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Abstract

Optimization with unknown constraints is a
challenging, yet unsolved problem. Overlook-
ing these constraints can lead to spurious so-
lutions that are unrealistic in practice. To
deal with such unknown constraints, we pro-
pose to perform optimization within the data
manifold using diffusion models. To constrain
the optimization process to the data mani-
fold, we reformulate the original optimization
problem as a sampling problem from the prod-
uct of the Boltzmann distribution defined by
the objective function and the data distribu-
tion learned by the diffusion model. Depend-
ing on the differentiability of the objective
function, we propose two different sampling
methods. For differentiable objectives, we
propose a two-stage framework that begins
with a guided diffusion process for warm-up,
followed by a Langevin dynamics stage for
further correction. For non-differentiable ob-
jectives, we propose an iterative importance
sampling strategy using the diffusion model
as the proposal distribution. Comprehensive
experiments on a synthetic dataset, six real-
world black-box optimization datasets, and a
multi-objective molecule optimization dataset
show that our method achieves better or com-
parable performance with previous state-of-
the-art baselines.

*Equal contribution, authors agreed ordering can be
changed for their respective interests.
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1 Introduction

Optimization problems are ubiquitous in real-world ap-
plications when approaching search problems (Bazaraa
et al.| |2011), partial differential equations (Isakov}
2006), molecular design (Sanchez-Lengeling and
Aspuru-Guzik} 2018). While significant advancements
have been made in resolving a broad spectrum of ab-
stract optimization problems with analytically known
objective functions and constraints (Boyd and Van-
denberghe|[2004| Raol|2019; |Petropoulos et al.,|2023)),
optimization in real-world scenarios remains challeng-
ing since the exact nature of the objective is often
unknown, and access to constraints is limited (Conn
et al.}|2009). For example, it is challenging to incorpo-
rate the closed-form constraints on a molecule to be
synthesizable or design an objective function for target
chemical properties.

Previous studies have identified problems with un-
known objective functions as black-box optimization
problems (Conn et al.||2009||Alarie et al.;|2021). In such
scenarios, the only way to obtain the objective value
is through running a simulation (Larson et al.,|2019)
or conducting a real-world experiment (Shields et al.|
2021), which might be expensive and non-differentiable.
A prevalent approach to this challenge involves learning
a surrogate model with available data to approximate
the objective function which can be implemented in
either an online (Snoek et al.} 2012} |Shahriari et al.|
2015} |Srinivas et al.||2010) or offline manner (Trabucco
et al.||2021a//2022).

However, there is a significant lack of research focused
on scenarios where analytic constraints are absent. The
only works that deal with unknown constraints are from
the derivative-free optimization community (Audet and
Dennis Jr||2004} 2006 [Nguyen and Balasubramanian)
2023). However, these methods can only be applied to
simple low-dimensional problems and cannot be applied
to more complex problems such as molecule and protein
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optimization. In practice, overlooking these feasibility
constraints during optimization can result in spurious
solutions. For instance, the optimization process might
yield a molecule with the desired chemical property
but cannot be physically synthesized (Gao and Coley|
2020; | Du et al.}|2022), which would require restarting
the optimization from different initializations (Krenn
et al.| [2020| |Jain et al.||2023).

To restrict the search space to the set of feasible solu-
tions, we propose to perform optimization within the
support of the data distribution or the data manifold.
Indeed, in practice, one usually has an extensive set of
samples satisfying the necessary constraints even when
the constraints are not given explicitly. For instance,
the set of synthesizable molecules can be described
by the distribution of natural products (Baran||2018}
Vorsilak et al.}|2020). To learn the data distribution,
we focus on using diffusion models, which recently
demonstrated the state-of-the-art performance in im-
age modeling (Ho et al.}|2020] [Song et al.||2020), video
generation (Ho et al.||2022), and 3D synthesis (Poole
et al.}|2022). Moreover, (Pidstrigach||2022;De Bortoli,
2022) theoretically demonstrated that diffusion models
can learn the data distributed on a lower dimensional
manifold embedded in the representation space, which
is often the case of the feasibility constraints.

To constrain the optimization process to the data man-
ifold, we reformulate the original optimization problem
as a sampling problem from the product of two densi-
ties: i) a Boltzmann density with energy defined by the
objective function and ii) the density of the data dis-
tribution. The former concentrates around the global
minimizers in the limit of zero temperature (Hwang)
1980; |Gelfand and Mitter} |1991), while the latter re-
moves the non-feasible solutions by yielding the zero
target density outside the data manifold. Depending
on whether the objective function is differentiable or
non-differentiable, we propose two different sampling
methods. When the objective function is differentiable,
we propose a two-stage sampling strategy: (i) a guided
diffusion process acts as a warm-up stage to provide
initialization of data samples on the manifold, and (ii)
we ensure convergence to the target distribution via
Markov Chain Monte Carlo (MCMC). When the ob-
jective is non-differentiable, we propose an iterative
importance sampling strategy using diffusion models
to gradually improve the proposal distribution.

The main contributions of this work are: (1) We re-
formulate the problem of optimization under unknown
constraints as a sampling problem from the product
of the data distribution and the Boltzmann distribu-
tion defined by the objective function. (2) We propose
two different sampling methods with diffusion models,
depending on the differentiability of the objective func-

tion. (3) Empirically, we validate the effectiveness of
our proposed framework on a synthetic toy example,
six real-world offline black-box optimization tasks as
well as a multi-objective molecule optimization task.
We find that our method, named DIFFOPT, can out-
perform state-of-the-art methods.

2 Background

Problem definition. Consider an optimization prob-
lem with objective function h : R? — R. Additionally,
we consider a feasible set C, which is a subset of R.

Our goal is to find the set of minimizers {«}};2, of

K3
the objective h within the feasible set C. This can
be expressed as the following constrained optimization
problem
{x:}M| = argmin,cc h(z).

However, in our specific scenario, the explicit formu-
lation of the feasible set C is unavailable. Instead,
we can access a set of points D = {x;}¥, sampled
independently from the feasible set C.

Optimization via sampling. If we do not consider
the constraints, under mild assumption, the optimiza-
tion process is equivalent to sample from a Boltzmann
distribution ¢g(x) x exp[—pSh(x)], in the limit where
[ — oo, where (§ is an inverse temperature parameter.
This is the result of the following proposition which
can be found in (Hwang||1980| Theorem 2.1).

Proposition 1. Assume that h € C3(R%, R). Assume
that {xF}M | is the set of minimizers of h. Let p be a
density on R% such that there exists ig € {1,..., M}
with p(x} ) > 0. Then Qp the distribution with den-
sity w.r.t the Lebesgue measure < qg(x)p(z) weakly
converges to Qo as B — 0o and we have that

Qoo = X0 aidar | i @i
with a; = p(xr) det(V2h(xr))~1/2.

Based on this proposition, (Gelfand and Mitter}|1991)
proposed a tempered method for global optimization.
However, the proposed temperature schedule scales log-
arithmically with the number of steps; hence, the total
number of iterations scales exponentially, hindering
this method’s straightforward application. In practice,
we can sample from the density with the target high 3,
see (Raginsky et al.||2017| Ma et al.;|2019{ De Bortoli
and Desolneux|(2021).

Product of Experts. To constrain our optimization
procedure to the feasible set C, we propose to model the
target density as a product of experts (Hinton||2002),
a modeling approach representing the “unanimous vote”
of independent models. Given the density models of
m € N "experts" {¢;(x)},, the target density of their
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product is defined as

(@) o< [1i2, ¢i(2) -

Hence, if one of the experts yields zero density at x,
the total density of the product at x is zero.

Diffusion Models. Given a dataset D = {z;}¥, ~
Pdata ()@Y with pgaa concentrated on the feasible
set C, we will learn a generative model p such that
P & Pdata Using a diffusion model (Sohl-Dickstein et al.|
2015}|Song and Ermon}|2019;|Ho et al.,[2020). The den-
sity p will then be used in our product of experts model
to enforce the feasibility constraints, see Section
In diffusion models, we first simulate a forward noising
process starting from data distribution po(z) = paata()
which converges to the standard Gaussian distribution
pr(x) ~ N(0,1d) as T — oo. The forward process is
defined by the following SDE

dx; = f(x3,t)dt + g(t)dwy, X} ~ pdata(z), 0 <t < T,

where f : R? — R is a vector-valued drift function,
g(t) : R — R is a scalar-valued diffusion coefficient, and
(W¢)¢>0 is a d-dimensional Brownian motion. Then,
under mild assumptions, the reverse process that gen-
erates data from normal noise follows the backward
SDE (Haussmann and Pardouxl,|1986} Anderson, |1982)

dx = [~ f(xi,7) + ¢°(7) Vs log pr (x7)] dt + g(r)dwe,

where 7 =T — t and V. logp,(z) is the score function
which is modeled by a time-dependent neural network
via the score matching objective

Er [M)Ex; Ex; i [l[50(57: ) — Vo log pyyo (7150 [13] ]

where py|o(x7]x}) is the conditional density of the for-
ward SDE starting at x{, and A(¢) > 0 is a weighting
function. Under assumptions on f and g, there exists
a,0 such that for any ¢ € [0,7], x} = X} + oue,
where ¢ ~ N (0,Id), and therefore one does not need
to integrate the forward SDE to sample (x3,x;). Re-
cent works have shown that diffusion models can detect
the underlying data manifold supporting the data dis-
tribution (Pidstrigach||2022}|De Bortoli}|2022). This
justifies the use of the output distribution of a diffusion
model as a way to identify the feasible set.

3 Proposed Method

In this section, we present our method, DIFFOPT.
First, we formulate the optimization process as a sam-
pling problem from the product of the data distribution
concentrated on the manifold and the Boltzmann dis-
tribution defined by the objective function. Then we
propose two sampling methods with diffusion models
for different types of objective functions.

3.1 Constrained Optimization as Sampling
from Product of Experts

We recall that ¢z(z) o exp[—Bh(z)], where h is the ob-
jective function. While it is possible to sample directly
from gg(z), the generated samples may fall outside of
the feasible set C, defined by the dataset D. To address
this, we opt to sample from the product of the data
distribution and the Bolzmann distribution induced by
the objective function. Explicitly, our goal is to sample
from a distribution mg(x) defined as

ma(x) o p(a)gs(z). (1)

Using Proposition we have that mg concentrates on
the feasible minimizers of h as § — 4oc.

It should be noted that Equation satisfies the fol-
lowing properties: (a) it assigns high likelihoods to
points x that simultaneously exhibit sufficiently high
likelihoods under both the base distributions p(z) and
gp(x); (b) it assigns low likelihoods to points x that
display close-to-zero likelihood under either one or both
of these base distributions. This ensures that the gen-
erated samples not only remain within the confines of
the data manifold but also achieve low objective values.

In practice, the objective function h can be either
differentiable or non-differentiable. In the following
sections, we will propose two sampling methods using
diffusion models, for each type respectively.

3.2 Differentiable Objective: Two-stage
Sampling with Optimization-guided
Diffusion

Under mild assumptions, the following SDE converges
to mg w.r.t. the total variation distance (Roberts and
Tweediel |1996)

dx; = Vi log ms(x;)dt + v2dw;. (2)

where the gradient of the unnormalized log-density can
be conveniently expressed as the sum of the scores,
i.e., Vylogmg(x) = Vylogp(z) + Vi loggs(x). Fur-
thermore, one can introduce a Metropolis-Hastings
(MH) correction step to guarantee convergence to the
target distribution when using discretized version of
Equation (Durmus and Moulines||2022), which is
known as the Metropolis-Adjusted-Langevin-Algorithm
(MALA) (Grenander and Miller||1994). We provide
more details of both algorithms in Appendix

Theoretically, sampling from Equation can be done
via MALA. However, in practice, the efficiency signifi-
cantly depends on the choice of the initial distribution
and the step size schedule. The latter is heavily linked
with the Lipschitz constant of log g3 which controls the
stability of the algorithm. Large values of (3, necessary
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h(z)

exp [ -

{z:}, ~ p(2)

gp(z) -

—— Unconstrained sampling
Diffusion model

— DiffOPT
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Figure 1: Constrained optimization as a sampling from the product of densities. That is, we minimize the
objective function h(z) (red stars denote the minimizers) within the feasible set C, which is given by samples

{$i}£v:1 ~ p(z).

This problem is equivalent to sampling from the density ms(z) x p(x)exp[—Sh(x)], which

concentrates around minimizers of h(z) within the feasible set C'. The distribution we sample from is shown on
the left and the trajectory we take to sample is shown on the right.

to get accurate minimizers, also yield large Lipschitz
constants which in turn impose small stepsizes. More-
over, the gradient of the log-density can be undefined
outside the feasibility set C.

To circumvent these practical issues, we propose sam-
pling in two stages: a warm-up stage and a sampling
stage. The former aims to provide a good initialization
for the sampling stage. The sampling stage follows
the Langevin dynamics for further correction. The
pseudocode for both stages is provided in Appendix[D]

Stage I: Warm-up with guided diffusion. In imag-
ing inverse problems, it is customary to consider guided
diffusion models to enforce some external condition,
see (Chung et al.| 2022a/b}|Song et al., 2022} |Wu et al.|
2023). In our setting, we adopt a similar strategy where
the guidance term is given by Sh, i.e., we consider

dxy =[—f(xy,7) + ¢°(7)so(x{, 7) — BVA(x{)]dt

+g(r)dwy, 7=T —t. ®)

Theorem 1. Under assumptions on p, h, we denote
pgﬂit the distribution of Equation at time t and
there exists C > 0 such that for any x € R?

(1/C)py(x) < pi(x) < Cih (),

where pg is the output of the warm-up guided diffu-
sion process and ﬁg(x) = po(x) exp[log(ﬁo)Woﬁ(x)],
with W (z) = Ah(z) + (Viegph (), Vh(z)) and fo
is the inverse temperature at the end of the process

The proof is postponed to Appendix As an im-
mediate consequence of Theorem we have that
limg, 00 pg (xx) = +oo for every local strict min-
imizer a* of h within the support of po(z), and

limg, 00 Pl () = 0 for 2* outside the support of po(z),
see Appendix That is, pg concentrates on the feasible
local minimizers of h as By — +oc.

Theoremindicates that the guided diffusion process
in the first stage yields a more effectively initialized
distribution within the data manifold, bounded both
above and below by a product of experts related to the
original constrained optimization problem. However,
it is known that guided diffusion cannot accurately

sample from the product of experts gg (Du et al.}|2023b;
1% b p q3
dix

|Garipov et al.||2023), see more details in Appen
While additional contrastive training of a surrogate
objective has been proposed , in this
work, we do not consider such complex corrections.
Instead, we rely on ideas from MCMC literature to
ensure convergence.

Stage II: Further correction with Langevin dy-
namics. In the second stage, we further use Langevin
dynamics for accurate sampling from mg(x). The gradi-
ent of the log-density of the data distribution V log p(x)
can be obtained by setting the time of the score function
to 0, i.e., sp(x,0). The unadjusted Langevin algorithm
is then given by

T = 2k 4 (sp(24,0) — BV, h(z¥)) At + VIAL,

where At is the step size and z comes from a Gaussian
distribution. In practice, we find that a constant (3
is enough for this stage. When using the score-based
parameterization sg(z,t), we cannot access the unnor-
malized log-density of the distribution. Therefore, we
cannot use the MH correction step. Although the sam-
pler is not exact without MH correction, it performs
well in practice.
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To further incorporate the MH correction step, we
can adopt an energy-based parameterization following
(Du et al.|[2023b): Ey(z,t) = —5||[NNy(z,t)||?, where
FEy(x,t) is the energy function of the data distribution,
and NNy(z,t) is a vector-output neural network. An
additional benefit of MH correction is that it can en-
force hard constraints. The vanilla Langevin dynamics
includes a Brownian motion term, whose support spans
the entire space (similar to a Gaussian distribution).
As a result, samples may occasionally fall outside the
constrained region. However, with a MH correction
step, the acceptance ratio p(z* +1)/p(z*) becomes zero
if the proposed sample zF+1 lies outside the support of
the distribution, ensuring that such samples are disre-
garded. We provide more details of this energy-based
parameterization in Appendix@

3.3 Non-differentiable Objective: Iterative
Importance Sampling with Diffusion
Models

When gradients of the objective function are unavail-
able, we can use self-normalized importance sampling
(SNIS) (Rubinstein and Kroesel [2016), which is easy
and fast to implement. SNIS first proposes several
particles from a proposal distribution. Then, resample
the particles according to their weights, calculated as
the ratio of the target density to the proposal density.

However, the performance of SNIS is heavily deter-
mined by the proposal distribution. A good proposal
distribution should be close to the target distribution.
To address this, we employ an iterative importance sam-
pling with diffusion models to improve the initial pro-
posal distribution. The pseudocode of our derivative-
free sampling algorithm is provided in Appendix

Initialization with SNIS. We begin by randomly
sampling S particles {z? le from the diffusion model
po(x), assigning each particle a weight w? = %jjg; =
qs(2Y). We then resample S particles based on the

0
. . ~ w . . .
normalized weights ! = —<z~*— using multinomial

0
j=1W;

sampling with replacement.

Diffusion-guided proposal for iterative impor-
tance sampling. At the k-th iteration, we have §
particles {z*~1}5_, resampled from the previous iter-
ation. The key insight of our method is that these
resampled particles form a proposal distribution closer
to the target distribution. However, these resampled
particles tend to be repetitive and lack diversity. To
address this, we use a diffusion model to diversify the
resampled particles, ensuring that the proposal distri-
bution remains diverse and closely approximates the
target distribution. Henceforth, we will use z* and x’;O
interchangeably to refer to the particle at time 0. We

also_omit the arrows denoting forward /reverse process

of diffusion models for simplicity.

The diversify process works as follows: we first
add noise to the particles xffol through a for-
ward diffusion process until a randomly sampled
time ¢t to get x?;l ~ pt‘o(x§~;1|x§’61). Then
we denoise them back to obtain new particles
ko~ p0|t(a:’;’70|x§;1). This proposal can be written as
Q(zkak™) = [ pyo(asy |25o poy(ah olaby ) daly
We use the Monte Carlo method to compute the

marginalization by drawing J samples z’:x for

each particle: Q(x%|z%~1) ~ %Z}]ﬂpmt(ﬂf?,o zih).

Sampling xf?? is straightforward as the for-

ward process in diffusion models admits a

closed-form  conditional Gakussian distribution:
-1 2

pt|0(m§;1|x§51) = N(xl;;l|atms’0 ,021d). Following

(Song et al.}|2023), we approximate p(m§’0|x§;1) as
N m’;;)lj-i-a'tsg(cvf;,lj,t) gf Id
( o ? 140¢ )

Q(z*) is computed by enumerating all the particles

from last iteration, i.e., %25:1 Q(az¥|z%71). Each

ok
g(gg)). We then
resample S particles based on the normalized weights.

This process is iterated for K steps.

The marginalization

particle is assigned a weight w® =

Note that by involving only resampling and diffusion
models in each iteration, we can ensure staying within
the data manifold, thereby satisfying hard constraints.

4 Related Work

Diffusion models and data manifold. Diffusion
models have demonstrated impressive performance in
various generative modeling tasks, such as image gen-
eration (Song et al.}|2020; Ho et al.| [2020), video gener-
ation (Ho et al.[|2022), and protein synthesis (Watson
et al.| |2023} |Gruver et al.| |2023). Several studies re-
veal diffusion models implicitly learn the data manifold
(Pidstrigach, |2022; |De Bortoli et al.}|2021}|Du et al.|
2023a| |[Wenliang and Moran| |2023)). This feature of
diffusion models has been used to estimate the intrinsic
dimension of the data manifold in (Stanczuk et al.|
2022). Moreover, the concentration of the samples on a
manifold can be observed through the singularity of the
score function. This phenomenon is well-understood
from a theoretical point of view and has been acknowl-
edged in (De Bortoli| [2022}|Chen et al.,|2022).

Optimization as sampling problems. Numerous
studies have investigated the relationship between op-
timization and sampling (Ma et al.l 2019} |Stephan
et al.|[2017; | Trillos et al.,|2023;|Wibisonol |2018; | Cheng]}
2020{|Cheng et al.| 12020). Sampling-based methods
have been successfully applied in various applications
of stochastic optimization when the solution space is
too large to search exhaustively (Laporte et al.||1992)

or_when the objective function exhibits noise (Branke
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Figure 2: Sampling trajectory of DiffOPT in the synthetic Branin experiment with unknown constraints. Red
stars denote the minimizes, and the blue region denotes the feasible space from which training data is sampled.
DI1FrOPT can effectively navigate towards the two feasible minimizers.

Step 1 Step 10

Step 100

N N

Step 500

Step 1000

Figure 3: Sampling trajectory of DiffOPT in the synthetic Branin experiment with additional known constraints.
Red stars denote the minimizers, the blue region denotes the feasible space from which training data is sampled
and the pink region denotes the feasible space defined by the added given constraints. DIFFOPT can effectively
navigate towards the unique minimizer at the intersection of the two feasible spaces.

and Schmidt||2004) or countless local optima
et al.|| 2005, [2020). A prominent solution to global opti-
mization is through sampling with Langevin dynamics
(Gelfand and Mitter| 1991), which simulates the evolu-
tion of particles driven by a potential energy function.

trained using a distribution of homogeneous instances,
to achieve generalization on similar unseen instances.
Various learning paradigms have been used in this con-

text, including supervised learning (Li et al.l 2018}
Gasse et al., [2019), reinforcement learning (Li and

Furthermore, simulated annealing (]Kirkpatrick et al.L

MalikH?Oth Khalil et al.l |2017] |Kool et al.Ll?OlSD, un-

1983) employs local thermal fluctuations enforced by
Metropolis-Hastings updates to escape local minima
Metropolis et al.||1953||Hastings}|1970). More recently,
Zhang et al.||2023) employs generative flow networks
to amortize the cost of the sampling process for combi-
natorial optimization with both closed-form objectives
and constraints.

Learning for optimization. Recently, there has been
a growing trend of adopting machine learning methods
for optimization tasks. The first branch of work is
model-based optimization, which focuses on learning a
surrogate model for the black-box objective function.

[nis Jr|[2006), line search (Fasano et al.|[2014; [Liuzzi

supervised learning (]Karalias and Loukas“2020t |Wang|
|et al.H2022|;|Min et al.l, I2023D, and generative modeling
(Sun and Yang] 2023}|Li et al.||2023). In contrast to
our approach, these works typically involve explicitly
defined objectives and constraints.

Optimization under unknown constraints. Exist-
ing work on optimization under unknown constraints
are based on derivative-free optimization methods, such
as generalized pattern search (Audet and Dennis Jr
2004), mesh adaptive direct search (Audet and Den-

This model can be developed in either an online (]Snoe

et al.||2016), the Frank-Wolfe algorithm (Usmanoval
et al.,|2019), and stochastic zeroth-order constraint

et al.}[2012| [Shahriari et al.||2015; |Srinivas et al.|[2010
Zhang et al.,|2021), or an offline manner (Yu et al.
2021}{|Trabucco et al.|[2021b||Fu and Levine, 2020} Chen
et al.| 2023} | Yuan et al.,|2023). Additionally, some
research (Kumar and Levine| |2020| Krishnamoorthy
et al.| 2023} |[Kim et al.|2023) has explored the learning
of stochastic inverse mappings from function values to
the input domain, utilizing generative models such as
generative adversarial nets (Goodfellow et al.||2014)
and diffusion models (Song et al.l|2020; Ho et al.||2020).

The second branch, known as “Learning to Optimize”,
involves training a neural network to address fully spec-
ified optimization problems. In these works, a model is

extrapolation (Nguyen and Balasubramanian) 2023).

However, these works differ from ours and are not
directly comparable. First, the settings are different—
they require oracle evaluation of whether a proposed
solution violates constraints during the optimization
process, whereas we do not need this. We only require
data samples from the feasible set. Second, these works
are hardly applied to the high-dimensional problems
that we focus on, such as molecule optimization, protein
design, and robot morphology optimization.
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Baseline TFBind8 TFBindl1l0 Superconductor Ant D’Kitty ChEMBL Mean Rank
Dataset Best 0.439 0.00532 74.0 165.326 199.231 383.7e3 -

CbAS 0.958+0.018  0.761+0.067 83.178+15.372 468.711+14.593 213.917+19.863 389.0e3+0.5¢3 6.33
GP-qEI 0.824+0.086 0.675+0.043 92.686+3.944 480.049+0.000 213.816+0.000 388.1e3+0.0 7.17
CMA-ES 0.933+0.035 0.848+0.136 90.821+0.661 1016.409+906.407 4.700+2.230 388.4€3+0.4e3 5.17
Gradient Ascent  0.981+0.010 0.770+0.154 93.252+0.886 —54.955+33.482 226.491+21.120 390.1e3+2.0e3 4.33
REINFORCE 0.959+0.013  0.692+0.113 89.469+3.003 —131.907+41.003  —301.866+246.284  388.4e3+2.1e3 7.33
MINs 0.938+0.047  0.770=+0.177 89.027+3.003 533.636+17.938 272.675+11.069 391.0e3+0.2¢3 4.50
COMs 0.964+0.020  0.750+0.078 78.178+6.179 540.603+20.205 277.888+7.799 390.2€3+0.5¢3 4.50
DDOM 0.971+0.005 0.885+0.367 103.600+8.139 548.227+11.725 250.529+10.992 388.0€3+1.1e3 3.67
Ours 0.987 +0.014 0.924+0.224 113.545+5.322 493.191+18.165 261.673+3.486 391.1e3+43.4e3 2.00

Table 1: Results of offline black-box optimization on DesignBench. We report the mean and standard deviation

across five random seeds. The best results are bolded,

and the second best is underlined.

Top-1 Top-10 Tnvalidity |
QED T SA'] GSK3B T Sum T QED T SA'] GSK3B T Sum T Y
Dataset Mean 0.598 0.204 0.045 0.439 0.598 0.204 0.045 0.439 0
Dataset Sum Best 0.846 0.159 0.99 1.677 0.771 0.129 0.877 1.519 0
Dataset Best 0.947 0.030 0.99 1.907 0.945 0.204 0.947 1.688 0
DDOM 0.79040.023  0.12440.007  0.856+0.046 1.521+0.063 0.74740.033  0.14140.006  0.695+0.021 1.301+0.037 63.60+3.61
Gradient Ascent 0.834+0.025  0.13040.024  0.784+0.152 1.487+0.150 | 0.674+0.043  0.134+0.010  0.67840.047 1.218+0.091 80.00+19.20
GP-qEI 0.78440.059 0.14940.034 0.55140.106 1.186+0.089 0.74340.032 0.147+0.010 0.37040.057 0.96640.028 63.80+7.62
MINs 0.795+0.156  0.163+0.027  0.466+0.249 1.097+0.200 | 0.838+0.059  0.145+0.029  0.2734+0.149  0.966+0.108 38.20+24.66
REINFORCE 0.865+0.047 0.083+0.013  0.062+0.069  0.843+0.027 | 0.816+0.056 0.079+0.009 0.085+0.072  0.822+0.026 | 53.40+106.80
CbAS 0.762+0.119  0.138+0.046  0.681+0.077  1.30540.049 | 0.68740.035  0.153+£0.010  0.593+0.078  1.12640.059 46.80+13.90
CMA-ES 0.446+0.011  0.2074+0.122  0.012+£0.004  0.250+0.128 0.4354+0.033  0.2304+0.169  0.008+0.001  0.21240.205 | 880.00+59.25
Ours 0.798+0.023 0.1004+0.031  0.944+0.023 1.64140.018 | 0.786+0.003 0.1004+0.006  0.866+0.035 1.55240.031 35.80+1.46

Table 2: Results on the multi-objective molecule optimization task. Sum denotes the total objective (QED +
GSK3B — SA). SA is normalized from the range 1-10 to 0-1. We report the mean and standard deviation across
five random seeds. The best results are bolded, and the second best is underlined. Top-1 denotes the best
solution found, and Top-10 denotes the average of the best ten solutions found. Invalidity denotes the number of

invalid molecules in the 1000 generated samples.

5 Experiment

In this section, we conduct experiments on (1) a syn-
thetic Branin task, (2) six real-world offline black-box
optimization tasks, and (3) a multi-objective molecule
optimization task. Finally, we do ablation studies.

5.1 Synthetic Branin Function Optimization

We first validate our model on a synthetic Branin task.
The Branin function (Dixon||1978) is given as

f(zy,29) = alwy —ba? +cxy — )2+ s(1 —t)cos(z1) + s,

Wherea:1,b:%,c:%,r=6,s:10,
t = L. The function has three global minimas,

(=, 12:275), (m,2.275), and (9.42478, 2.475).

Optimization with unknown constraints. To as-
sess the capability of DIFFOPT in optimizing func-
tions under unknown constraints, we generate a dataset
of 6,000 points, uniformly distributed within the feasi-
ble domain shaped like an oval. An effective optimizer is
expected to infer the feasible space from the dataset and
yield solutions strictly within the permissible region,
i.e., (—m,12.275) and (7,2.275). We train a diffusion
model with Variance Preserving (VP) SDE (Song et al.|
2020) on this dataset. More details of the experimental
setup are provided in Appendix[I] Figure[2] illustrates

the sampling trajectory of DIFFOPT, clearly demon-
strating its capability in guiding the samples towards
the optimal points confined to the feasible space.

Compatible with additional known constraints.
Our framework is also adaptable to scenarios with ad-
ditional, known constraints C’. In such instances, we
introduce an extra objective function whose Boltzmann
density is uniform within the constraint bounds and
0 otherwise, i.e., ¢'(z) ox exp[B8’ - I(z € C")], with I()
being the indicator function. To demonstrate this ca-
pability, we incorporate a closed-form linear constraint
alongside the implicit constraint represented by the
dataset. This new constraint narrows the feasible so-
lutions to only (7,2.275). As depicted in Figure
DirrOPT effectively navigates towards the sole viable
minimizer within the constrained space delineated by
the data-driven and explicitly stated constraints. This
feature is particularly beneficial in practical applica-
tions, such as molecular optimization, where imposing
additional spatial or structure constraints might be
necessary during optimizing binding affinities with dif-
ferent protein targets (Du et al.||2022).

5.2 Offline Black-box Optimization

We further evaluate DIFFOPT on the offline black-box
optimization task, wherein a logged dataset is utilized
to train a surrogate model that approximates the ob-
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jective function. The surrogate model is trained on
finite data and may have large fitness errors beyond
the data distribution. At inference time, if we directly
apply gradient ascent on the surrogate objective, it
may produce out-of-distribution designs that “fool” the
learned surrogate model into outputting a high value.
Therefore, we need to constrain the optimization pro-
cess within the data distribution because the trained
surrogate is only reliable within this range. However,
this data distribution constraints cannot be expressed
analytically, and therefore this task can be viewed as
an instance of optimization with unknown constraints.

Following (Krishnamoorthy et al., |2023), we conduct
evaluation on six tasks of DesignBench (Trabucco et al.|
2022). Superconductor is to optimize for finding a su-
perconducting material with high critical temperature.
Ant nad D’Kitty is to optimize the robot morphology.
TFBind8 and TFBind10 are to find a DNA sequence
that maximizes binding affinity with specific transcrip-
tion factors. ChEMBL is to optimize the drugs for a
particular chemical property.

Baselines. We compare DIFFOPT with multiple base-
lines, including gradient ascent, Bayesian optimization
(GP-qEI) (Krishnamoorthy et al.||2023), REINFORCE
(Sutton et al.||1999), evolutionary algorithm (CAM-ES)
(Hansen), and recent methods like MINS (Kumar and
Levine, 2020), COMs (Trabucco et al.}|2021a), CbAS
(Brookes et al.| |2019) and DDOM (Krishnamoorthy
et al.| 2023). We follow (Krishnamoorthy et al.}|2023)
and set the sampling budget as 256. More details of
the experimental setups are provided in Appendix

Results. Table shows the performance on the six
datasets for all the methods. As we can see, DIFFOPT
achieves an average rank of 2.0, the best among all
the methods. We achieve the best result on 4 tasks.
Particularly, in the Superconductor task, DIFFOPT
surpasses all baseline methods by a significant mar-
gin, improving upon the closest competitor by 9.6%.
The exceptional performance of DIFFOPT is primarily
due to its application of a diffusion model to learn the
valid data manifold directly from the data set, thus
rendering the optimization process significantly more
reliable. In contrast, the gradient ascent method, which
relies solely on optimizing the trained surrogate model,
is prone to settle on suboptimal solutions. Moreover,
while DDOM (Krishnamoorthy et al.;|2023) employs a
conditional diffusion model to learn an inverse mapping
from objective values to the input space, its ability to
generate samples is confined to the maximum values
present in the offline dataset. This limitation restricts
its ability to identify global maximizers within the fea-
sible space. The experimental results also demonstrate
that DIFFOPT can consistently outperform DDOM
except for the Ant Dataset.

5.3 Multi-objective Molecule Optimization

An additional advantage of incorporating the data dis-
tribution constraints for offline black-box optimization
is their direct impact on enhancing the validity of
generated solutions. However, it’s worth noting that
DesignBench lacks a specific metric for assessing va-
lidity. Therefore, we further test on a multi-objective
molecule optimization task and extend our evaluation
to include validity. In this task, we have three objec-
tives: the maximization of the quantitative estimate of
drug-likeness (QED), and the activity against glycogen
synthase kinase three beta enzyme (GSK3B), and the
minimization of the synthetic accessibility score (SA).
Following (Jin et al.;|2020| |[Eckmann et al.||2022), we
utilize a pre-trained autoencoder from (Jin et al.||2020)
to map discrete molecular structures into a continuous
low-dimensional latent space and train neural networks
as proxy functions for predicting molecular properties
to guide the optimization. Detailed experimental se-
tups are provided in the Appendix

Results. For each method, we generate 1,000 can-
didate solutions, evaluating the three objective met-
rics solely on those that are valid. As we can see
from Table 2| DIFFOPT can achieve the best valid-
ity performance among all the methods. In terms of
optimization performance, DIFFOPT can achieve the
best overall objective value. We further report the
average of the top 10 solutions found by each model
and find that DiffOPT is also reliable in this scenario.
This multi-objective optimization setting is particularly
challenging, as different objectives can conflict with
each other. The superior performance of DIFFOPT is
because we formulate the optimization problem as a
sample problem from the product of experts, which is
easy for compositions of various objectives.

5.4 Derivative-free Optimization

Hypervolume T Invalidity |

EA 0.558+0.029 37.6+8.73
IS 0.493+0.108 0.0+0.0
Ours 0.590=+0.060 0.0=+0.0

Table 3: Results of derivative-free optimization on the
multi-objective molecule optimization task.

In this subsection, we explore the scenario where the
objective function is not differentiable and examine
the effectiveness of the proposed iterative importance
sampling with diffusion models. We continue using
the molecule optimization task. Here, we do not train
a surrogate objective using offline data but instead
directly use the oracle function from Rdkit (RDKit!
online). We compare our method with evolutionary
algorithm (EA; (Hansen)), which is a common tech-
nique in derivative-free multi-objective optimization.
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Figure 4: Impact of annealing strategies and B ax in the guided diffusion stage. Bmax is the value of 5 at the end

of annealing.

Additionally, we compare our method with one-step
importance sampling (IS) using diffusion models as
the proposal distribution. Table [3| provides the perfor-
mance of all the methods. As we can see, DIFFOPT
can achieve the best hypervolume and validity among
all the methods.

5.5 Ablation Study

Superconductor TFBind8
Best Baseline 103.600 + 8.139 0.981 +0.010
Only Stage I 112.038 +6.783  0.984 £+ 0.012
Only Stage II 92.432 + 8.635 0.951 + 0.028
Stage I + Stage II 113.545 + 5.322 0.987 +0.014
Stage I 4+ Stage I + MH  114.945 +3.615 0.989 £+ 0.021

Table 4: Ablation study on the two-stage sampling.

Impact of two-stage sampling. Table shows the
impact of two-stage sampling on performance. Our
findings reveal that even after the initial stage, DIr-
FOPT outperforms the top-performing baseline on
both datasets. Relying solely on Langevin dynamics,
without the warm-up phase of guided diffusion, results
in significantly poorer results. This aligns with our dis-
cussion in Section where we attributed this failure
to factors such as the starting distribution, the schedule
for step size adjustments, and the challenges posed by
undefined gradients outside the feasible set. Integrating
both stages yields a performance improvement as the
initial stage can provide a better initialization within
the data manifold for the later stage (Theorem .
Adding the MH correction step further enhances re-
sults, leading to the best performance observed.

Impact of annealing strategies. We study the influ-
ence of different annealing strategies for 5 during the
guided diffusion stage, focusing on the superconductor
and TFBind8 datasets. We explore three strategies:
constant, linear annealing, and exponential annealing.
Figure a) presents the performance across various
diffusion steps. We find that our method is not partic-
ularly sensitive to the annealing strategies. However,
it is worth noting that exponential annealing exhibits
a marginal performance advantage over the others.

We also investigate how the value of 5 at the end of
annealing, denoted as fBpax, affects model performance
in Figure b). We find that increasing fnax initially
leads to better performance. However, beyond a cer-
tain threshold, performance begins to decrease. It is
noteworthy that the optimal value varies across differ-
ent annealing strategies. Particularly, at Bpnax = 0, the
model reverts to a pure diffusion process, exhibiting
the lowest performance due to the lack of guidance
from the objective function.

Sample efficiency. We explore the sample efficiency
of DIFFOPT at both training and testing stages. Fig-
ure (in Appendix shows the performance of various
methods versus the ratio of training data on Super-
conductor, TFBind8 and multi-objective molecule op-
timization. As we can see, on all the three datasets,
DiffOPT can outperform all. Our method is also sam-
ple efficient during inference. Figure@ (in Appendix
shows the performance versus number of samples at
inference stage. Notably, on both Superconductor and
TFBind8, DiffOPT consistently outperforms all the
baseline methods for various sample sizes during infer-
ence. It is also important to highlight that our method
consistently achieves much greater sample efficiency
than DDOM at both training and inference stages,
despite both approaches leveraging diffusion models.

6 Conclusion

In this paper, we propose DIFFOPT to solve optimiza-
tion problems where analytic constraints are unavail-
able. We learn the unknown feasible space from data
using a diffusion model and then reformulate the origi-
nal problem as a sampling problem from the product of
(i) the density of the data distribution learned by the dif-
fusion model and (ii) the Boltzmann density defined by
the objective function. For differentiable objectives, we
propose a two-stage framework consisting of a guided
diffusion stage for warm-up and a Langevin dynam-
ics stage for further correction. For non-differentiable
objectives, we propose an iterative importance sam-
pling method with diffusion models. Our experiments
validate the effectiveness of DIFFOPT.
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A Limitations and Future Work

We discuss limitations and possible extensions of DIFFOPT. (i) Manifold preserving. The guided diffusion may
deviate from the manifold that the score network is trained, leading to error accumulations. One approach to
mitigate this is to incorporate manifold constraints during the guided diffusion phase (]Chung et al.| |2022b|;
. (i) Online learning. We have applied DIFFOPT in the offline black-box optimization (BBO) setting.
Considering the unknown constraints not only benefits the offline setting but also helps the online BBO. In
the context of online BBO, we propose molecules and subsequently receive evaluations from the ground-truth
simulator at each iteration to train the surrogate objective. Proposing a higher proportion of valid molecules can
significantly increase the sampling efficiency of training the surrogate objective.

B Broader Impacts

Optimization techniques can be used to solve a wide range of real-world problems, from decision making (planning,
reasoning, and scheduling), to solving PDEs, and to designing new drugs and materials. The method we present
in this paper extends the scope of the previous study to a more realistic setting where (partial) constraints for
optimization problems are unknown, but we have access to samples from the feasible space. We expect that by
learning the feasible set from data, our work can bring a positive impact to the community in accelerating solving
real-world optimization problems and finding more realistic solutions. However, care should be taken to prevent
the method from being used in harmful settings, such as optimizing drugs to enhance detrimental side effects.
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C (Metropolis-adjusted) Langevin Dynamics.

Langevin dynamics is a class of Markov Chain Monte Carlo (MCMC) algorithms that aims to generate samples
from an unnormalized density 7(z) by simulating the differential equation

dx; = Vy log 7(x;)dt + v2dw;. (4)

Theoretically, the continuous SDE of Equation is able to draw exact samples from m(x). However, in practice,
one needs to discretize the SDE using numerical methods such as the Euler-Maruyama method (Kloeden et al.
1992) for simulation. The Euler-Maruyama approximation of Equation is given by

Teinr = o + Viogm(z) + V2Atz, z ~N(0,1), (5)

where At is the step size. By drawing xg from an initial distribution and then simulating the dynamics in
Equation , we can generate samples from 7 (x) after a ’burn-in’ period. This algorithm is known as the
Unadjusted Langevin Algorithm (ULA) (Roberts and Tweediel|1996), which requires V log 7(x) to be L-Lipschitz
for stability.

The ULA always accepts the new sample proposed by Equation . In contrast, to mitigate the discretization
error when using a large step size, the Metropolis-adjusted Langevin Algorithm (MALA) (Grenander and Miller}
1994)) uses the Metropolis-Hastings algorithm to accept or reject the proposed sample. Specifically, we first
generate a proposed update # with Equation , then with probability min(1, :Eg%g;l;iﬁigj igg:g;;;ﬁg

set Ty Ar = T, otherwise xy 4 A = ;. We provide the pseudocode of both algorithms in Algorithm

), we

Algorithm 1 Sampling via the (Metropolis-Adjusted) Langevin dynamics

Require: unnormalized density 7(x), step size At
1: = ~ initial distribution
2 X=0
3: for number of iterations do

4:  T=w+Vlogm(z)At +V2At-z, 2z~ N(0,1)
5.  if applying Metropolis-Hastings test then

6: u ~ Uniform|0, 1]

T 108 Paccopt = 108 SN Arv Tog 7 (281

8: if log Paccept > logu, then z <2

9: else

10: T I

11:  end if

122 X+ XUz

13: end for

14: Return X

D Pseudocode of the Two-Stage Sampling

The pseudocode for the proposed two-stage sampling method is provided in Algorithm 2]

E TIllustration of Why Guided Diffusion Cannot Sample from the Product of
Experts

The primary limitation of relying solely on Stage I is its inability to theoretically sample from our desired true
target distribution, the product of distributions g o< p(x)gg(x). This is because the score of the diffused marginal
distribution does not directly correspond to the aggregate of the scores from each individual distribution,

V. logh(z,) = V, log / Po(0)gs (0)pejo (|20} dzo

£V, log gs(ae) + Vi log / po(x0)pipo(xelzo)dao, t> 0,

Pt (it)
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Algorithm 2 Sampling via DIFFOPT for differentiable objective

Require: inverse temperature schedule (t), diffusion volatility schedule g(¢t) and drift f(z,t), score model
sg(x4,t), energy function of the data distribution Fy(x,t) if applying the MH correction.

1. X+ o
2: Sample xy ~ N(0,1d)
3: Stage I: Warm-up with guided diffusion.
4: fort =0,...,7T do
5. Draw z ~ N(0,1d), define 7 =T — ¢
6:  Terar — w+ [~ flag, ) + g2 (7)se (g, T)
7 () Ve b)) At + g(r)V/AL
8: end for
9: Stage II: Further correction with Langevin dynamics.
10: fort=1T,...,7" do
11:  Draw z ~ N(0,1d)
12: &« x4 [se(x,0) — BVh(z)|At + V2Atz
13:  if applying Metropolis-Hastings test then
14: u ~ Uniform[0, 1]
15: lo(2) = Ey(2,0) — Bh(Z)
16: lo(z) = Eg(x,0) — Sh(x)
17: U&,7) = —|lv — & — At[se(£,0) — BVA()]]]?
18: Uz,%) = —||& —x — At[sg(z,0) — BVh(z)]|]
19: Lace = EO("'%) - 69(9:) + (Z(jax) - f(x, ‘%))/(2At)
20: if loee >log(u), then <+ &
21:  else
22: T I
23:  end if
24: X+ XU{z}
25: end for
26: Return X

where pyjo(7¢|2¢) is the conditional density of the forward SDE starting at xo.

Therefore we have to include Langevin dynamics (Stage II) as an optional stage to correct the bias introduced in
Stage 1. This stage can provide a theoretical guarantee for drawing exact samples from the product of distributions,
despite the empirical observation that it offers only marginal performance improvements.

It’s important to note that Stage I is essential because its output focuses on feasible minimizers under specific
conditions, offering an improved initialization for Langevin dynamics. This has been demonstrated in our ablation
study.

F Pseudocode of the Proposed Derivative-free Sampling

The pseudocode of our derivative-free sampling algorithm is provided in Algorithm

G Energy-based Parameterization

In a standard diffusion model, we learn the score of the data distribution directly as sg(x,t) = Vlogp:(x). This
parameterization can be used for ULA, which only requires gradients of log-likelihood. However, to incorporate
the Metropolis-Hastings (MH) correction step, access to the unnormalized density of the data distribution is
necessary to calculate the acceptance probability.

To enable the use of MH correction, we can instead learn the energy function of the data distribution, i.e., p(x,t)
efo(=:)  The simplest approach is to use a scalar-output neural network, denoted as NNy (x,t) : R x R — R, to
parameterize Fy(z,t). By taking the gradient of this energy function with respect to the input x, we can derive the
score of the data distribution. However, existing works have shown that this parameterization can cause difficulties
during model training (Salimans and Ho, |2021). Following the approach by (Du et al.,|2023b)), we define the
energy function as Ey(x,t) = —%‘NNQ (x,t)|3, where NNy (z,t) is a vector-output neural network mapping from
R? x R to R. Consequently, the score of the data distribution is represented as sq(x,t) = —NNg(x, )V, NNg(x, ).
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Algorithm 3 Sampling via DIFFOPT for non-differentiable objective

Require: inverse temperature schedule (t), diffusion volatility schedule g(¢t) and drift f(z,t), score model
so(xy,t).
Initialization
: Sample S particles {z}5_; from diffusion model

0
: Compute w? = gs((;”n)) = gp(2?) for each particle

0
: Normalize the weight @9 = sar*—p for each particle

s=1 "s
S, according to the weights

: Iterative Importance Sampling
:fork=1,--- ,K+1do
Sample ¢ ~ U0, T

1
2
3
4
5: Resample S particles {29}
6
7
8
9: fors=1,---,5do

10: zk = ;17(’;’7(:,
11: Add noise to the particle by forward diffusion until time ¢: xf;l ~ pt‘o(xfgl\mffol)
12: Denoise the particle through backward diffusion: z%, ~ po‘t(xf,omf;l)
k-1 k-1 k-1 k-1 k—1 _o} .
13: Sample x¢ 5~ pro(zs; |v50 ) = N(agy vy, 135 1d) for J times
14: Q( k| k*l) ~ 1 ZJ N ws,t,j"!‘o'tss(wl;;,lj’t) O’? Id
: Tslls ) =7 2uj=1 a ' Thoy
15: Marginalize to get Q(z*) ~ éz;gzl Q(xF¥|zk-1)
16:  end for .
17:  Compute w = 725((;,5)) for each particle
° k
18:  Normalize the weight for each particle: ’lI)]; = sts —
=15
19:  Resample M particles {x¥}5_, according to the weights

20: end for
21: Return X = {zK+1}5

H End Distribution of the Warm-up Stage

In this section, we study in further detail the warm-up stage of DIFFOPT. We recall that we consider a process
of the following form

dy? = [=f(yf, 1= t) + g(1 = £)’Viogp1—i(y7) — B(1 = )VA(y))dt + g(1 = )dws,  yg ~xr  (6)
where T' =1 and p; is the density w.r.t. Lebesgue measure of the distribution of x; where
dx¢ = f(t,x¢)dt + g(t)dwy, Xo ~ Po- (7)

We recall that under mild assumption (Cattiaux et al.||2023), we have that (¥¢)ic(0,1] = (X1-t)te[0,1] satisfies

dy: = [-f (e, 1 —¢t) +g(1 — t)QVIngl,t(yt)}dt + g(1 — t)dwy, Vo = X7.

Let us highlight some differences between and the warm-up process described in Algorithm|2| First, we note
that we do not consider an approximation of the score but the real score function V logp;. In addition, we do not
consider a discretization of @ This difference is mainly technical. The discretization of diffusion processes is a
well-studied topic, and we refer to (De Bortoli et al.|[2021| Benton et al.||2023{|Conforti et al.||2023;|Chen et al.|
2022) for a thorough investigation. Our contribution to this work is orthogonal as we are interested in the role of
h on the distribution. Our main result is Proposition and details how the end distribution of the warm-up
process concentrates on the minimizers of h, which also support the data distribution pg.

We first show that under assumptions on h, q?, the density w.r.t. the Lebesgue measure of y; has the same
support as pp. We denote by supp(pp) the support of py. We consider the following assumption.

Assumption 1. We have that for any t € [0,1], g(t) = g(0) and f(t,z) = —yox with vo > 0. Assume that po
has bounded support, i.e. there exists R > 0 such that supp(pg) C B(0, R) with B(0, R) the ball with center 0. In
addition, assume that h is Lipschitz.
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Then, we have the following proposition.
Proposition 2. Assume Then, we have that for any 8 > 0, y? € supp(po)-

Proof. This directly applies to the results of (Pidstrigach||2022)). First, we have that (Pidstrigach} 2022, Assumption
1, Assumption 2) are satisfied using (Pidstrigach}|2022| Lemma 1) and the second part of (Pidstrigachl [2022}
Theorem 2). We conclude using the first part of (Pidstrigach} 2022} Theorem 2). O

In Proposition we show that the guided reconstructed scheme used for warm-up @ cannot discover minimizers
outside the support of pg. In Proposition [4) we will show that we concentrate on the minimizers inside the support
of pg under additional assumptions.

Next, we make the following assumption, which is mostly technical. We denote qf the distribution of yf for any
t € [0,1]. We also denote (Pfft)te[o,l] = (qf)te[o,l].

Assumption 2. We have that h € C*(R% R). In addition, C > 0 exists such that for any x € R?, we have a.s.
[ Jo (WY () — W (0)lt] < C, (8)

with dzy = {f, — g2V log p,)dt + dwy, zg = =, Wy = (Vlogp?, Vh) + Ah and B; = S(1 —t). Fort € [0,1] and
r€R?
Vi = div(f; — g?Vlogp:), W/ = (Vh,Viegp]) + Ah.

Assume that V and WP are continuous and bounded on [0,1] x R?. Assume that (p;)iecpo,1) and (pf)te[o’l} are
strong solutions to their associated Fokker-Planck equations.

We do not claim that we verify this hypothesis in this paper. Proving is out of the scope of this work, and we
mainly use it to 1) control high-order terms and 2) provide sufficient conditions to apply the Feynman-Kac theorem
(Oksendal| |2013, Theorem 7.13) and the Fokker-Planck equation. The bound in controls the regularity of the
W/ (z;). Given that (under some mild regularity assumption), (W, (zt))tejo,1) satisfies a Stochastic Differential

Equation we expect that E[||(W/ (z¢) — W (20))|] < CV/% for any t € [0,1] and some constant C' > 0 (independent
of t). Therefore, we get that is true in expectation under some regularity assumption ( a. Ah is Lipschitz.
bThe diffused distribution p; is smooth with bounded derivatives.). We conjecture that the almost sure bound we
require is unnecessary and that moment bounds should be enough. We leave this study for future work.

Proposition 3. Assume For any x € R?, let f)g(x) be given by
P () = po() expllog(Bo) {Ah(x) + (Vlogpg (), Vh(x))}],
where pg is the distribution of yg and By is the inverse temperature at the end of the process.
Then there exists Co > 0 such that for any x € R?
(1/Co)io () < g (z) < Copy ().

Proof. First, for any ¢ € [0, 1] we denote p; the density of x; where (x¢):c[0,1] is given by . Similarly, we denote

th the distribution of yf for any 79 > 0 and ¢ € [0,1]. Finally, we denote (pf_t)te[o,u = (qf)te[o’” for any 79 > 0.
In what follows, we fix 5 > 0. Using we have that for any ¢ € [0, 1]

Opr = —div(fepe) + (97/2) Aps.

Therefore, we have that for any ¢ € [0, 1]

Orpy + div(fipe) — (QE/Q)APt = 0.

This can also be rewritten as

Ope + (fe — 9iV1og py, Vipe) + (97 /2) Apy + div(fy — g7 V1og pr)pe = 0, 9)

where we have used that div(V log p;p;) = Ap;. Similarly, we have that

atqtﬁ = —div({—fi_¢ + g%—tVIngl—t - ﬂl_ch}qf) + (gf—t/z)AQtﬁ-
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‘We have that
O = div({—fi + g7 Vlogp, — B Vh}p]) — (97/2)Apy.

This can also be rewritten as
Oipf + (fr — 97V logp/, Vp/) + div(fy — g7V logpi)p; + (97 /2)Ap; + div(8,Vhp;) = 0. (10)
Finally, this can be rewritten as
0ipy + (fe — g7V logpy, VD) + (97/2)Ap{ + div(fe — g7V logpe)p] + B{(Vh, Viogp) + Ah}p] = 0.
In what follows, we denote
pe=fi—giVilogp,,  Vi=div(fi — giVlegp:), W/ =(Vh,Viogp)+ Ah. (11)
Hence, using we have
op; + (us, Viogpl') + (g7 /2)Ap] + Vip{ + BW ] = 0. (12)

Similarly, using @ we have
Opt + (e, Vog pr) + (97 /2) Api + Vipr = 0. (13)

Therefore, combining , and (Oksendal| 2013, Theorem 7.13) we get that for any x € R?
po(w) = Elexpl [y Vi(z:)dtpr(zr) | 20 = al,

with dz; = p:dt + gsdw; and zp = z. Similarly, combining , and (Oksendal| 2013} Theorem 7.13) we get
that for any = € R?

pg(x) = E[exp[fo1 Vi(z)dt] exp[fo1 ﬁth(zt)dt]pT(zT) | zo = x]. (14)
Using , we have that
Jo BWE (z)dt = [y B{(Vh, Vlogp) + Ah}(z)dt.

Hence, we have
Jo BWY (20)dt = log(Bo){(Vh, Vlog pg) + Ah} (7o) + [y Be(W{ (2e) = W (20))dt.
Using we have that
~C < [y BWE (z)dt —log(Bo) {(Vh, V1ogpl) + Ah}(zo) < C.
Hence,
~C + log(Bo){(Vh, Viogpi) + Ah}(z0) < [y BiW/ (2)dt < C + log(Bo){(Vh, Viogpi) + Ah}(zp)
Combining this result with we get that for any z € R?
po () < Elexplfy Vi(z)dtpr (zr) | 20 = a] expllog(Bo){{Vh, Viogp{ + Ah)}(x)] exp|C]
= po(z) expllog(Bo){(Vh, Vlog pg + Ah)}(x)] exp[C].
Similarly, we have for any = € R?
po () = po(x) expllog(Bo) {{Vh, Vlog py) + Ah}(x)] exp[—C],

which concludes the proof. O

In Proposition |3| we show that the output distribution of the warm-up process is upper and lower bounded by a

product of experts comprised of (i) pp which ensures the feasibility conditions (ii) exp[log(ﬂg)WOﬂ ] related to the

optimization of the objective. While Proposition |3[gives an explicit form for pg , it does not provide insights on

the properties of this distribution. However, we can still infer some limiting properties.
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Proposition 4. If 2* is a local strict minimizer of h in the support of py then limg o pg(x*) =+4o00. Ifz* is a
local strict minimizer of h not in the support of po then limg, pg (z*) =0.

Proof. The case where z* is not in support of pq is trivial using Proposition We now assume that x* is in the
support of pg. Using Proposition and that Vh(z*) = 0 and Ah(z*) > 0 since the local minimizer z* is strict,
we get that limg, pg (z*) = 400, which concludes the proof. O

In particular, Propositionshows that the limit distribution of y? concentrates around the minimizers of h,
which is the expected behavior of increasing the inverse temperature. What is also interesting is that we only
target the minimizers of h, which are inside the support of py. This is our primary goal, which is constrained
optimization of A.

I Experiment Details

I.1 Computing Infrastructure

System: Ubuntu 18.04.6 LTS; Python 3.9; Pytorch 1.11. CPU: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz.
GPU: GeForce GTX 2080 Ti.

1.2 Synthetic Branin Experiment

We consider the commonly used Branin function as a synthetic toy example
that takes the following form (illustrated in Figure: N -

f(zy,22) = alzy — ba? + cxy —7)% 4 5(1 — t)cos(z1) + s,

_ _ 51 ._5 . _ _ _ 1
where a =1,b= 25, c=2,r=0,s=10,1 = .

The Branin function f(z1,23) has three global minimas located at points
(—m,12.275), (m,2.275), and (9.42478,2.475) with a value of 0.397887.

Dataset details. We curate 6,000 data points by sampling uniformly in
an ellipse region with center (—0.2,7.5) and semi-axis lengths (3.6, 8.0) as
training data (the blue region in Figure. It is tilted counterclockwise by 25
degrees, ensuring that it covers two minimizers of the function: (—m,12.275)
and (7,2.275). It is worth noting that sampling points (x1,x2) to construct
the training dataset are irrelevant to the objective value f(x1,x2). For the experiment with additional known
constraints, we introduce two constraints zo < %wl + 1—25 and zo < —%xl + 15 (the pink region in Figure to
further narrow down the feasible solution to (7,2.275). We split the dataset into training and validation sets by
9:1.

Figure 5: Branin function.

Implementation details. We build the score network sy of the diffusion model with a 2-layer MLP architecture
with 1024 hidden dimensions and ReLU activation function. The forward process is a Variance Preserving
(VP) SDE (Song et al. 2020). We set the minimum and maximum values of noise variance to be 0.01 and 2.0,
respectively. We employ a fixed learning rate of 0.001, a batch size of 128, and 1000 epochs for model training.
At test time, we sample 500 candidate solutions. We use a constant inverse temperature 5 = 5 for the Boltzmann
distribution induced by the objective function. For the distribution induced by the additional known constraints,
we set 5 = 10.

1.3 Offline Black-box Optimization

Dataset details. DesignBench (Trabucco et al.,|2022) is an offline black-box optimization benchmark for real-
world optimization tasks. Following (]Krishnamoorthy et al.L |2023[), we use three continuous tasks: Superconductor,
D’Kitty Morphology and Ant Morphology, and three discrete tasks: TFBind8, TFBind10, and ChEMBL.
Consistent with (]Krishnamoorthy et al.L |2023[), we exclude NAS due to its significant computational resource
demands. We also exclude Hopper as it is known to be buggy (see Appendix C in (Krishnamoorthy et al.| [2023)).
We split the dataset into training and validation sets by 9:1.
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e Superconductor: materials optimization. This task aims to search for materials with high critical temperatures.
The dataset contains 17,014 vectors with 86 components representing the number of atoms of each chemical
element in the formula. The provided oracle function is a pre-trained random forest regression model.

e D’Kitty Morphology: robot morphology optimization. This task aims to optimize the parameters of a D’Kitty
robot, such as size, orientation, and location of the limbs, to make it suitable for a specific navigation task.
The dataset size is 10,004, and the parameter dimension is 56. It uses MuJoCO (Todorov et al.}|2012), a
robot simulator, as the oracle function.

e Ant Morphology: robot morphology optimization. Similar to D’Kitty, this task aims to optimize the
parameters of a quadruped robot to move as fast as possible. It consists of 10,004 data, and the parameter
dimension is 60. It also uses MuJoCo as the oracle function.

e TFBind8: DNA sequence optimization. This task aims to find the DNA sequence of length eight with
the maximum binding affinity with transcription factor SIX6 REF R1. The design space is the space
of sequences of nucleotides represented as categorical variables. The size of the dataset is 32,898, with a
dimension of 8. The ground truth serves as a direct oracle since the affinity for the entire design space is
available.

e TFBind10: DNA sequence optimization. Similar to TFBind8, this task aims to find the DNA sequence of
length ten that has the maximum binding affinity with transcription factor SIX6 REF R1. The design
space consists of all possible designs of nucleotides. The size of the dataset is 10,000, with a dimension of 10.
Since the affinity for the entire design space is available, it uses the ground truth as a direct oracle.

e ChEMBL: molecule activity optimization. This task aims to find molecules with a high MCHC value when
paired with assay CHEMBL3885882. The dataset consists of 441 samples of dimension 31.

Baselines. We compare with eight baselines on DesignBench tasks. The results of all the baselines are from
(Krishnamoorthy et al.|2023). Gradient ascent learns a surrogate model of the objective function and generates
the optimal solution by iteratively performing gradient ascent on the surrogate model. CbAS learns a density
model in the design space coupled with a surrogate model of the objective function. It iteratively generates
samples and refines the density model on the new samples during training. GP-qEI fits a Gaussian Process on
the offline dataset. It employs the quasi-Expected-Inprovement (qEI) acquisition function from Botorch (Baladat
et al.| [2020) for Bayesian optimization. MINS learns an inverse map from objective value back to design space
using a Generative Adversarial Network (GAN). It then obtains optimal solutions through conditional generation.
REINFORCE parameterizes a distribution over the design space and adjusts this distribution in a direction
that maximizes the efficacy of the surrogate model. COMS learns a conservative surrogate model by regularizing
the adversarial samples. It then utilizes gradient ascent to discover the optimal solution. CMAES enhances a
distribution over the optimal design by adapting the covariance matrix according to the highest-scoring samples
selected by the surrogate model. DDOM learns a conditional diffusion model to learn an inverse mapping from
the objective value to the input space.

Implementation details. We build the score network sg using a simple feed-forward network. This network
consists of two hidden layers, each with a width of 1024 units, and employs ReLU as the activation function. The
forward process is a Variance Preserving (VP) SDE (Song et al.||2020). We set the noise variance limits to a
minimum of 0.01 and a maximum of 2.0.

For the surrogate models, we explore various network architectures tailored to different datasets, including Long
short-term memory (LSTM) (Hochreiter and Schmidhuber||1997), Gaussian Fourier Network, and Deep Kernel
Learning (DKL) (Wilson et al.;|2016bja). LSTM network uses a single-layer LSTM unit with a hidden dimension
of 1024, followed by 1 hidden layer with a dimension of 1024, utilizing ReLLU as the activation function. In the
Gaussian Fourier regressor, Gaussian Fourier embeddings (Tancik et al.;|2020) are applied to the inputs x and t.
These embeddings are then processed through a feed-forward network with 3 hidden layers, each of 1024 width,
utilizing Tanh as the activation function. This regressor is time-dependent, and its training objective follows the
method used by (Song et al.|[2020) for training time-dependent classifiers in conditional generation. For DKL, we
use the ApproximateGP class in prtorc which consists of a deep feature extractor and a Gaussian process
(GP). The feature extractor is a simple feed-forward network consisting of 2 hidden layers with a width of 500
and 50, respectively, and ReLLU activations. The GP uses radial basis function (RBF) kernel.

"https://docs.gpytorch.ai/en/stable/_modules/gpytorch/models/approximate_gp.html#ApproximateGP
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We use a fixed learning rate of 0.001 and a batch size of 128 for both the diffusion and surrogate models. During
testing, we follow the evaluation protocol from the (Krishnamoorthy et al.|[2023), sampling 256 candidate
solutions. We apply different annealing strategies for different datasets. Specifically, we apply exponential
annealing for TFBind8, superconductor, D’Kitty, and ChEMBL. The exponential annealing strategy is defined
as B(T) = Pmax|[l — exp(—100(T — 7))], where 7 = T — t, and a constant S for Ant and TFBind10. Though
exponential annealing usually exhibits better performance, we leave the exploration of exponential annealing on
TFBind10 and D’Kitty for future work due to time limit. The step size At is 0.001 for the first stage, and 0.0001
for the second stage.

Detailed hyperparameters and network architectures for each dataset are provided in Table

Annealing strategy  PBmax  Surrogate model

TFBind8 Exponential 200  Gaussian Fourier
TFBind10 Constant 20 Gaussian Fourier
Superconductor Exponential 100  Gaussian Fourier
Ant Exponential 30 Gaussian Fourier
D’Kitty Constant 3ed DKL
ChEMBL Exponential 100 LSTM

Table 5: Implementation details on design-bench. (.., is the value of 5 at the end of the annealing process.

1.4 Multi-objective Molecule Optimization

Dataset details. We curate the dataset by encoding 10000 molecules (randomly selected) from the ChEMBL
dataset (Gaulton et al.,|2012) with HierVAE (Jin et al.,|2020), a commonly used molecule generative model
based on VAE, which takes a hierarchical procedure in generating molecules by building blocks. Since validity is
important for molecules, we ensure HierVAE can decode all the randomly selected encoded molecules. We split
all the datasets into training and validation sets by 9:1.

Oracle details. We evaluate three commonly used molecule optimization oracles including synthesis accessibility
(SA), quantitative evaluation of drug-likeness (QED) and activity again target GSK3B from RDKit (Landrum
et al.| 2020) and TDC (Huang et al.||2021). All three oracles take as input a SMILES string representation of a
molecule and return a scalar value of the property. The oracles are non-differentiable.

Implementation details. We build the score network sy of the diffusion model using a 2-layer MLP architecture.
This network features 1024 hidden dimensions and utilizes the ReLU activation function. The forward process
adheres to a Variance Preserving (VP) SDE proposed by (Song et al.||2020). We calibrate the noise variance
within this model, setting its minimum at 0.01 and maximum at 2.0.

For the surrogate model of the objective function, we use the ApproximateGP class in prtorc which consists
of a deep feature extractor and a Gaussian process. The feature extractor is a simple feed-forward network
with two hidden layers, having widths of 500 and 50, respectively, and both employ ReLU activation functions.
Regarding model optimization, we apply a fixed learning rate of 0.001 for the diffusion model and 0.01 for the
surrogate model. Additionally, we set a batch size of 128 and conduct training over 1000 epochs for both models.
For the sampling process, we use a consistent inverse temperature 3 = 10* for all the three objectives. The step
size At is 0.001 for the first stage, and 0.0001 for the second stage.

We sample 1000 candidate solutions at test time for all the methods. For DDOM (Krishnamoorthy et al., |2023),
we use their implementation |°| For other baselines, we use the implementations provided by DesignBenc We
tune the hyper-parameters of all the baselines as suggested in their papers.

For derivative-free optimization, the number of iterations is set to 100 for both the evolutionary algorithm and
D1rrOPT. The number of particles for all methods remains the same as before, i.e., 1000.

“https://docs.gpytorch.ai/en/stable/_modules/gpytorch/models/approximate_gp.html#ApproximateGP
“https://github.com/siddarthk97/ddom
‘https://github.com/brandontrabucco/design-bench
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train_loss

Figure 6: Training loss of the surrogate objective on Ant dataset
J Analysis on Ant Dataset

As shown in Table D1rFOPT can only achieve subpar performance on the Ant dataset. This underperformance
is primarily due to the difficulty in training the surrogate objective function. An illustration of this challenge is
provided in Figure@ where the training loss of the surrogate objective is displayed. The training loss fluctuates
throughout the training process. Although we investigated different network architectures, the issue still remains.
Building an effective surrogate model for this dataset may require a more sophisticated architecture design. We
leave this for future work.

K Ablation Studies

Superconductor TFBind8
Best Baseline 103.600 £8.139  0.981 4+ 0.010
Only Stage 1 112.038 £6.783  0.984 £+ 0.012
Only Stage 11 92.432 £ 8.635 0.951 £ 0.028
Stage I + Stage II 113.545+5.322  0.987 £0.014
Stage I + Stage IT + MH  114.945 4+ 3.615 0.989 + 0.021

Table 6: Ablation study on the two-stage sampling.

Impact of two-stage sampling. Table@shows the impact of two-stage sampling on performance. Our findings
reveal that even after the initial stage, DIFFOPT outperforms the top-performing baseline on both datasets.
Relying solely on Langevin dynamics, without the warm-up phase of guided diffusion, results in significantly
poorer results. This aligns with our discussion in Section where we attributed this failure to factors such as
the starting distribution, the schedule for step size adjustments, and the challenges posed by undefined gradients
outside the feasible set. Integrating both stages yields a performance improvement as the initial stage can provide
a better initialization within the data manifold for the later stage (Theorem . Adding the MH correction step
further enhances results, leading to the best performance observed.

Impact of annealing strategies. We study the influence of different annealing strategies for 5 during the guided
diffusion stage, focusing on the superconductor and TFBind8 datasets. We explore three strategies: constant,
linear annealing, and exponential annealing. Figure a) presents the performance across various diffusion steps.
We find that our method is not particularly sensitive to the annealing strategies. However, it is worth noting that
exponential annealing exhibits a marginal performance advantage over the others.

We also investigate how the value of § at the end of annealing, denoted as Bnax, affects model performance
in Figure b). We find that increasing fBpnax initially leads to better performance. However, beyond a certain
threshold, performance begins to decrease. It is noteworthy that the optimal value varies across different
annealing strategies. Particularly, at S, = 0, the model reverts to a pure diffusion process, exhibiting the lowest
performance due to the lack of guidance from the objective function.

Sample efficiency We explore the sample efficiency of DIFFOPT at both training and testing stages. Figure
shows the performance of various methods versus the ratio of training data on Superconductor, TFBind8 and
multi-objective molecule optimization. As we can see, on all the three datasets, DiffOPT can outperform all.

Our method is also sample efficient during inference. Figure@shows the performance versus number of samples
at inference stage. Notably, on both Superconductor and TFBind8, Diff OPT consistently outperforms all the
baseline methods for various sample sizes during inference.
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Figure 7: Impact of annealing strategies and Bnax in the guided diffusion stage. Bmax is the value of 8 at the end
of annealing.
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Figure 9: Impact of the number of samples at testing time.

It is also important to highlight that our method consistently achieves much greater sample efficiency than DDOM
at both training and inference stages, despite both approaches leveraging diffusion models.



