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SOME RESULTS ON FIELDS OF VALUES OF A MATRIX*
D. GRIEST axp J. STOER}

1. For a square matrix A the so-called field of valuesG[A] is defined as the
following set of complex numbers:'

(1:1) GlA] := {274z | 2"z = 1}.

It is well known that this set contains the spectrum A(A) = {N(A)} of A.
Moreover, Toeplitz [11] proved in 1918 that G[A] also contains the convex
hull 3¢( A(A)) of A(A). Hausdorff [5] generalized this result by proving that
(i[4] is convex. The concept of a field of values was generalized by Bauer
[1] in 1962. Starting with an arbitrary norm ||+ || in € (or R") and its dual
norm (defined on the dual space of C* (or R") of row vectors y™)

as the

he defined the field of values G[A, |- [|] with respect to the norm |-
set.

(1.2) GlA, ||-]] := (y"Ax | | 4" |° || z || = Rey"z = 1.
Vectors with the property
Rey"z = [|y" ||| x| =0

are called dual vectors and are denoted by

v | .
It is well known that a dual pair of vectors " and x is geometrically charac-
terized by the fact that y is the normal to the (real) supporting hyperplane

Hy := {z|Rey"z = || 4" ||}

to the convex body
B:={z]||z] =1}
passing through the boundary point z/| 2 || of B.
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tional Meeting at the University of Towa, sponsored by the Air Force Office of Seien-
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!'We use := throughout to express equality by definition,
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284 D. GRIES AND J. STOER

Clearly, the original definition (1.1) of G(A) is obtained from (1.2) for
the Euclideannorm || x || := 4/x"z. Again, Bauerand Witzgall {1], [1a] have
shown that G[4, ||-]|] contains A(A). However, G[A, [|-||] is not always con-
vex, as can be shown by counterexamples (see Nirschl and Schneider [9)).
In this situation, the question arises whether Toeplitz’ result still holds for
the generalized field of values (1.2). Sections 3 and 4 of this paper are de-
voted to this problem. A theorem of Stoer and Witzgall [10] (sece Theorem 3.1)
settles this question positively for diagonal matrices A and absolute norms,
i.e., those norms with the property®

(1.3) Il =Hl=]].

In order to answer this question for more general classes of norms (and
matrices) this theorem is generalized.

In §2 some theorems on norms used later are listed.

Other questions arise in connection with the orthogonal field of values O[A]
relative to a norm |[-||. This set is defined [1] by

(14) Ol4] := (¥"Ax|y"z =0, |y |" =] = 1}

and was used implicitly (for normal matrices 4 and the Euclidean norm only)
by Mirsky (8] in order to derive lower bounds for the spread s(A) of A:

(1.5) s(4) 1= max |(A(4) — N(A))].

In the second part of this paper (§§5 and 6), O[A] is investigated system-
atically. Here, Theorem 3.1 mentioned above again turns out to be useful.

2. In the sequel, we shall often use several results, partly known, on
absolute and other norms, which are listed in the following theorems.

THEOREM 2.1 (2]. The dual of an absolule norm is absolute.

TaEOREM 2.2 [2]. Absolute norms in C" (or R") are equivalently defined by
each of the following properties:

(i) |z| S |y| implies | || £ || y |} for all x, y (monotonicily of absolule
norms);

(ii) lub (D) = max;|d;]| holds for all diagonal matrices

D =ding (dy, -, d).

Here, lub ( -) means the least upper bound norm associated with ||+ ||. It is
defined for all # X n matrices A by

o | Az
(2.3) lub (A) := nzlgox B

tlifz= (1, - ,z) , then|z|:= (||, - -, | za DT,
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For lub (-), we note the further property [1]

_ Re y" Az

(24) tub (4) = mox F Tz
The following theorem is essentially due to Nirschl and Schneider [9).

THEOREM 2.5. Let ||+ || be an absolute norm in C* or R" and x and z two
veclors salisfying 0 < x < zand ||z || = || z||. Then the jth component y; of
any y dual to z: y" || = vanishes, y; = 0, whenever x; < z; .

Apart from absolute norms we now define more generally orthant-monotonic
norms in R" and C”.

DeriniTioN 2.6. A norm ||-|| in R" is ealled orthant-monolonic, if
Bzl £ |y istrue for all vectorsz = (21, -+, Za)T, 9 = (F1, >+ , ¥n)"
satisfying

lz] £ |y| and z:; 20 for 7 =1,2, .-+ ,n.

This class of norms is investigated more systematically in [4]. Any norm
II-]l in C" gives rise to a norm ||+ ||« in the underlying R*" by defining

| zr e := ljzl,
7
where zp := (:) ER™ifz =2 + ia”, 2/, 2" € R" Since Re y"x

= (yz)"xr, we have
(2.7) ¥y ||z ifandonlyif (y2)" |rze.

With the aid of || :||» we give the following definition.
Derinrriox 2.8. A norm ||-|| in C" is called orthant-monotonic in C", if
|- 1|z is orthant-monotonic in R*". Naturally, we can also state:

(2.9) absolute norms are orthant-monotonic,

Any norm ||-|| in " or R" induces a norm ||-||,, in any subspace L of C" or
R" by setting

Nzlle:=|lz|] for z€ L.

Orthant-monotonic norms have the property that for certain subspaces L,
the coordinate-subspaces, the induced norm is again orthant-monotonic. By
a coordinate-subspace L = V, of C" or R" we mean a subspace spanned by
some subset {e;, 71 € n S N := {1,2, ---, n}} of the set of all axisvectors
a:= (1,0 --+,0)7, -+, e :=(0,---,0,1)". Then every z € R" (or
C™) ean be written in the form

T =1, ®xp with x, € V,, zy € Voo, 7 = N\n.

Hence we have the following lemma.
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Lemma 2.10. If || - ||, 7s defined by || xqly := ||z || for £ = 2, @ Oy
and || - || s orthant-monotonic, then || - ||, is orthant-monotonic in V,.

The following theorem shows that duality is preserved by the transition
from || z, || to [z ]|.

THEOREM 2.11. Let || - || be an orthani-monolonic norm in R" or C" and
nCN={1,2, - ,n},9 := N\n. Then the vectors z, , i, are dual lo each
other with respectto || - ||y, (¥2)" |lo Zo , if and only if the vectors x := z, & O ,
Y 1= y, ® Oy are dual with respect to || - ||: y" | z.

Proof. Naturally,

vz = ($) "2, Nxlls =z
Hence, the theorem is proved, if we show that

Re (y:)"=
(" yqll ”v)h .= max (Jﬂ) ?
7,70 [EN®

= (|| yﬂ” ll")n .
But, by definition,
(" 1o =11"1° if y=y&0,.

Hence,

Re y"z Re (y.) "y
Uy 1"y = max —2= = max — 22
R P I FY

ifz =z, ® z . But || - || is orthant-monotonic. Hence,

Nzl 2 2 ® Oyl = 2l
which implies )
(e 17)s = max R W 20 (g pmyyo,
zo50 " Ty “ﬂ

3. As mentioned above, in {10] the following theorem was proved.

TreoreM 3.1. Let || - || be an absolute norm in R" or C". Then for any
vectors u > 0, v > 0, there exisls one (and up lo positive multiples only one)
diagonal malriz D with

D=0 and v"D| D7u

For G[4, || - |] as defined by (1.2), this theorem has the following con-
sequences. If 4 = diag (), - - -, \.) is a diagonal matrix, then the theorem
implies that for absolute norms,

Gl4, || - Il 2 3e(A(4)).

Namely, for the elements

n

y=21‘.-)\.-, >0, Z‘r.-=l,

=1 1e=1



F1ELD OF VALUES OF A MATRIX 287

|

B={z| ||zugnl// dEa=1z 200 llzll, S 1)

Fia. 1

of 3¢(A(A)), it implies that for
ui=(u, ) >0, wv:i=(1,1,---,1)7>0,
there exist vectors
g:=DM = (=, -, @), ¥ = (o, -, y) = "D

such that §a: = 7, and " ||z, hence » = y"Az € G[4, ||-||J. Since
Gl4, || - |} is a closed set, this implies the following.

Tueorem 3.2. If A 13 a diagonal mairiz and || - || an absolute norm, then
Gl4, || - Il 2 3e(A(4)).

(Sce (4] for a generalization: absolute norms in C® are characterized by
the property G[A, | - [I] = 3¢(A(A)) for diagonal A.)

It is remarkable that in contrast with the results for norms in C" (see
the counterexamples at the beginning of §4) the assertion of Theorem
3.1 is also true for every norm in R”.

TueorEM 3.3. Let || - || be any norm in R™. Then lo any pair of vectors
u > 0,v > 0 of R” there exisls one, and up lo positive multiples only one,
nonsingular diagonal matrizx D = O with

v"D || D™'u.

Proof. The proof given in {10] for the uniqueness of D in the case of
absolute norms is also valid for all norms in R". We do not repeat it here.
The proof of the existence of D may be outlined as follows: Given || - || we
define the largest absolute norm || - ||, with the property [z || = |j = N4
for x 2 0 (see Fig. 1). Then, by Theorem 3.1, there exists a diagonal
matrix D = 0 with the property

v“D ||+ D7'u.

We then show that D™'u/|| D™"u ||, must lie on the common boundary of
K:={z20|llz]|=1)=BN{z20andK,:={z 20|z, = 1].
This will yield the desired result v"D || D™"u.
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For the formal proof, given a norm || « || in R" and the associated convex
bodies B and K,

{x”lz” 1!) K:=Bﬂ{x;0},

we define the norm || N5
H
1y 1% = max [ULZ = o |y
=20 |zl zeK
70
It is easy to verify that || - ||2 is a norm. Moreover, it is absolute, since

Il ¥ II2 depends only on | y |*. Therefore, the dual norm || - [« ,

iy
lzlla = max—z-lﬂ ,
wio |4 |2

with the corresponding convex bodies B, and K, ,

= {z]|y"z s |v* IIA—maXIJI z for all y # 0},
(34) €K
KA = BA n {x g 0},

is absolute (see Theorem 2.1). Obviously,
K. = {zlz 20 N H~ with B := {z]ys S maxy's.
ugg P13 4

Also, by definition of || - ||2,
(3.5) KcK,.

By Theorem 3.1, when applied to the absolute norm | - |4 , there exists a
diagonal matrix D = O such that

y i=o"D |4 Du =:2 with {[z|la=1

Since D is nonsingular and nonnegative, we have y" > 0,z > 0. Hence, z is
a boundary point of B, and K, . Suppose for the moment. that z is also a
boundary point of B and K. Then one can show that 4" and z form also
a dual pair with respect to the ongmnl norm || - [|: ¥ || z, which proves the
theorem. Indeed, by definition of 3 ¥,

= {z|y"z = 14" 13}

is a supporting plane of B, and therefore also of K, , and from (3.5), also
of K. Suppose H, is not a supporting plane of B. Then there exists a point
71 & 0 such that

2 € H' = {z|y"2 > 14" 12}, 2 € B.

Since B is convex, every point
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n€m,z):={zlz=M+ (1 =N)2,0< N 21}

isalsoin B N H,*. Moreover, z > 0 implies that there exists a point 2z, > 0,
z; € (21, z), hence 2. € K N H,*. Beeause H, is a supporting plane of K,
H,' N K = &, this contradicts 2, ¢ K N H,*. Hence, H, is a supporting
plane of B and " || 2.

In order to complete the proof of the theorem, it remains to be shown that
z > 0 is also a boundary point of B and K. Suppose this is not true, i.e.,

L=zl <]
Then we show that there exists a point z; with the properties
(3.6) z2z>0 and | ]| = L.
If this were not true, then the closed convex set

T:={z]z2

would satisfy TN K = . Since K is a compact convex set there would
exist a hyperplane

H,;={Z,g2=l}, ||37H||D=1,
strictly separating K from T (compare, e.g., [3]):
87) Kcizlg'z<t) =:H;, TC{z|§"2> 8} =:H, .

Since 0 € K, it follows ¢ > 0; by definition of T it follows also 7 = 0.
From K C H;” we have

t > max 7"z,

3¢k
but this implies also K, € H;™ in view of " = 0 and the definition of K A-
Since z € K4 and also z € T, we have a contradiction to (3.7). Hence
there exists an 2, for which (3.6) holds. Since, by assumption || z ] > 1,
we have

nzz>0, T # z,

and K © K,, and the monotonicity of the absolute norm I * la (Theorem
2.2) implies at once

l=l=mllzlalizlz].=1,

which shows || z; |4 = 1. Because of 2, = z, 2,5 z, from Theorem 2.5 it
then follows that at least one component of y” vanishes, in contradiction
to ¥” > 0. This completes the proof of Theorem 3.3.

Now, let A be an arbitrary complex n X n matrix with real eigenveclors,
which is similar to a diagonal matrix A :

T'AT = A, T a real nonsingular matrix.
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Kl_)énml Nzl 1)

Fia. 2

If | - || is an arbitrary norm in R" (not necessarily strictly homogeneous,

ie., laz || = |a]|| x| for all (real) &), then by a result of Nirschl and
Schneider [9],

G[A’ “ y l” = G[T—XAT, ” * ”T]:
where || z ||z := || Tz || for z € R". Since T isreal, || - ||+ is another norm on
R", and Theorem 3.3 when applied to || - ||r gives the following theorem.

THEOREM 3.8. If the complex n X n matriz A has n real linear independen!
eigenveclors and || - || is any norm in R", then

GlA, || - Il 2 3e(A(4)).

4. The following example shows that the basic Theorem 3.1is not true
for every norm in C". Define in C' a norm by the convex body in Fig. 2
and take % := v := 1. Then it is casily seen that there is no d > 0 such that
v"d || d"u. It is an open question, whether the assertion of Theorem 3.1
holds for arbitrary norms in C", if it is not required that D = O. However,
the theorem remains true as it stands for orthant-monotonic norms in
C". To prove this, we first note a slight generalization of the theorem for
orthant-monotonic norms in R".

Treorem 4.1. Let || - || be an orthant-monolonic norm in R" and u
=(wm, - ,u) =20,0= (0, ", v.)T 2 0 be nonzero vectors with

;=0 ifandonlyif vi=0.
Then there exists a diagonal malriz D = O such that

v"'D || D7'u.
Proof. Define

N = {ilui#O} CN= {172:"')'”}‘

Then, 4, > 0, v, > 0. By Theorem 3.3, when applied to the induced norm
Il - lla (see Lemma, 2.10), there exists a diagonal matrix D, 2 O such that

(vn)”Du lls Dquty -
Hence, by (2.11), the vectors
y := (D,) ® Oy, T = (Dv_l“u) @ Oy
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are dual with respect to || - [|: 4" || z. Clearly, the matrix D, can be ex-
tended to a diagonal matrix D := D, @ D, such that D is nonsingular and

D 2 0, y" ="D ((”u)”D'l) @ ((On')ﬂl)v')’
x=D"u= (D, 'u) ® (D70y).

This proves the theorem. (Note that D = O is no longer uniquely defined
because of the arbitrary choice of D,..) This theorem ean be used to prove
& similar result in C".

THEOREM 4.2. Let || - || be an orthant-monotonic norm in C* and u > 0,
v > 0 be two positive veclors of C". Then, there exisis (up to positive mul-
liples) exactly one diagonal matriz D = O such that

v'D || D'

Proof. The norm || - ||z in ™ (see Definition 2.8) is orthant-monotonic.
The vectors ug , vz in R* satisfy together with II - Iz the hypotheses of
Theorem 4.1. Hence, there exists a real diagonal 2n X 2n matrix

(1)l 0>
D= 20
0 D

"Dy, 07) = (o7, 0")D || D (“) _ (Dl u) .
0 0

By (2.7), we then have v"D || D;™"u, which was to be proved. ( The unique-
ness follows from the proof given in [10].)

Clearly, the above theorem can be sharpened along the lines indicated
by Theorem 4.1; it is not hecessary to require strict positivity of « and ».

THEOREM 4.3. The resull of Theorem 4.1 is true also Jor orthant-monolonic
norms in C",

Again, the last theorem gives the following result for fields of values of
diagonal matrices (compare Theorem 3.2).

CoroLuary 4.4. If || - || is any orthant-monotonic norm in C", then
GID, || - |l 2 3¢(A(D)) for all diagonal matrices D.

6. In this section, we derive several properties of the orthogonal field
of values O[A] of A associated with a norm in C'n =z 2,

(5.1) Ol4] := {y"Az[y"z = 0, 13" |°ll=| = 1)

(for n = 1, O[A] is empty). Moreover, we shall consider only strictly
homogeneous norms.
From the definition follows [1] the translation invariance of O[4]:

(5.2) OlA + +I] = O[A].

]

]

such that
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O[A] is associated with the function [1]
(5.3) ort (A) := max Re+.

ycola)
0lA] has a simple shape, as given in the following theorem.
TuroreM 54. If || - | is a strictly homogeneous norm in C", n 2 2, then

0[A] = (u]|r] = ort (4)}

is a circle with center 0 and radius ort (A).

Proof. We show that each real number x with 0 £ # £ ort (A) belongs
to O[A). It then follows by the strict homogeneity of || - || that ¢®u € 0[4]
for all real ¢.

Now, let zo be an cigenvector of A and choose yo # 0 such that o 7o = 0.
Then,

H
Yo Az,
=22 - ¢ 04l
[ EEY

By definition of ort (A), there are vectors z1, % such that || " [|°
= II 21 " = 1, y1”11 =0 and

Re 3" Az "

ort (A) = max — 2= = y5,"Am € Ol4],
) FaRE

vyz#0
yHz=0
since || - || is strictly homogeneous.
Now, if » 2 3, then there exists a g2 = 0 such that
yz"Axx = ?/2"531 = 0.

Since || - || is continuous, there exists to each 0 < u < ort (4) = n'Axn
a number k = 0 with

- 0 Az . _+ Eky)" Az
F= Tt b Plad - T+ kPl

If n = 2, then the function
(b, @)4 (_‘fb>
f(a, b) :=

1w (2)

is continuous for all complex (a, b) # (0, 0). Since
0lA] D {f(a, ) | (a,b) # (0,0),a,b € C}

and J assumes the values 0 and n" Az, , it also assumes every real value
between 0 and ort (A) = ;" Az, since the set {(a, b) |a, b€ C, (a,b)
> (0, 0)} is connected. This completes the proof of Theorem 5.4.

€ Ol4).
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A further property of ort (A) is gained by (2.4):

g
ort (4) = ort (A + rI) = max 2 ¥ .(,Ao+ o)z
P L 4 Edl

Re y"(4d 4+ Dz

= Vel T PT=T
= lub (4 4+ 7I),

and therefore,

(5.5) ort (4) = min lub (A + +I).

Matrices A with lub (A) = min, lub (4 + #I) are called centered.
The following example shows that equality does not always hold in (5.5).
Take in C?,

Izl i=max (Jaul, |22 ), 19" )°:= || + [2:],
2
A:=(1 ) lub (4) = max 2 |ax| = 3.
2 =1 § %

It is easy to see that A is centered. Any vectors z, 3, with lzll=13")°=1
and Re Az = lub (4) = 3 must satisfy

lAz|l = 3lz|| and y| Az.

Hence, we have for = and y only two possibilities:

1 . f3 1
;v=e‘°< , Aa:=e“'< . y=c‘¢(
1 1 0
1 1 . {0
T = ¢ , Az = ¢ , y = e .
-1 3 1

In either case, ¥z = 0 is not true. However, we show later that equality
holds in (5.5) for the Euclidean norm (cf. Theorems 6.2 and 5.9).

The following theorem can be regarded as a substitute for the missing
equality sign in (5.5).

THEOREM 5.6. Let || - || be a strictly homogeneous norm in C* and A a
centered n X n mairiz. Then

or

0 € (M),

where M = {yz||[y" |°lz]] = 1, ¥"Az = lub (4)}. (Note that if
0 € M, then equality holds in (5.5).)
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Proof. We show first that for any angle ¢,0 < ¢ < 2r, there exist vec-
tors 4" and z such that
(5.7) Ree™y"z 2 0 and y"Az = b (4), | SN2 =0zl =1

Indced, for every k > 0, there exist vectors i , Zx such that
e“ 8‘.0 H HyD
lub A+Tl =ReykA;z:k+ReTyg Tk, " 17 = ol =1
Since 4 is centered, we have

19
lub (A + "T I) > lub (4) 2 Re p" Az,

proving Re ¢”y,"2: = 0. Since

(T
lim lub (A + e-,- I) = lub (A)

k—+o

and ¥ , 7x belong to the compact sets {y | | y"II° =1} and {z |||z = 1},
respectively, there are subsequences of the v,z converging to vectors
y", = with the properties (5.7).
Now (5.7) means that in each of the half-planes
H,” := [«]|Re e®a €0} and Hs" := [a|Re e®a = 0}
there is an element of M:
(5.8) HoNM=g, HINM=GZ.

Hence, if 0 were not in the (compact) convex hull 3¢(2 ) of the compact
set Af, there would exist a line

H, := {a|Ree®a = 0}

separating 0 strictly from 3¢(Af) in contradiction to (5.8).
It is known that the spectral radius p(A) = max; | N(A) | of & matrix
A is less or equal to lub (4):

p(A4) S lub (A).
In connection with inequality (5.5) this gives rise to the question whether it
is true that
ort (4) = min p(4 + 1),
that is, whether the spectrum A(A) of A can be translated into O[A].

A partial answer is given in the following theorem.
Tueorexm 5.9. Let || - || be an absolute norm in C” and T' = (L) be an
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upper (lower) triangular n X n matriz. Then
ort (T) 2 minp(T + vI) = min max | ¢;; + 7 |.
T T 5
Proof. Without loss of generality we assume that 7 is upper triangular.,
We may also assume (because of (5.2)) that
A(T) = min o( T + 7I),

that is,
0€3(Q), Q:={tu]lti| = mi}x“ﬁ 3.

Hence, by a theorem of Carathéodory (see, e.g., [3]) one can find at most
k = 3 indices 7; and numbers u; such that

k k
0= jElu,t;,;j, tys; €Q, ;> 0, Z;u, =1
= =

If k = 1, then ti; = O for all ¢ and we are finished. We treat here only the
case k = 3; the case k¥ = 2 can be similarly proved. Moreover, we suppose
without loss of generality 7; = j, 7 = 1, 2, 3. We then have

3 3 3
0 = D uty; = low | 2 me™,  u; > 0, 2oui =1,
=1 J=1 Je=1
where ¢, is such that
ti = |t |e®.

Define

26, vi=|wl,

j=1

3
W= Zp,e‘é"e,- , u:
j=1
¢; being the jth axisvector. Hence,

3 3
" —io; )
wu = Ep,e ®i = le,e”’ =0,
bt Jo=,

3
H
vu=zl:p;=1,
=

u 2 0, v 0, u; = 0 if and only if »; = 0.

By Theorem 4.3 there exists a diagonal matrix D = 0, D = diag (d,)
with +”D || D“'z_t. Since || - || is absolute, we have for every phase matrix
Do := diag (e, -+, ™), | Do | = 1I,

I w"DDe |°| De™'D7'u || = [ v"D |I° D7'u || = o'u = 1.
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Then

3 3
(w”DDe)T(DB_lD_Iu) = I f1n IZ '8 + Z ijei(o,--ok)’
=1 j<ks3
with
i¢,'.

1; -
P,k = fd—’u,-t,-ke
k

It is clear that we can choose the angles 8;,7 = 1, 2, 3, in such a way that
RO Z ijei(o,‘—h) g 0.

j<ks3
We have then (if 8; = 0 forj > 3)

3
Re (w"DDoTDe ™' D™'u) 2 |t IZlu,- = |tu]
=

and simultaneously
w'DDeDo'D'u = w'u = 0,
| w'DDe ||°| Do D7 || =1

This proves Theorem 5.9, and we note the following corollary.
CoROLLARY 5.10. If || - || s an absolute norm in C" and D = diag (d;,
.+« , dy) 15 a diagonal malriz, then

ort (D) = minlub (D + 7I) = minquld,--i—fl.
T 7 3

This is a simple consequence of Theorem 2.2.

6. For the Euclidean norm ||z || := +/z"z many results of §5 canbe
sharpened. In this case O[4] is defined by

0[4] := {y"Az|y"y = 'z = 1, y"x = 0}.
Also, it is known that lub (4) is given by
lub (4) = v/ p(A%4),

and any normed vectors ¥, 7, | ¥ || = [z]| = 1 with y"Az = lub (4)
must satisfy 4”4z = lub® (4)z, || Az | = lub (4)]| =]} and y" || Az,
that is, since || - || is self-dual,
o 4 H
n_ % A
N e

This shows that for centered A the set
M ooy {nyly"Am = lub (A), ylly = xllx = l!
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(see Theorem 5.6) is equivalently described by
”A”x 2
M= {L_ A"Az = lub® (4)z
TA=TT=1 )
_ 1 A%
" Iub (A) iy

(6.1)

| A" Az = lub’ (A)x}.

Now, the set
L:={z]|A"Az = lub® (4)x}

is a certain linear subspace of C", say of dimension k( 2 1). Introduce in L
an orthonormal basis of & vectors v, -+ - , v, and form the n X k matrix
Vi= (o, -+ ,0). Then V'V = I, and L is also given by

L = {x|z = Vyfor some y € C*.
Hence, it follows from (6.1) that

| 1 ¥ VATV .
M= e { Sy 10 % v € C
_ 1 . ¥ Qy R
= fab (@) {y"y"‘“‘ yec

with the £ X & matrix Q := VA"V, Hence, for the Euclidean norm, M
is equal to (1/lub (A4))G[Q], namely, the multiple of the ordinary G-field
of values for the matrix Q. Now, by Hausdorff [5], GlQ] is convex. Together
with Theorem 5.6 this implies the following.

THEOREM 6.2. Let || - || be the Euclidean norm. Then for all matrices A,

ort (A) = min lub (A + 7I).
CoroLLaRY 6.3. For the Euclidean norm,
ort (4) 2 min p(A + 7I)

holds for all matrices A.
For normal matrices A one has

lub (4) = +/p(A7A) = p(A).

Hence we have a further corollary.
CoRroLLARY 6.4. For the Euclidean norm,

ort (A) = min p(A + 7I)

holds for all normal matrices A.
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Therefore,
ort (A)

max {Re y"4z |y"y = 2"z = 1, "z = 0}

max (| y"Az | |4y = 2"z = 1, 4"z = 0}

gives the radius of the smallest circle containing all eigenvalues of a normal
matrix A. By a result of Jung [7], this radius gives a lower bound of the
spread s(A) of A:

s(4) 1= max | (\(4) = M(4)) | Z 3" ort (4),

an estimate first proved by Mirsky [8] for normal matrices 4.
Now, we shall derive a lower bound for the quantities

p(4) := nr:in p(4 + 7I), 5(4),

also for nonnormal matrices 4. The basic technique is the same as that used
by Henrici [6] in order to obtain upper bounds for the departure of G[A]
from the convex hull 3¢(A(A)) of the spectrum of A.

To any matrix A there is at least one unitary matrix U such that

UAU =T =D + M with D = diag (ln, ***, tm),

where 7 = () is an upper triangular matrix. If v(A) is any matrix norm,
then the »-departure of normality A,(A) of the matrix A is defined by (see
(6}

AN(A) = min v(M).

:uH AU triangular

For the matrix norms
o(4) i= X2 lail,
() 1= (tr A"A)'P,

Henrici [6) obtained the following computable estimate:
4

NV ERYVsa=S VT ey VR
We now prove the following theorem.
THEOREM 6.5. If A is any matriz and || - || the Euclidean norm, then
p(A) = ort (A) — A(4) = ort (4) — Aa(4).
Proof. Given a point £ of O[A],

t=y"Az, Yy=3a"z=1, y'r=0
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we have to find a point n € {u||u] S 5(A)} such that
[£—n] = A(A) S AL4).

Let U"AU = T = D + M be a triangular matrix, U unitary and
D = diag (41, -+ , tan). Define

u:= Uz, " :=4"U",
Then u"u = v"» = 1, v"u = 0 and
E=0"Tu = v"Du + v"Mu = 43 + v"Mu

with 9 := v"Du € {u||n| = p(4)}, since v"u = 0. Cauchy’s inequality
then yields

'E_"le= lullﬂlulz

]

[ D i [2 £ X |my 2o va; [*
i <i

i<y
S (MY |va;| S (M (" u'u)'" = (M)
<5

This proves |£ — n| £ A.A) and 3(A) = ort (A) — AJ(A). The
second part follows from the inequality e(A) < a(A) being true for all
matrices A.

Both inequalities in Theorem 6.5 are sharp. There are nonnormal mat-
rices A with

(6.6) B(A) = ort (4) — ALA) = ort (4) — A(4).
Take, for example, A := I 4 M with

N 1 for i=n—1, =n,
Y 0 otherwise.

Then p(A) = 0, (M) = a(M) = 1. The vectors y := ene1, T i= e,
satisfy [| 5 |” = 1 = || 2 ||, "z = 0, and yield y"Az = 1 € 0[A), proving
that (6.6) can hold.

In terms of the spread s(A) of A, the result of Theorem 6.5 reads as
follows: 3'*(ort (A)—A.(4)) < s(A4). It should be noted, however, that
the above estimates can be rather pessimistic. It is possible that ort (4)
— AJf4) =0.
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