task.

‘The 1list L must become empty since (1) each time we use
a pair (Bj,a) it is deleted 1n'statement d; (2) pairs are ad-
ded to L in statement f only if a block is actually split into
two distinct, nonempty blocks; and (3) the number of splits is -
bounded by n, the total number of states. Hence the algorithm

terminates.

We must show that (9) is an invariantly true relation of

the main loop. To do this, we again make use of the axiom
PAB (S} P implies = P{while Bdo S} PA =B

where P is assertion (9). First of all (9) is true before exe-
cution of the loop, by lemma 7. Thus we need only show that ex-
ecuting statements b through f leave (a) true. L is changed in

statements d and £, so we must look at them more closely.
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Statement d deletes frém L fhe pair (Bj,a). Since we are
splitting all blocks wrt (Bj.i), Lemma 5 gives us the right to
delete it. Statement f processes each block B (say) that is
split into B and B. By Lemma 6, for a given symbol c we need
only split wrt two of the three pairs (B,c), (B,c) and 3,0 .

If (B,c) is in L, then statement £ replaces it by (B,c) and (g,c).
Suppose however that (B,c) is not in L. Statement (9) tells us
we can assume that the result of splitting wrt (B,c) will be ac-
complished by other means before termination; hence we need only
split wrt one of the pairs (B,c) and (3,c). Hence executing b-

£ leaves (9) true.

Algorithm (8) is thus correct; it performs the éesired func-
tion. It remains to show that execution time is no worse than
proportional to m-n-log(n). This requires some lemmas, a diséuss-
jon of data structures needed to implement the states, blocks,
and the list L, and some further refinements of statements b
through £. While there is nothing really difficult, there is a
lot of detail. We will try to structure the discussion so that
the reader can stop reading as soon as he feels he understands

the main thrust of the argument.

PUp R
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Proof of worst case running time O(men-<log(n))

In Table 1 we give the time necessary to execute the
various components of the program (we exclude initialization
for the momeht). ﬁote that we give the total time spent in
executing each of the substatements b-f of the main loop,

and not the time required for one execution. The k; are

constants. Since the total time is the sum of these individual

times, total execution time is of the order men+log(n).

One basic point is that the loop iterates a maximum of

‘2'me+n times before L becomes empty, which is proved in

" Lemma 8. With suitg'le data structures, then,‘statements b

and d can be executed in constant time kb and -kd , SO
that the total time spent in these is no more than 2-kb-m-n
and 2-kd-m-n , respectively.

Statement f need only look at blocks that are actually
split. The proof of lemma 8 indicateé that at most 2.n
blocks can be created, which shows that at most 2+n blocks’
can be split. Assuming that the execution time of the con-
ditional statement "if (B,c) € L ..." of statement f is

bounded by a constant kb we see that the total time spent

in £ 1is no worse propoitional to kb-z-n-m.

We need only analyze statements ¢ and e , which
determine splittings and then make the splits. These are
the only statements whose total exeqution time may be pro-
portional to men-log(n). And indeed the analysis gives us

more trouble. To perform the analysis we must look closer

at just how to execute ¢ and e.



Statement

‘Maximim total
time spent
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Proof and discussion

main while loop 2-.men iterations Lemma 8
b 2-kb-m°n Lemma 8, and above
c kc-m-n-log(n) Lemma 9,10, below
a 2~kd-m-n Lemma 8, and above
e £e~m-n-log(n) Lemma 10, and below
2+kgemen Lemma 8, and above
total O(men+log(n))

Table 1. Worst case running time analysis for the algorithm

Let us now look closer at splitting.

Splitiinq a bleck

Bi wrt (Bj,a) replaces By by two blocks 51 and ﬁi which

satisfy

s € B implies é&(s,a) € Bj
s € B implies &(s,a) % By

Given block B, let us split it by removing from it those

states s such that &(s,a) € Bj , and putting these states

in a new block Bk

into Bi and Bk.

, called Bi's

twin.

Thus Bi is split

In order to determine the splitting of all blocks wrt

(Bj,a), we need to make a list D (say) of all states which

must be removed from blocks -- which satisfy the property

8(s,a) € Bj‘ Statement ¢ thus looks like:



. lead to a m*n

15

(10): c©: Determine the splittings of all blocks wrt (35,1)14

D + ¢;
for each s € By do

if §"1(s,a) # ¢ then D « D U §71(s,a)
o .

Statement ¢ seems to have an extra test "if 6'1(3,3) ¥ ",
This test has been inserted just to make the proof of running

time a bit clearer.

Statement e, which actually splits blocks, could be
written as
e: for each block Bi in the partition do
B, * Bi n D; (Bk is a newly generated block - Bi‘s twin)
Bz - Bi - Bkv

end

While correct, statement e is too inefficient since each time

it is executed it must manipulate each block, and this would

2 algorithm. Hence we must refine e further to’

" look only at blocks which have a chance of being partitioned —

which contain states in D. We can also recognize a case where

removing states is unnecessary. If for all s € B , §(s,a) € Bj

then {s € Bild(s,a) 4 Bj} is empty. We end up with the follow-
ing algorithm e:
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(11) e: Split each block as just determined:

for each s € D do
BI + block number in which s appear§1
if all s € BI have 5(s,a) € Bj
then [n6 need to split block — do nothing]

else begin if BI has no twin BK yet then

generate BI's twin BK and set BK « ¢;

Move s from BI to its twin BK

jend

¥We are now ready to perform a worst case analysis of the
total time spent in executing statements c and e . We first
of all prove in lemma 9 that the total number of times the con-
dition "if 6'1(s,a) # 0" of statement C is executed has a bound
of men-log(n). This is the ﬁost difficult part of the running
time proof. The total time spent in the rest of statement c
(the statement D + D U §~1(s,a)) and the total time spent in
statement e are both proportional to the total number of states
stored into D throughout the execution of the algorithm. We
show in Lemma 10 that the total number of states put into D is

bounded from above by menelog(n), which completes our analysis.

Two important ideas helped us in reducing the running
time to men-log(n). The first was that if a block B is split
into B and B we need only split wrt two of the three pairs
(B,a), (B,a), and (B,a). The second was that in case we need
put only one of (B,a) and (E,a) in 1, we should put the one

whose block (B or B) contains the fewest number of states.

- ——— e 3o sy 2 P —— - =
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Lemma 8: The maximum number gg‘iteéations in the main loop

of algorithm (8) is 2<men.

Proof: We show that the maximum number of pairs put into L
is 2'men. Since each iteration deletes one pair from L, the

lemma follows.

For each different block B‘created and for each symbol a,
the pair (B,a) is put in L at most once. We need only show
that at most 2+n blocks can be created. Consider the binary
tree consisting of the blocks created. The root node is the
block consisting of all states; its two sons are the blocks

B,=F and 32=s - F. For each block B its sons are the blocks

1
B and ¥ into which it is split. The number of end nodes of

this tree is bounded by n, the maximum number of blocks possible
at any one time. Hence, the binary tree can contain at most 2.n

nodes. Q.E.D.
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Lemma 9. The total number of times the condition "if §™l(s,a) y ¢

then® of statement c (11) is executed is bounded from above

by menelog(n).

Proof: Consider a particular symbol a . We prove below that
the number of times the above condition is executeé with a = a
is bounded by n+log(n). Since there are m symbols, the lemma
will follow immediately. -

Let us introduce a new variable COUNT. Initially we set

COUNT to 0, and we change statement d to

(12) d: begin if a = a then COUNT + COUNT + by;
L «L =~ (Bj'a)’

end;

where bj is the number of states in Bj « This has no effect
on the output, since COUNT is not used elsewhere in the algorithm,
But note that since b is the number of states in Bj , after
termination COUNT contains the number of times the condition "if
§"1(s,a) # 0 then" is executed with a = a . Thus we need only

prove that n-log(n) > COUNT.

At bt an. mmbermemaein i o e s
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At each point of execution, let the blocks be called’

Bys By, ... and let K = {B,](B;,a) €L} , K= {B;]|(B;,a) £ L}.

‘,Consider the expression

b
- . - - i
T = n-.log(n) :E b1 log bi Z b‘ log T~

B 161( B 161(

where log ¢ means 1log,c . Remember, bi is the number of
states in B, . Since the total number of states is n , we

always have n log(n) > T > 0 . We claim that the relation P:
(13) i T > COUNT
holds at the end of the algorithm. Using our theorem

PAB {S} P implies P{while Bdo Sendl PASB,

we need only show that P holds before execution of the main

loop "while L ¥ ¢ do ... end", and that executing S does not

change the truth of P . P certainly holds before execution
of the loop, since we initialized COUNT to 0.

Consider now an execution of S. Relation (13) may change
only if either T or COUNT is changed. Since only statements
d and f change either one, let us analyze these carefully.

Statement d (12) changes both T and COUNT. If (and
only if) (d) adds bj to COUNT, it changes T by deleting
(Bj,i) from L . If we show that this latter change also in-
creases T by bj , then (13) remains invariant. Deleting

(Bj,a) from L has the effect of replacing (in T) a term
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But

b
- J- - -
bj log bj bj log 7 bj(log bj log bj + logzz) bj N

Hence (13) remains invariant.

Statement f changes T by adding to and deleting pairs

(Bj.a) from L. We show that T
block B is split into blocks B

never decreases. Suppose a

and B. Then b=5 + 5

where we assume without loss of generality that b < b. Suppose

(B,a) was in L. Then -b log b is replaced by -b log b -b log b.

" We have

Blogh+bloghs< (6+5b) logh<b logb

So the change increases T. 'Now suppose (B,a) was not in L .

Then (B,a) is put in L . Hence a term - Db log b is re-
2

-

placed by - b log b - b log % .

Since

Slogs'+81og§151og§.+slog§-b log 3 ,

T again does not decrease. Hence (13) remains invariant.

Q.E.D.

Lerma 10: The total number of states put into D during

executions of statement c (10) is bounded by men+log(n).

Proof: Consider one particular transition 6(s,a) = t. We

show that the number of times a pair (Bj,a) with ¢t € Bj can

be in L , is bounded by log(n).

Hence the number of times that

[P T
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the particular state 8 is added to D because of this transi-
fion §(s,a) = t is bounded by log(n). Since there are at
most men transitions, the lemma will follow immediately.

Suppose t appears in Bj ’ (Bj,a) € L , and that the
pair (Bj,a) is chosen in statement b. Then s is added to
D in statement c. We claim that the next time a pair (B,a)
with t € B is put in L » that b < bj/z. Why? We never
have to split wrt (Bj,a) again. If Bj' itself is split

~

into B and B with B < bj/Z < b , then only (B,a) is
put in L .,

The fact that if (B,a) with t € B is put into L
then b < bj/Z ¢ together with bj £ n/2 , means that such a

pair (B,a) can be chosen in step b at most 1092n times.

Q.E.D.

The Complete Algorithm

It may be advantageous for the reader to see the whole
algorithm in one piece. We present it here, with a few .
changes needed because of the refinements of ¢ and e. Follow-
ing the algorithm we present the data structures used in the

actual PL/I implementation.

(14) 1Initialize: B1 + F; B2 « S8 =-F; L= ¢;

for each ¢ € I do

“1if b1 < b2 then add (Bl,c) to L else add (Bz,c) to L

end;

while L # ¢ do
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b: Pick one pair (Bj,aL €L, .
C: Determine splittings of all blocks wrt (Bj,a)x

D+ ¢;
for each s € Bj doD<«DU 6-1(s.a) end;
d: L+ L -{(5y,a};

e: Split each block as determined 4in c:

for each s € D do _ .

BI + bioék ﬁuﬁber in which s appears;

if all s € BI have &(s,a) € Bj then

else begin if BI has no twin BK yet Eﬁéﬂ

generate BI's twin BK and set BK + é;
Move s from BI to its twin BK
end

end;

f: Pix L according to splits that occurred:

for each block BI split into BI and its twin BK do
for each c € 1 go '
if (BI,c) € L then add (BK,c) to L
. else if bl < bk then add (BI,e) to L

else add (BK,c) to L
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EQUIVSTATE: PROCEDURE (DELTA,F N, M)
[XTHE FA HAS N STATES 1,2,3500.0N AND_M SYMBOLS 1,2,3,0..,M. ./

7*DELTA 1S THE MAPPING FUNCTIONS DELTAIS,C) = T (OR O IF NO SUCH 7
/*ARC EXISTS) WHERE S AND T ARE STATES AND C A _SYMBOL. F(S)=1(3) s,

/®MEANS THAT S [S A FINAL (NONFINAL) STATE. THE PROCEDURE PRINTS &/

———/%0UT TAE BLOCKS_OF EQu] VALENT STATES. */
: /% TIME REQUIRED IS PROPORTIONAL TG MENSLOG (N, ./
L /% SPACE IS ROUGHLY 10%N + 4#MeN. - ¢/

DECL ARE [DELTA(%,¢), F(®), N, M) FIXED 3INARY;

———

—DECLARE_(B12¢N), BFI2¢N), B3(2¢N), BFREE) FIXED BINARY;. —
/*REPRESENTS THE DLOCKS. THE FIRST N ELEMENTS DESCRIBE THE */

ﬁ /#STATES ﬂHlLE’ELEﬂgNISmHtJvaZ,Qig_QE§CRIBE.THE BLOCKS. ¢/

/®FOR STATE S, B(S) IS THE BLOCK IN WHICH IT 1S (ITS InDEX)L s/
/*FOR BLOCK 1, B(1) IS THE NUMGER OF STATES CURRENTLY 1IN 17 &/

/% */

i . /¥THE BF A8B) _ARRAY IS A CIRCUL AR FORWARD ( BACKWARD) CHAIN sy -
; ZELINKING THE STATES 14 A BLOCK WITH THAT BLOCK. FUR EXAMPLE, T[Fe/
b  /®BLOCK 1 _HAS STATES s1 and s2 y_THEN . */_
/% 8(1) = 27 BFI1Y =S BB(I) = S2 %/

’ /% BIS1)= | BF(S1)=_S2  88(S1)= | s/
/* B(S2)= 1 BF(S2)= 1 BB(S2)= s1 */

/% &/
7+THE BLOCKS TN USE ARE N¢ly N¢2,. ., BFREE, */

DECLARE (LF(M: N#M+M), LBIM: N&M+M), LST) FIXED BINARY:

/*REPRESENTS THE LIST OF BLOCK=-SYM30L PAIRS L. PAIR (BI,C) IS IN®/

/2L_IFE LELIBI=NI®MeC=1) > 0. LF AND LB ARE_FURWARD AN BACKXARG®/

/*CHATHS LTNRTNG ALL PATRS IN T wITH THE ENTRY LF(LST) WHERE — ey~

|

/%LS1=Nsi+M. SEE DESCRIPTION OF BLOCKS FOR THIS CONCEPT, %/

DECLARE (DAIN), DMLISTINEMD) FIXED BINARY;

/¢THE SETS DELTA [NVERSE(S,C). LET T=DMIS,C). IF T=0, THE &/

/A INVERSE SET T1SEAPTY. IF 1>0, THE séf"CnﬁstSr§“5¢"ﬁﬁL]siITTT““37"
ZSOMLIST(T*1)y oouy WITH THE LAST ONE IN THE SET BEING NEGATIVE.sy

f—————£#BLOCKS 3EING_SPLIT, WHILE FOR EACH Sy

——————L2UITH DELTAIS,A) IN 34, IF SD(81) = B8,

DECLAKE (TWIN(2EN), SD(W+1:2¢N), SPLITNG) FIXED BINARY

/%DURING STEP C, TWINCLY v oo G THINCSPLTTING) 15 A LIST OF TRISE %/

3 Ty WHl w.____“CH_BLDCK_3!-.TN'Nl“JL_._mil__
ZEYLELOS WIVS™ TWINTAND $O(al) 1§ THE NUMBER OF STATES IN &l s/
=_| . _IHEBE_ISNEQ_NEEQ_LQ_ﬁL_
T BE SET TO 0 BY STEp C. s/

/¥SPLIT Bl THESE ARRAYS MUS

-".___:_-_n/"UR“Qm51XEQ_!UJLA’z”D!llv:ee1?!NDI.HPLQ§_IHﬁ;Q§kTAn'N!!§J-ile_i!

DECL ARE dulh), NDY FIXED RLNARY S
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A more complicated aléorithm with an easier proof.

Half the difficulty of the proof of running time is in
Lermma 9. Let us suppose that, for each block Bi and symbol

c, we maintain a set
Bi(c) = (s € Bilc-l(s,c) + ¢}
We can then change statement ¢ (10) to

D+ ¢;
Por each s € ﬁj(a) do
D+DUs1(s,a);

end i

This eliminates the need for Lemma 9. Of course tﬁe program

is more complicated because we must maintain the sets si(c) ’
which change whenever Bi changes. These sets can be main=-
tained as doubly-linked lists so that the operations of inser-
tion and deletion of states, and determining the size of each
ﬁi(c) can be performed in a fixed amount of time. This has
the added advantage that if ﬁ;(c) = ¢ , there is no need to
add (BL'C) to L . The running time is still proportional

to men-log(n) in the worst case. This is Hopcroft's original

algorithm.

The Program

The algorithm was written in PL/I, using the data structures
described, and consists of 170 PL/I statements; It was not com-
pleted and run until this paper was finished (except for this

paragraph and revisions). The program was tested using the
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After syntax errors -due to unfahilia:ity with PL/I were

‘fixed, three further errors were discovered: (1) a mis-

take in the input statement used to read in test data,
(2) a mistake in the output statement used to print results,
and (3) two cards were out of order in the minimization

procedure itself. Other than that, no errors were detected.
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