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Abstract. Alaskan fishing communities are heavily impacted by income 
variability, where studies suggest benefits to individuals and communi-
ties through diversification by participating in multiple fisheries. How-
ever, Alaska uses a limited entry permit system, allowing only a fixed 
number of individuals to participate in each fishery. This motivates a 
resource allocation problem to determine how to allocate fishing permits 
to minimize a global measure of income variability. Further, experts and 
policy makers are interested in what interventions are most effective for 
enabling diversification. In collaboration with Alaskan fisheries experts, 
we developed a quadratic constrained resource allocation problem to 
reduce community-level income variability and model financial and voca-
tional training interventions. Using over 20 years of fisheries data, we 
demonstrate an integer programming approach can solve instances up 
to the state level, involving over 10,000 permits and 170 communities. 
The model shows the potential for a 30–75% reduction in community-
level average fishery income variance and provides a flexible framework 
for resource managers to explore the impacts of financial and vocational 
training interventions to support natural resource portfolio adaptation. 

Keywords: resource allocation · discrete optimization · quadratic 
integer programming · Alaskan fisheries · resource management 

1 Introduction 

Fisheries play important economic and social roles worldwide, including being 
responsible for more than 250 million primary livelihoods and being the main 
source of protein for over 20% of the global population [ 5, 10, 24]. In Alaska, 
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seafood is the largest private sector employer, where for many communities, 
fisheries are the primary contributor to the local economy [ 14]. However, fishery 
incomes can be highly variable, where low-income years can be devastating for 
small communities. For example, in 2022 a crash in the snow crab fishery led the 
island of St. Paul to declare a ‘cultural, economic, and social emergency’, with tax 
revenue no longer able to cover emergency medical services [ 18]. As some fisheries 
are negatively correlated, income variance can be reduced through participation 
in multiple fisheries. However, obtaining new permits, gear, and vocational skills 
pose a significant barrier to entry. In this work, we explore the potential to reduce 
community-level revenue variance for over 170 fishing communities in Alaska, 
formulating a new constrained resource allocation problem and modeling the 
potential benefits of the interventions of permit financing and vocational skills 
training. The problem was studied working closely with fisheries experts in both 
academia and the Alaskan fisheries management community. 

Alaska is the largest seafood producer in the United States, accounting for 
over a third of the revenue from the $5.9 billion industry [ 8]. Alaskan fisheries are 
also extremely diverse, with over 50 active commercial fisheries and operations 
ranging from individual owner-operated businesses to large vertically integrated 
catcher-processor enterprises [ 14]. Beyond economic impacts, income variability 
can have negative effects on community structures and populations’ physical and 
mental health [ 8]. While prior work suggests income variability can be reduced 
through diversification by participating in multiple fisheries [ 15, 23], this has not 
considered the problem at the system-level, taking into account that Alaska’s 
limited entry commercial permit system only allows a fixed amount of partici-
pation in each fishery. Further, experts and policy makers want to understand 
how to maximize the benefits of potential interventions, such as financing to 
help fisherman with limited collateral receive loans to purchase new permits 
and equipment or vocational training to develop the skills to participate in new 
fisheries. 

In addition to being the largest fisheries system in the United States, Alaskan 
fisheries are extremely data-rich, with over 40 years of data on fishing permit 
ownership, sales, and revenue. This provides a unique opportunity to understand 
economic patterns and study the potential for interventions through data-driven 
approaches. 

Prior Work. While prior work suggests that income variability can be reduced 
through fishery diversification, to our knowledge, we are the first work to 
optimize at the system-level. Retrospective analyses have found that fishery 
income volatility decreases with portfolio diversity at both the individual and 
community-level [ 15, 23]. A number of strategies have been investigated to miti-
gate fisheries risk [ 12, 22] and several recent papers have characterized the risk-
return frontier for fishery portfolios [ 17, 25]. However, these works do not opti-
mize over the full system and thus do not take into account that there is a limited 
amount of catch that can be sustainably caught from each fishery. Such efforts 
are critical for both understanding the potential benefits of diversification as a 
practical fisheries risk management strategy and for identifying policy levers to 
support diversification.
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Although the permits owned by each community can be seen as a portfo-
lio, this problem differs from standard portfolio optimization problems in that 
we are optimizing portfolios for multiple individuals with constraints ensuring 
that all permits are allocated [ 16]. Thus, the problem is more closely related 
to resource allocation problems, in which a fixed amount of resources must be 
divided among groups or tasks to minimize a cost function [ 9]. Integer and 
mathematical programming methods have been applied to a variety of discrete 
resource allocation problems including proportional division for parliamentary 
systems, virtual machine placement in cloud infrastructure, and in multi-carrier 
communication systems [ 11, 19, 21]. However, minimizing a measure of variance 
complicates our problem by introducing a quadratic objective, where non-linear 
resource allocation problems have received less attention [ 6]. 

Paper Contribution. The contributions of our paper are as follows: 

1. In collaboration with fisheries experts, we formulate a resource allocation 
problem to study the potential for reducing community-level income variabil-
ity across Alaska through fishery diversification and model permit financing 
and vocational training interventions. 

2. Using integer programming approaches, we are able to optimize over instances 
as large as the full state, including over 170 communities and over 10,000 
individual permits from over 50 fisheries. 

3. Our results show that an overall 30% average variance reduction is possible 
through financial incentives alone and this variance can be further reduced 
by over 75% by combining financial and vocational training interventions, 
revealing new opportunities for fisheries and optimization research. 

Paper Organization. The remainder of the paper is organized as follows. Section 2 
formally defines the optimization problem and presents a quadratic integer pro-
gramming formulation and its linearization. Section 3 describes data process-
ing and instance generation, the experimental setup, and experimental results. 
Section 4 discusses the optimization performance and implications of the solu-
tions. Finally, Sect. 5 summarizes our contribution and outlines future research 
directions. 

2 Modeling Framework 

We now provide a more detailed description of the Alaska’s commercial fishery 
permit system and then formally define the optimization problem. This anal-
ysis considers all commercial limited entry permits managed by the Alaskan 
Commercial Fisheries Entry Commission. Limited entry permits are owned by 
individuals and allow them to fish for a specific . {species, location, and gear 
type. } triplet combination. For example, a permit may allow an individual to 
fish for salmon in Cook Inlet using a drift gillnet, while different permits would 
be needed to fish for salmon in the same location using a set gillnet or in Prince
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William Sound using the same gear. Permits of the same type are interchange-
able, with the same potential for revenue. However, quotas vary from year to 
year, which – combined with factors such as changes in market price – can create 
highly variable revenue. 

We define portfolios at the community-level using geographic locations, where 
a permit is considered part of a community’s portfolio if it is registered to an 
address in that geographic location. While permits are owned by individuals, 
diversification and interventions often have impacts at the community-level. For 
example, fishing income is often reinvested into the community through the 
purchase of goods and services, leading to multiple individuals and businesses 
being impacted by low-income years. Communities are also an important source 
of knowledge, where skills can be transferred within a community. 

Our goal is to determine an allocation of permits that minimizes community-
level revenue variance, subject to feasibility constraints. First, we want to ensure 
that expected community revenues do not vary too much from their initial values. 
Second, Alaska is geographically vast, where the travel burden to use a permit 
can range from being able to fish within a community to requiring over 2,000 km 
of travel. Thus, we characterize a travel cost associated with each permit based 
on the location of fishing grounds and its community of origin. Finally, we want 
to understand the impact of two potential interventions: (i) financing, to allow 
the purchase of new permits and (ii) vocational training, to allow the usage of 
new permit types. While permit prices can be obtained from historical sales 
data, it is difficult to assign a financial cost to vocational skills training. Instead, 
we assign skills acquisition costs for the relative difficulty of acquiring the skills 
to use a permit assuming one previously fished another permit, which is then 
generalized to a community-level skills acquisition cost by taking the minimum 
skills acquisition cost across all permit types initially owned by a community. 
By assigning a vocational training budget, we can compare the relative impact 
of permit financing and vocational training investments. 

2.1 Mixed Integer Quadratic Program Formulation 

Let . C and . P be the sets of communities and permit types respectively, where a 
permit type is defined by a species-location-gear triplet (see Table 1 for all param-
eter definitions). For each permit .p ∈ P , let  .Price(p) denote its price, . Rev(p)
denote its expected annual revenue, .Var(p) denote its variance, and . Cov(p, p′)
denote its covariance with .p′ ∈ P . For a community .c ∈ C, and permit .p ∈ P , 
let .dcp denote the distance that community . c must travel to use permit . p. Let  
.s : p1, p2 → R be a function representing the difficulty of obtaining the skills 
to transition from fishing permit .p1 to permit .p2 and .Pc denote the set of per-
mits initially owned by community . c. We can then define the community-level 
vocational skills transition function, .t : c, p → R as 

.t(c, p) = min
p′∈Pc

s(p, p′). (1) 

Further, let .xpc be an integer decision variable representing the number of 
permits of type . p in community . c and .x0

pc be a constant for the number of
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permits of type . p initially in community . c. We can define the community level 
expected revenue and variance as 

.Rev(c) =
∑

p∈P Rev(p) · xcp, (2) 

Var(c) =
∑

p∈P

[
Var(p) · x2 

cp +
∑

p′∈P,p �=p′ Cov(p, p′) · xcpxcp′
]
. (3) 

where .Var(c0) and .Rev(c0) denote the values for the initial permit configura-
tions defined by the .x0

pc values. Finally, let .vc be a non-negative continuous 
decision variable used to enforce the permit financing constraint. By bounding 
these variables below by the cost difference between a community’s initial and 
optimized portfolios, we can limit the total value of permit purchases that need 
to be supported by financing. 

Using these definitions, we can state the problem by the mixed integer 
quadratic program (MIQP) 

.min
1

|C|
∑

c∈C

Var(c)
Rev2(c0)

(4) 

s.t.
∑

c∈C xpc =
∑

c∈C x
0 
pc ∀p ∈ P (5)

∑
p∈P xpc =

∑
p∈P x

0 
pc ∀c ∈ C (6)

∑
p∈P Rev(p) · xpc ≥ (1 − φ) · Rev(c0) ∀c ∈ C (7)

∑
p∈P dpcxpc ≤ (1 + η) · ∑

p∈P dpcx
0 
pc ∀c ∈ C (8)

∑
p∈P Price(p) · (x0 

pc − xpc) ≤ vc ∀c ∈ C (9)
∑

c∈C vc ≤ ψ (10)
∑

p∈P

∑
c∈C tpcxpc ≤ ρ (11) 

vc ≥ 0 ∀c ∈ C (12) 
xpc ∈ Z≥0 ∀p ∈ P, c ∈ C (13) 

We minimize the average community variance over squared revenue ratio as 
an approximation of the coefficient of variation (CV), which is preferable to the 
total variance as the impact of revenue variance is relative to a community’s 
income. For example, a standard deviation in revenue of $100,000/year is much 
more impactful for a community with an expected annual revenue of $100,000 
than one of $1 million. Constraints (5) and  (6) capture that the number of 
permits per fishery and community is fixed. Fixing the number of permits per 
community ensures roughly the same number of livelihoods remain in each com-
munity. However, we test relaxing this constraint. Constraints (7) and  (8) ensure 
that community-level revenue and travel distance remain within fixed propor-
tions of their initial values (. φ and . η, respectively). Constraints (9) and  (10) 
ensure the total community-level change in permit portfolios requiring financing 
does not exceed . ψ. Constraint (11) ensures that the total vocational skills train-
ing costs do not exceed . ρ. Finally, constraints (12) and  (13) define variables’ 
characteristics.
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2.2 Linearized Formulation 

To avoid a quadratic objective, we can test a straight-forward linearization 
by considering each individual permit instead of permit type and introduce 
binary variables tracking whether pairs of permits are in the same commu-
nity. Let .P ′ be the set of all individual permits and extend the definitions of 
.Price(p),Rev(p),Var(p), and .Cov(p, p′) to individual permits. Let .ypc be a binary 
decision variable for whether permit . p is owned by community . c and .wpp′c be a 
binary decision variable for whether permits . p and .p′ are both owned by com-
munity . c. Further, extend the definitions of .Rev(c) and .Var(c) to individual 
permits, namely 

.Rev(c) =
∑

p∈P ′ Rev(p) · ypc, (14) 

Var(c) =
∑

p∈P ′

[
Var(p) · ypc +

∑
p′∈P ′,p′ �=p Cov(p, p′) · wpp′c

]
. (15) 

We can state the resulting mixed binary linear program (MBLP) as 

.min
1

|C|
∑

c∈C

Var(c)
Rev2(c0)

(16) 

s.t. wpp′c ≥ ypc + yp′c − 1 ∀c ∈ C, p, p′ ∈ P ′ (17)
∑

c∈C ypc =
∑

c∈C y
0 
pc ∀p ∈ P (18)

∑
p∈P ′ ypc =

∑
p∈P ′ y0 

pc ∀c ∈ C (19)
∑

p∈P ′ Rev(p) · ypc ≥ (1 − φ) · Rev(c0) ∀c ∈ C (20)
∑

p∈P ′ dpcypc ≤ (1 + η) · ∑p∈P ′ dpcy
0 
pc ∀c ∈ C (21)

∑
p∈P ′ Price(p) · (y0 

pc − ypc) ≤ vc ∀c ∈ C (22)
∑

c∈C vc ≤ ψ (23)
∑

p∈P ′
∑

c∈C tpcypc ≤ ρ (24) 
vc ≥ 0 ∀c ∈ C (25) 
ypc, wpp′c ∈ {0, 1} ∀p, p′ ∈ P, c ∈ C (26) 

Constraint (17) connects the binary variables for whether pairs of permits are 
in each community, .wpp′c, to the binary variables for each permit being in each 
community, .ypc. The objective and other constraints remain the same, adapted 
to the binary variables. As discussed further in Sect. 4, this straight-forward 
linearization significantly increases the number of variables and constraints (with 
negative effects on the solvability of the model). 

3 Experiments 

The goal of the experiments is to both evaluate the optimization performance 
of the integer programming methods, in terms of both the optimality gap and 
objective, and to test that our modeling assumptions and interpretations are sup-
ported by the historical data. We test the following assumptions and hypotheses:
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Table 1. Model parameters and sets 

Sets 
.P Set of all permit types 
.P ′ Set of all individual permits 
.C Set of all communities 
Parameters 
.Price(p) Purchase price of permit . p
.Rev(p) Expected annual revenue of permit . p
.Var(p) Annual variance of permit . p
.Cov(p, p′)Annual covariance between permits . p and . p′

.Rev(c) Expected annual revenue of community . c, defined in (2) 

.Var(c) Variance of community . c, defined in (3) 

.dcp Travel distance for community . c to use permit . p

.tcp Transition cost for community . c to acquire permit . p

.φ Maximum proportion of community expected revenue 
change 

.η Maximum proportion of community travel distance change 

.ψ Maximum cost of permit purchases requiring financing 

.ρ Maximum value for vocational training costs across all 
communities 

1. We assume vocational skill transition values capture the difficulty in transi-
tioning between fisheries, so permit acquisitions with a high transition cost 
occur rarely in practice. 

2. We hypothesize permit acquisitions have historically occurred that would 
incur a vocational skills cost in our model. We are interested in the number 
and magnitude of historical actions and how they compare to the distribution 
in the optimized solutions. 

3. We hypothesize all combinations of revenue and variance increase and 
decrease occur in the historical data, including communities experiencing a 
year-to-year decrease in expected revenue and increase in variability. 1 We are 
interested in the distribution of expected revenue and variance changes in the 
historical data and how they compare to the optimized solutions. 

3.1 Data and Instance Generation 

Historical data for 2000–2023 was obtained from the Alaska Commercial Fish-
eries Entry Commission [ 3, 4]. While over 450 permit types were issued over these

1 For example, decreased community level income and increased variability could occur 
if an individual chose to sell a permit, decreasing revenue, while a lower cost permit 
was purchased that increased variance. 
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years, many have low levels of commercial activity or are not exclusively for com-
mercial purposes, such as trials of new permit types and educational permits. 
To focus on active commercial fisheries, each year we included permits where at 
least 25% of all permit owners and a minimum of 10 permit holders reported 
revenue each year over the past five years. This reduced the average number of 
permit types to 52 per year while retaining an average of 96% of revenue. 

Permit sale prices and expected revenue were obtained from CFEC Basic 
Information Tables (BIT), which provide aggregated financial information at 
the permit-level [ 3]. To maintain confidentiality, values are not reported if fewer 
than five permit owners report revenue for a given year. In the rare cases where 
values were needed for a permit with anonymized data, we imputed the missing 
values with the average revenue across all reported years. The raw data provide 
us with a time series to calculate expected revenue and variance. 

As recent performance is of more importance to fisherman than long-term 
trends, we used exponentially weighted calculations for mean revenue and vari-
ance. These calculations require a single parameter, . α, for kernel width which 
determines the amount of weight placed at the start of the time series. For .α = 0, 
we recover the mean and variance of the time series while for .α = 1 the expected 
revenue becomes that of the previous year with no variance. Consulting with 
fisheries experts, we chose .α = 0.25 to place . ∼95% of weight on the previous 
five years. 

We define communities as any geographic location with at least three reg-
istered permits in a given year, resulting in an average of 170 communities per 
year. Initial community portfolios were determined using the annual records in 
the CFEC’s permit registration database [ 4]. Spatial layers were used to deter-
mine centroids for each community and fisheries region, and travel distances 
were calculated as the distance between centroids. Finally, quantitative transi-
tion difficulty scores in .{0, . . . , 10} were assigned to pairs of permits using fishery 
expert ratings of the difficulty of transitioning between each component of the 
species, gear, and location attributes that define a fishing permit type. 

In addition to creating instances based on all communities, we defined 14 
small instances of 4–45 communities based on fishing regions and intermediate 
instances with 6–88 communities based on four larger geographic regions (see 
Fig. 1). Running the model without the vocational skills budget constraint, we 
found the optimal transition cost to be .∼106. To understand the impact of 
different orders of magnitude of vocational skills budget, we tested vocational 
training budgets of 0 and .10i for .i = 2, . . . , 6. We ran initial feasibility tests on 
the 14 small instances using the 2023 data and a vocational skills budget of 1000. 
For the larger regions, we tested instances for the five regions for six vocational 
skills budgets across 24 years, resulting in 720 unique instances. 

3.2 Experimental Configuration 

Both the MIQP and linearized BIP were implemented in Gurobi using gurobipy 
11.0.3. Instances were given a 5 min time limit and an optimality tolerance of 
.10−3 on an Apple M1 processor with 8 GB or RAM running on macOS Sonoma
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Fig. 1. Spatial visualization of instances, where colored polygons indicate regions and 
colored dots indicate communities associated with that instance. Left: Small spa-
tial instances where communities are grouped based on fishing permit regions, where 
instances are defined by a set of communities and their initial permits. Right: Inter-
mediate spatial instances based on geographic regions of Alaska. 

14.5. Additional hour long runs were performed for vocational skills budgets of 
0, .103, and  .106 for the years of 2003, 2013, and 2023. For these runs, we used a 
maximum community-level travel distance increase of 50%, .η = 0.5, maximum  
community-level revenue decrease of 15%, .φ = 0.15, and an exponential scal-
ing with base four for the transition scaling function and relaxed the financing 
constraint, .φ = ∞. Additionally, we tested the sensitivity of the results to the 
maximum-community level distance and revenue change parameters (. η and . φ) 
and the vocational scaling function. 

3.3 Results 

On the small instances, the MIQP significantly outperformed the MBLP. The 
MIQP was able to solve all instances to optimality in under a minute, while the 
MBLP was only able to solve 6/14 in the 5 min time limit (see Table 2). On the 
remaining instances, the MBLP had multiple optimality gaps over 10% and was 
not able to instantiate the largest instance due to exceeding the 8GB of RAM 
allotted. Due to the poor performance of the MBLP, only the MIQP was tested 
on the larger instances. 

For the larger instances, the MIQP was able to solve 50% of instances in the 
5 min time limit, increasing to 64% with a 30 min time limit (see Table 3). For 
the five minute time limit, the average optimality gap ranged from 0.7 to 5.7% 
by region, generally increasing with instance size. As expected, the optimality 
gap also increased with the vocational training budget, increasing from 0.0% to 
7.0%. Performance also varied by year, with instances increasing in difficulty in 
the 2010s from an average gap of around 3% up to 10%. Increasing to a 30 min 
limit, nearly two-thirds of instances were solved to optimality, including over 
half of the statewide instances, and reduced the average optimality gap by over 
60% (see Table 3). 

The optimization was able to reduce the average coefficient of variation by 
34% without any vocational training investment (see Fig. 2). While there was
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Table 2. Instance parameters and comparison of the MIQP and MBLP on the small 
spatial instances, where bold values indicate the best value when comparing the mod-
els. The MIQP was able to solve all instances to optimality in under a minute. In 
comparison, the MBLP was only able to solve 6/14 instances to optimality, with gaps 
as large as 19% on the remaining instances. Further, the MBLP was unable to instan-
tiate the instance with the largest number of ternary variables due to reaching the 
memory limit. .|C|: number of communities, .|P |: number of permit types, .|P ′|: number  
of individual permits. 

Instance.|C|.|P |.|P ′| .|C||P ||P |Runtime (min) Optimality Gap (%) 
MIQP MBLP MIQP MBLP 

W 4 5 25 .2.5× 103 0.00 0.00 0.0 0.0 
L 4 4 46 .8.5× 103 0.00 0.00 0.0 0.0 
X 8 7 191 .2.9× 105 0.00 0.03 0.0 0.0 
P 21 7 128 .3.4× 105 0.00 5.00 0.0 0.0 
Z 7 7 226 .3.5× 105 0.00 5.00 0.0 0.0 
M 9 5 237 .5.0× 105 0.00 4.09 0.0 0.0 
T 8 7 636 .3.2× 106 0.00 5.00 0.0 1.1 
E 26 5 485 .6.1× 106 0.00 5.00 0.0 10.8 
K 28 7 698 .1.4× 107 0.00 5.00 0.0 19.0 
B 26 7 806 .1.7× 107 0.01 5.00 0.0 7.2 
D 33 4 858 .2.4× 107 0.00 5.00 0.0 2.9 
A 35 8 840 .2.5× 107 0.02 5.00 0.0 10.0 
C 32 5 1053.3.4× 108 0.65 5.00 0.0 2.0 
H 45 26 2762.3.5× 108 0.00 – 0.0 – 

Table 3. Instance parameters and performance of the MIQP on the large instances 
with runtimes of 5 (total of 720 instances) and 30 min (total of 45 instances). Gurobi 
was able to solve half of all instances in 5 min, increasing to nearly two-thirds in 30 min. 
For unsolved instances, gaps ranged from 0.6–4.0% increasing with instance size and 
vocational training budget. .|C|: number of communities, .|P |: number of permit types, 
.|P ′|: number of individual permits. 

Region.|C| .|P |.|P ′| Solved Ratio Runtime Ratio Avg. Gap (%) 
5 30 5 30 5 30 

AI 6 9 139 1.00 1.00 0.00 0.00 0.0 0.0 
BS 88 33 3597 0.54 0.67 0.44 0.38 1.0 0.6 
GOA 47 45 3673 0.42 0.56 0.68 0.47 3.3 2.3 
SE 28 41 4946 0.33 0.44 0.76 0.77 0.7 0.4 
ALL 170 52 12378 0.22 0.56 0.92 0.90 5.7 4.0
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Fig. 2. Analysis of variance reduction. Left: Average community-level coefficient of 
variation (CV) in the optimized solutions for 2023 (blue points) compared to the aver-
age CV before optimization (gray line). Right: Matrix visualizing the proportion of the 
initial average CV of the optimized solutions by transition budget for even years from 
2000–2023. Across years, with virtually no vocational skill investment the average CV 
can be reduced by over 30%. With moderate or intensive vocational skills interventions 
the average CV can be reduced by an average of 50% or 75% respectively. (Color figure 
online) 

some variability across years, 19/24 years experienced at least a 30% reduction 
and all years achieved at least a 22% improvement. For the highest vocational 
skills budget, the average coefficient of variation was reduced by more than 
75% of its initial value, with a 35–60% improvement for intermediate vocational 
training budgets. 

We compared the historical data and the optimized solutions to test our 
hypotheses and modeling assumptions. First, we analyzed community-level rev-
enue and variance changes to understand the distribution of impacts on com-
munities. For the historical data, we considered year-to-year changes, while for 
the optimization we considered the difference between the initial and optimized 
solutions. Plotting the ratio of expected revenue versus the standard deviation in 
revenue by community, we can visualize the distribution of community outcomes 
(see Fig. 3). Averaging from 2001–2023, the optimized solutions increased the 
number of communities experiencing a variance decrease from 41% to 83–90%, 
increasing with the vocational skills budget, and increase the average magnitude 
of decrease from under 10% to 45–55%. Further, the optimization increased the 
number of communities experiencing the best outcome of increased expected rev-
enue and decreased expected variability from 6% to 11–13% and decreased the 
proportion of communities experiencing the worst outcome of decreased expected 
revenue and increased variability from 3% to 1%. However, while historically the 
most wealthy communities remained near the origin in the optimized solutions 
they tend to end up in the first quadrant, experiencing an increase in revenue 
and variability. 

Second, we analyzed the actions taken by each intervention. For the voca-
tional skills budget, we can assign transition costs to historic data based on 
year-to-year permits transfers, determining a budget for historical actions. On
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Fig. 3. Analysis of the optimized solutions. Left and center: Change in expected rev-
enue and standard deviation in revenue by community from the historical data from 
2022 to 2023 (left) and from the 2023 historical data to the optimized solution for a 
transition budget of 1,000 (center). The optimized solution results in more commu-
nities experiencing a variance decrease and larger magnitude decreases. Additionally, 
more communities experience higher revenue and lower variance and fewer experience 
lower revenue and higher variance. Right: Assigning vocational skills costs to histor-
ical transitions, we can compare the vocational skills budget that would have been 
required for historical actions to the optimization results. Historically, few high cost 
actions occurred but they dominated the vocational training budget. In contrast, the 
optimized solutions consist almost entirely of low (level 1–3) or mid-cost actions (level 
4–6) which dominate both the number and cost of actions. 

average, the transition budget needed for historical year-to-year changes was 
37,000 units but only consisted of 41 actions, i.e., cases where permits were 
acquired at a transition cost. In contrast, the optimized solutions with a tran-
sition budget of 100 units resulted in an average of 12 actions and a transition 
budget of 10,000 units resulted in an average of 344 actions. While historically, 
only an average of 6 actions occurred per year of transition levels 5–10, due 
to the small number of total actions and exponential scaling of the transition 
scaling function, they dominate the transition budget (see Fig. 3). For the opti-
mized solutions, at all budget levels over 70% of actions are level 1–3 (see Fig. 3). 
However, the cost is slowly dominated by the small proportion of higher level 
transitions. For permit financing, we looked at the magnitude and number of 
communities that would require some level of financing. While the total value of 
permits does not change with the optimization, we see community level changes 
to portfolio values. Communities with decreased portfolio value would obtain 
additional one-time revenue through the sale of their permits, while communi-
ties with increased portfolio value would require financing to help purchase new 
permits. In the optimization results, the total value of permits requiring financ-
ing ranged from $92–106 million, increasing with vocational training budget, 
with 28–40% of communities requiring some level of financing. 

Finally, we tested the sensitivity of the results to the community-level revenue 
change and distance change constraints and the vocational skills scaling func-
tion. Fully relaxing the distance constraint only resulted in benefits at the highest 
vocational training budgets (see Fig. 4). Increasing or decreasing the maximum
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Fig. 4. Tests of model sensitivity. Results are shown for 2023, where parameters for 
main runs are shown in blue and the grey line shows the pre-optimization objec-
tive. Left: The model is not highly sensitive to maximum increase in travel distance 
.(η), where fully relaxing the constraint only results in moderate improvements for 
the largest transition budgets. Center: The model is insensitive to the maximum 
community-level revenue decrease (. φ), where objectives are nearly identical for the 
constraint varying from 20% to 1%. Right: Distribution of actions in the vocational 
budget with a quadratic scaling function. Changing the vocational scaling function 
does not change the distribution of actions for extreme budgets, but results in more 
mid-level (level 4–6) actions for intermediate budgets. (Color figure online) 

community-level revenue change up to 20% or as low as 1% only resulted in 
very small changes to the objective, often within the optimality gap (see Fig. 4). 
Finally, changing the vocational skills scaling function does not change the objec-
tive value for the extreme budgets, it does change the distribution of actions. 
Namely, due to the slower scaling of the quadratic function, we see more inter-
mediate level actions (level 4–6), however we continue to see very few of the 
highest cost actions (levels 8–10) (see Fig. 4). 

4 Discussion 

The poor performance and high memory demands of the MBLP arise from the 
ternary variables and corresponding constraints for every individual permit-
permit-community combination. This leads to millions of variables and con-
straints even in small instances due to hundreds of individual permits and tens 
of communities. In contrast, the MIQP could solve some statewide instances 
with over 10,000 permits and 170 communities to optimality. 

The MIQP was able to solve half the larger instances in 5 min and nearly two-
thirds of instances in 30 min, with an average remaining gap of 1.5%. In practice, 
a runtime of 30 min would not be an issue, as a limited number of configurations 
would be tested to inform decision makers for periods of years. Further, gaps of 
a few percent would be tolerable, as solutions would not be implemented exactly 
but instead would be used by decision makers to understand the types and 
magnitudes of changes that could be most effective in lowering community-level 
variance and the potential magnitude of benefit from combinations of permit 
financing and vocational training interventions. The results are promising for
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this application, showing potential community-level reduction of coefficient of 
variation of over 30% with permit financing interventions alone and improve-
ments over 75% with combined financing and vocational skills investments. The 
consistent results across reference years suggests that the model is robust to ini-
tial conditions within the historical range and that Gurobi is able to provide good 
solutions. Further, the sensitivity analyses suggests the results of the model are 
relatively robust to changes in constraint thresholds and the vocational scaling 
function. 

The analysis also supports our assumptions and hypotheses. The vocational 
skills budget analysis found that high transition cost actions occur rarely in 
practice and few transitions occur historically where there has not been concerted 
investment in vocational skills training. It makes sense that there is a background 
level of actions occurring that would incur a transition cost in our model, as there 
is limited capacity in the existing system to overcome these costs. For example, 
permit owners can move between communities or an individual working for an 
existing business can eventually acquire enough skills and capital to start their 
own business. However, the results of the optimization suggest that significant 
benefits could be achieved by facilitating additional vocational training. Key 
differences between the historical and optimized vocational skills budgets are 
the number and kinds of actions. Historically, there were very few cases in which 
permits were acquired at a vocational skill cost, though transitions occurred at 
all cost levels. In contrast, the optimized solutions resulted in significantly more 
actions but at lower budget levels. This suggests that significant diversification 
benefits can be achieved without the need for drastic changes in the fisheries 
that communities participate in. 

The community-level analysis found that historically the distribution of year-
to-year changes includes all outcomes of changes in revenue and variance, with 
the majority of communities experiencing a small improvement to one at the 
cost of the other. In addition to lowering income variation overall, the opti-
mized solutions resulted in significantly more communities experiencing a vari-
ance reduction, with larger magnitude reductions, more communities experienc-
ing the best outcome, and fewer communities experiencing the worst outcome. 
This is an appealing result for potential policy, as the vast majority of commu-
nities have the potential to benefit from diversification. While the distribution 
for the wealthiest communities shifted to experiencing higher expected revenue 
and income variability, this may be tolerated or even perceived as a benefit, as 
the larger annual revenue and diversification of income outside of fisheries not 
captured in this analysis may make the wealthiest communities more tolerant of 
income variability for the benefit of higher expected revenue. 

As the first analysis at the system-level, we show there is not only poten-
tial for benefit to individuals or communities from diversification, but poten-
tial significant benefits for the entire system. The analysis suggests that over a 
30% reduction in average income variability is possible through permit financing 
alone, with improved outcomes realized across the distribution of communities. 
While financing is an important management lever to facilitate fisheries adap-
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tation, fishers’ access to financing is limited because conventional commercial 
banks typically do not provide loans for fishing permits, gear, or boats. Avail-
able financing in Alaska is insufficient and restricted to niche lending programs 
including the public-private Alaska Commercial Fishing and Agriculture Bank 
and small community-based programs such as the non-profit Alaska Local Fish 
Fund program [ 1, 2]. It is important to note that the cost of this intervention 
could be significantly smaller than the $92–106 community-level increase in port-
folio values in the optimized solutions, as the interventions could include offering 
loans at reduced interest rates or with reduced collateral. Further, interventions 
of the magnitude of tens of millions are not unprecedented. For example, the 
US Department of Commerce allocated $40 million in financial disaster relief in 
response to the 2024 snow crab fishery crisis [ 13]. To date, vocational training has 
not commonly been viewed as a key policy lever in natural resource sustainability 
science, however the results of the optimization show that combining vocational 
training with permit financing can more than double the potential reduction in 
income variability. While the instances presented in this paper fully relax the 
permit financing constraint, the optimization approach presented here provides 
a flexible framework for decision makers to quantify cost-benefit trade-offs in 
financing and vocational training investments. 

The results of the optimization motivate several directions for future work. 
First, the amount of permit financing and vocational skills training proposed by 
the optimized solutions suggests further research into the potential cost and scal-
ability of these interventions. This information could be incorporated into future 
iterations of the optimization as constraints or allowing for a single financial bud-
get to be allocated between permit financing and vocational skills interventions. 
However, the magnitude of the interventions in the optimized solutions also sug-
gest that changes would realistically be implemented over time, motivating an 
alternative formulation with yearly intervention budgets. Further, ecosystems in 
Alaska have already began to undergo significant shifts due to climate change 
[ 7, 20]. While these changes are captured retrospectively through the revenue 
and variance calculations, as we optimize over longer time periods, incorporat-
ing climate trends will be key to accurately characterizing income variability. 

5 Conclusion 

High income variability from fisheries has many negative impacts on Alaskan 
communities. Previous work suggests that community-level income variability 
can be reduced through diversification in fisheries participation, though prior 
work had not considered the effects at the system level. In collaboration with 
fisheries experts, we formulate a new constrained resource allocation problem to 
determine how to optimally allocate permits to minimize the average community-
level coefficient of variation and model financing and vocational skills interven-
tions. Testing integer programming methods on multiple regions over 20 years, 
we find that the model can solve instances up to the state-level to optimality, 
with over 170 communities and 10,000 permits.
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The optimization reduced the average community-level coefficient of variation 
by over 30% through permit financing alone and up to 75% with both financing 
and vocational skills training interventions. Comparing to historical changes, 
the optimization not only resulted in better average values but improved the 
proportion of communities experiencing a variation reduction from 41% to up 
to 90% with both interventions, and increased the magnitude of the reduction 
from 10% to up to 55%. However, the level of permit financing and vocational 
training required for the optimized solutions significantly exceeds the capacity 
of the current system, motivating future work into optimization overtime and 
incorporating climate trends to accurately capture future income variability. 
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