PROGRAMMING BY INDUCTION
by

David Gries+
Cornell University

TR 71 ~ 106

September 1971

Computer Scicnce Department

N = ey oy 1 RS o S T
Cornell Uiiyvarsioe
Tth o - Woenr T vt R
ix Lihala, MNOew G A LS50

This research was supported by NST grant C¢J-2817¢

PROGRAMMING BY INDUCTION

by

David Gries

Abstract

A technique for creating programs, called programming

by induction, is described. The term is used because of the

similarity between programming by induction and proving a

theorem by induction.

PROGRAMMING BY INDUCTION

by

David Gries

This paper discusses and gives an example of a programming

technique which we call programmipg by induction., It is a tech-
nique not only for proving that a program 1is correct, but a tech-
nique for actually developing or creating the programs.

Suppose we are given a problem involving a fixed integer n,
where n might be thé number of elements in a one-dimensional array,
the number of arguments of a function, and so forth. We generally
"program" the problem by considering the general case first
and developing a program for it. We then prove to ourselves
(or attempt to convince ourselves by running test cases) that
thebprogram does actually work the way it is supposed to. The
hardest part is often to convince ourselves that it works for
the "béundary" cases n=1 and n= nox -

Programming by induction can be briefly described as
follows. We first of all create a program for the case n=1
and convince ourselves that it is correct. Then we proceed
essentially as we might when proving a theorem by induction.
Create a program for the case n=2, Attempt to relate it to
the original program for the case n=1l; see if it is possible

to construct the program for n=2 by systematically changing

the program for n=1. This may of course requires changes in
the program for n=1. If successful, this procecss may lead to
an idea for a general "induction step': given a program for

the case n > 1 with certain propertics and structure, onc can

show how to construct a program for the case n+l which satisfies
the same properties and has the same structure. Hopefully, the
construction will be simple enough so that the proof of correctness
will be relatively easy.

Programming by induction may not produce the most efficient
program - with respect to either time or space. It is certainly
not a general method of creating programs like. Dijkstra's structured
programming [2] or equivalently Wirth's stepwise refinement [3], and
cases of its usefulness will undoubtedly be few and far between.
Its value lies mainly in that the "proof" of correctness of a.
program may be easier than if one programmed the conventional
way. We do present below a problem which came up in our research

[1] in which programming by induction was the only way we could see
to solve it,

An Example, We will program the following process by induction,

and then given a second program for it which was created in the

conventional manner.,

(1) We are given a single value v a predicate P with one

0’
argument, a fixed integer n > 0, and a function f with

n arguments. We are to write an ALGOL-like (compound)

statement to generate possible values using v, and f,

0

in any order we wish, until a value vj is found such

that P(vj) = false,. (v, should also be tested.)

0
We know nothing about P - it may be that P(v) = false
for only a single value v. Hence we must be sure that
any given value v is generated using L and f in a finite

amount of time (this will become clearer later on),.

Note that the infinite set E of all possible values can be described
by the equation

Ens v, | f(E,...,E)

For n=1, the possible values are

v v) R

1= f(vo), v, = f(vl), cess VS f(v

0’ m-1
A statement to perform (1) in the case n=1 is easily written:
(2) BEGIN VALUE :=‘vo;
WHILE P(VALUE) DO
VALUE := f (VALUE)

END

The case n=2 is harder, mainly because we have to generate
"all possible" values. What we mean by this is as follows.
éuppose we have at some point generated and tested values

Vor V Vo where m > 0, Then we must be sure that every

l’ e e oy

value f(vi,vj))o < i, < m’is generated and tested in a finite

amount of time. For if not, then we may "miss" the (possibly)

.

single value v such that P(v) = false.

A possible ordering for the generated values inm the case n=2 is

<
|

1 = EGvgevy)

<
]

2 f(vl,vo), vy = f(vo,vl)

f(VZ’VO)’ vy = f(vl,vl), Ve = f(vo,vz))

e |

We describe this in diagram (3):. Each row (column) specifies

the value used for the first (second) argument of f, while the
numbers at the grid points indicate the order in which new

values are generated. Clearly, if we can '"program" this ordering,

'

we will gencrate and test "all possible" values.

(3)

The program for the case n = 2 will obviously need at
least a one-dimensional array A to store the values. fWe
assume that the lower bound of the subscript range of any
one-dimensional array is 0, and that there is no upper bound.]
A single variablevl will indicate both how many values are in
A and which value to test next using P. We can use two simple
variables ROW and COL to indicate which values in A are to be
used as arguments to f. Note that if we create v, = f (A[ROW],
A[COL]), then according to diagram (3), the next value to be

generated is either

Viel T f(A[ROW-1], A[COL+1]} or Vil T f (A[COL+1], A[O0])

depending on whether ROW # 0 or ROW = 0. The reader should
convince himself that statement (4) does solve problem (1)

for the case n = 2.

S8
i

< 8

(3)

Vo O-Q—©
Vo Vv Y
The program for the case n = 2 will obviously need at’

least a one-dimensional array A to store the values. [We
assume that the lower bound of the subscript range of any
one-dimensional array is 0, and that there is no upper bound.]
A single variable I will indicate both how many values are in
A and which value to test next using P. We can use two simple
variables ROW and COL to indicate which values in A are to be
used as arguments to f. Note that if we create v, = f (A[ROW],
A[COL]), then according to diagram (3), the next value to be

generated is either

' = f(A[ROU-1 A[COL+1]} or v. = f(A[COL+1 L0
1 = (AT J, Al) g = £C8] 1, 400])
depending on whether ROW # 0 or ROW = (0, The reader e¢honld
convince himself that statcwment (4) does solve problen (L)

for the case n = 2.

(4) BEGIN

I :=0

; A[O] := Vs CPut in initial value.
ROW := 0; COL := -1; Initialize subscript
counters,
WHILE P(A[I]) DO
BEGIN

IF ROW = 0 THEN Get to next grid pt:

BEGIN ROW:=COL+1; COL:=0 END Start new diagonal or

ELSE BEGIN ROW:=ROW-1; COL:=COL+1 %o down current

END; diagonal.

I := I+1; A[I] := £(A[ROW], A[COL]) EInsert new value.
END

END

Statement (4) gives us an idea for the induction step.
Suppose we have a program for some integer n, n > 1, in which

the only way new values are introduced into A is in one place,

»
though execution of

(5) I := I+1; A[I] := f(vl, Vg cees Vh)

where the v, are variables. This means that, "all possible"

n-tuples of values must appear in (vl, Vos eees vn) as execution

progresses. To perform the induction, we can replace (5) by

a series of statements which

(a) Save the values (vl, Vos eees vn)'in new arrays

Al, A2, ..., An, by executing something like

J := J+1; AL[J] := Vi oeees An[J] := v

.
’

where J indicates how many n-tuples have been stored.

(b) Perform a second "diagonalization" using new subscript

counters ROWl and COL1l to reference an (n+l)-tuple by

I = I+1;

A[I] := £(A[ROW1], AI1[COL1], ..., An[COL1]);

Thus we are using diagram (6), where the rows represent single
values, and the columns n=tuples of values. Since "all possible”
n-tuples are put in arrays Al, ..., An, we see that "all possible”

(n+l)-tuples will be used as arguments to f,

(6)

With this idea in mind, let us proceed with the exact formulation
of the induction step. First, in order to get the same "structure"
for the cases n = 1 and n = 2, we rewrite statement (2) for the

case n=]1 to use an array:

(7) BEGIN I := ATO]

0;
WIILE P(A[T]) DO

i
<

O; [Put in dinitial value.

LECIN

(4

I = I+1; A[T] := f(a[I-11) [Insecrt new valuc.
LD

Now suppose we have a statement for the case n > 0 with the form (8)
¢&— which has the following properties;:

1) Sl, eay Sk’ Sp’ ceey Sq are assignment statements, or

conditional statement which contain only assignment
statements,

2) P is not referenced in statements S cees S 43S 4 tee, S

1’

3) I is never changed by statements § S, ,S

l, LB Y k p, LI Y q.

4) The array A is not changed by Sl, ceey Sk,Sp, e Sq.

5) Statement (8) works as desired for case n. This implies

that "all possible" n-tuples of generated values appear

in the (subscripted) variables Vis Vo «es, V. at some
time.
(8) BEGIN I := 0; A[O0] := vg; [Put in initial value.
Sl; oo} Sk;
WHILE P(A[I]) DO
BEGIN S 3 ...; S
P q
« I := I+1; A[I] := f(vl, oo vn) [Insert new value,.
END
END
Note that statement (7) for the case n = 1 satisfies these conditions;
no statements Sl’ "".Sk’ Sp, .oy Sq appear at all. To construct

a statement which works for the case n+l, we perform the following.
Use new arrays Al, ..., An and threce new simple variables J, ROW,

and COL, and rewrite (8) as

t

1

(9) BEGIN I := 0; A[O0] := Vo i
S S

As before.

2
—y

17 i Sy
ROW := 0; COL := =1; Initialize subscript

counters.

[0

Initialize counter for
new arrays.

g
1
I
’_l
5o

WHILE P(A[I]) DO As before.
BEGIN Sp; e} Sq; —
Jd := J+1; Put n+~tuple into
Al[J] := Viioeeeid An[J] := v | arrays Al, ..., An.
IF ROW = 0 THEN : Get to next grid pt:
BEGIN ROW:=COL+1l; COL:=0 END start new diagonal, or
ELSE BEGIN ROW:=ROW~«l; COL:=COL+1 go down current
END; - _.diagonal.)
I := I+1; Add new value.
A[I] :- f(A[ROW],Al[COL],...,An[COL])[:
END)
END

Note that the new statement (9) haé form (8),'and satisfies at
least the stated properties 1l-4. To see that is satisfies (1)

for the_case n+l, note first of all that the arrays Al, ..., An
will contain all possible n-tuples of wvalues that can be generatéd,
and that A contains all possible values. Then note that (9) does
indeed generate the values as described by diagram (6),

- .

A conventional program for (l). The reader may complain that

(1) could have been programmed more easily using conventional
techniques. 1Indeed, I believe that statement (10) also performs

(1) (I have not proved it completely, but I am inclined to

think it will work). Array elements S[1], .., S[n] are used to

hold subscript values to veferencc n-tuples A[S[Z)], ..., A[S[n]],
1 > s

and an n-dimensional "diagonalization" schane is uscd to vary the

subscript values,

Note that (10) was not created by induction; we tried to

write a single, general statement which holds for any n. We

may have to prove that it is correct by induction on n, how-

ever,.gtatement (10) uses 2 arrays, for any fixed integer n,

while statement () uses (n=1)+(n-2)+(n-3)+...+1 arrays!

(1) BEGIN
I := 0; A[O0] := Vo | LPut initial value in.
S[1] := 0; ...; S[n-1] := 0; FInitialize array of
S[n] := -1; Lsubscript values.
WHILE P(A[I]) DO '
BEGIN S[n] := S[n]+1; r;ix array of subscript
J = n-1; values for next
WHILE J > 0AS[J] = 0 DO function
BEGIN S[J] := S[J+1]; evaluation.
S[J+1] := 0;
J = J-1
END;
IF J > 0 THEN S[J]:=S[J]-1;
I = I+1; nsert new value.
ALI] := f(A[s[.ln,...,A[stnll)[I
END
END .
A more difficult example. Actually, our original need for

designing programming by induction in [1] was caused by a

condition imposed on the form of the statement which per-

forms (1):

(11)

Within the statement which performs (1), no "testing"
can be performed (except of course the test P(A[I])).

Thus, for the case n = 2, statement (4) is not allowed,

since it contains a test "IF ROW = 1 "

At first it was not at all clear that a statement which performs
(1) and also satisfies (11) could even be programmed. A neat
programming trick, the original version of which was due to
Constable [1], gives us a statement for the case n = 2, This
statement still generates values in the order described by
diagram (3). We can then use the same idea to perform the in-
duction step; this is quite easy; and we leave it to the reader.
We were not able to create aAstatement for (1)
satisfying (11) wusing conventional programming methods (we
had to be sure the statement worked, and running test cases was
not enough).
Now let us change (4), the statement for the case n = 2,
so that it satisfies (l11). We will do this in three steps, so
that things remain_clear. Remember, values will be generated

in the same order, as indicated by diagram (3).

First of all, it will be advantageous to move the in-
creme;tation of COL till after a new value is generated within -
the WHILE loop. This requires us to change the initialization
of COL and the use of COL within the conditional statment "IT
ROW = 0 THEN ...". Secondly, we use an array DOWN which will
satisfy the ﬁroperfy DOWN[j] = j-1 for ¢ < j < I. This allows
us to replace ROW := ROW-1l by ROW := DOWN[ROW]. These changes

yield statement (13), which still performs (1).

(13) BEGIN

I := 0; A[0] := vo; Initialize fisrt value
DOWN [0] := =~1; and auxiliary array.
ROW := 0; COL := 0;

[ﬁnitialize subscripts,
WHILE P(A[I]) DO

BEGIN
IF ROW = O THEN | [Get to next row:
BEGIN ROW:=COL; COL:=0 END start a new diagonal,
ELSE ROW ;= DOWN [ROW] ; go down current one.
I := I+1; (Add a new value and
4: A[I] :+ f(A[ROW], A[COL]) ; fix corresponding
DOWN [I] := I-1; LDOWN value.
COL := COL+1; - [Increase column count.
END

END

The second step is to consider COL to be an array, instead
of a simple variable. We want to replace the line labeled 4:
A[I] := £(A[ROW], A[COL])
by . A[I] := £(A[ROW], A[COL[ROW]]).
Thus, when ROW indicates the first argument to f, COL[ROW]
indicates the seconé. For any fixed value "row" of ROW, the
valués produced using as the first argument to f are, in order,
£(Alzow], A[0D)
f(Alzow], A[1])

f(Alrow], A[2])

(See diagram (3).) lience we must initialize COL[row] to O when

we put a value into Alrow], and after each use of Alrow] as the
AR

first arguwment, we must add 1 to COL[row]. Ve wind up with the

equivalent statement (1l4), where the labeled lines werc changed.

(14) BEGIN

I := 0; AlQl .= Vo
DOWN [0] := -1;
1* ROW := 0; cCcoL[O0] = 0;
WHILE P(A[I]) DO
BEGIN
IF ROW = 0O THEN
3: ROW := COL[0]
ELSE ROW := DOWN [ROW] ;
I := I+1;
y: A[I] := f(A[ROW],A[COL[ROW]]) ;
DOWN [I] := I~1;
§: COL([I] = 0;
é: COL[ROW] := COL[ROWI]+1;
END
END

Initialize first wvalue
and auxiliary arrays, and

Init. row counter

—_ .
Get to next row.

L

rhdd new value to A
and fix corresponding

auxiliary array

lelements.
)

C?ix ROW's column count.

We are finally ready to delete the test "IF ROW =0",

Note that the affect of these is to put either COL[O] or DOWN[ROW]

into ROW, depending on whether ROW

0 or not. Execut

following two statements has the same effect:

(15) DOWN[0] := COL[0]; ROW :=

DOWN[ROW] ;

The other effect of executing these is to put a quantity into

DOWN[O]. Since DOWN[O0] is never referenced except in this

context when ROW = 0, this assignment has no other effect on

the outcome of the statement (14).

conditional statement in (l4) by (15),

Hence we can replace the

yielding statment (16).

(16) BEGIN

I := 0; A[Q] := Vs Put in initial value and
DOWN[O] := -1; [fix auxiliary arrays.
ROW := 0; conL[0] := 0; CInitialize raw counte¥e
WHILE P(A[I]) DO
BEGIN
DOWN[O] := COL[0]; [%ef to next row.
ROW := DOWN[ROW];.
I = I+1; _ Add a new value
A[I] := £(A[ROW], A[COL[ROW]I);l to A. '
DOWN[I] := I-1;
COL[I] := 0,
COL[ROW] := COL[ROW]+1; (Fix ROW's columns.
END
"END
REFERENCES

[1] Constable, R., and Gries, D. On classes of program schemata.
TR 71-105, Computer Science Dept., Cornell University,
August 1971.

[2] Dijkstra, E. W. Notes on structured programming. EWD 249,
Technical University Eindhoven, The Netherlands, 1969.

[3] Wirth, N. Program development by stepwise refinement.
Comm. of the ACM 14 (April 1971), 221-227.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

