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Abstract

Machine learning techniques, especially in the realm of materi-
als design, hold immense promise in predicting the properties
of crystal materials and aiding in the discovery of novel crys-
tals with desirable traits. However, crystals possess unique ge-
ometric constraints—namely, E(3) invariance for primitive cell
and periodic invariance—which need to be accurately reflected
in crystal representations. Though past research has explored
various construction techniques to preserve periodic invari-
ance in crystal representations, their robustness remains inade-
quate. Furthermore, effectively capturing angular information
within 3D crystal structures continues to pose a significant
challenge for graph-based approaches. This study introduces
novel solutions to these challenges. We first present a graph
construction method that robustly encodes periodic invariance
and a strategy to capture angular information in neural net-
works without compromising efficiency. We further introduce
CrystalFormer, a pioneering graph transformer architecture
that emphasizes angle preservation and enhances long-range
information. Through comprehensive evaluation, we verify
our model’s superior performance in 5 crystal prediction tasks,
reaffirming the efficiency of our proposed methods.

Introduction
Machine learning (ML) techniques offer the capacity to
model intricate physical and chemical interactions, present-
ing a significant opportunity to expedite materials design vi-
tal for sustainable agriculture, low-carbon energy, and more.
One notable application of ML in this domain is predicting
properties of crystal materials, aiding in the discovery of new
crystals with desired attributes. Unique to crystals are geomet-
ric priors that encompass two distinct physical constraints
and symmetries: E(3) invariance within the primitive cell,
and periodic invariance. These inherent constraints should
be reflected in crystal representations like periodic graphs,
often used as input for graph neural networks (GNNs) (Xie
and Grossman 2018; Louis et al. 2020; Brody, Alon, and
Yahav 2021; Schütt et al. 2017; Chen et al. 2019; Choudhary
and DeCost 2021; Yan et al. 2022; Lin et al. 2023). While
previous studies (Xie and Grossman 2018; Ying et al. 2021;
Yan et al. 2022) have investigated construction techniques
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such as multi-edge and k-connected graph methodologies
to establish periodic invariance in crystal structures, these
methods often lack robustness when applied to a diverse
range of crystal structures, leading to incomplete representa-
tions under perturbations. More recent research (Widdowson
and Kurlin 2022; Widdowson et al. 2022) has introduced
matrix-form crystal representations as a means to encode this
completeness. However, these too are potentially susceptible
to breaking the completeness in practical applications.

Another significant challenge for GNNs in processing 3D
crystal structure is the difficulty of efficiently incorporating
angular information. Choudhary and DeCost (2021) suggests
an approach using a distinct line graph type for angular infor-
mation. Despite its notable performance enhancements, this
method is hampered by the considerable computational over-
head associated with constructing the line graph. On the other
hand, Yan et al. (2022) employs radial basis functions (RBF)
and combines spherical Bessel functions (SBF) with spheri-
cal harmonics to manage angles. Nonetheless, this approach
does not yield the anticipated performance boost.

This study addresses two key challenges: robustly encod-
ing periodic invariance and effectively managing angular
information. Our contributions include (1) introducing a
graph construction method that preserves periodic invariance
and completeness across diverse settings by effectively re-
ducing stochasticity via physical properties; (2) developing
a method to approximate conformal mapping in neural net-
works using harmonic mapping with minimized Dirichlet
energy, preserving inherent angular information in crystal
graphs; (3) unveiling CrystalFormer, a novel E(3)-invariant
graph transformer architecture with a unique angular atten-
tion mechanism that enhances our angle preservation ap-
proach and fortifies long-range information; (4) conducting
comprehensive experiments over 5 tasks on the Jarvis materi-
als benchmark (Choudhary et al. 2020), highlighting the sig-
nificant of our components and showing our model’s superior
performance, and subsequently verifying the effectiveness of
our proposed construction and learning methods.

Preliminaries
Crystal Structures
A crystal structure can be represented as an infinite periodic
arrangement of atoms in 3D space. Mathematically, this can
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be captured using the lattice points defined by translation
vectors and the basis (the set of atoms within the primitive
cell). A lattice L is an infinite set of points in space that can be
generated by translating a point using discrete combinations
of three non-coplanar vectors, l1, l2, and l3. This set can be
written as:

L = {T|T = n1l1+n2l2+n3l3, ∀(n1, n2, n3) ∈ Z3}. (1)

For a crystal structure, the basis B is a set of atoms associ-
ated with every lattice point. Each atom in the basis can be
represented as:

B = {(α, riα)|α ∈ A, riα ∈ R3}, (2)

where α represents the type of atom (e.g., Carbon, Oxygen,
etc.), A is the set of all atom types in the basis, and riα
represents the position of the ith atom of type α within the
primitive cell. Given the lattice and the basis, the crystal
structure C is the set of all atoms in the 3D space, defined as:

C = {(α,pi
α(T))|T ∈ L, (α, riα) ∈ B}, (3)

where pi
α(T) = riα +T. This indicates that for every lattice

point T and every atom in the basis B, there exists an atom
in the crystal structure at position pi

α(T).
A primitive cell is the smallest volume element of a crystal

that, when translated through all the vectors of the Bravais
lattice, can fill up the whole space without gaps or overlaps.
Mathematically, a primitive cell P in terms of the basis is

P = {(α, riα)|(α, riα) ∈ B}, (4)

In essence, the lattice represents the periodicity of the
crystal, while the basis represents the arrangement of atoms
within a single primitive cell. The combination of the lattice
and the basis gives the complete infinite arrangement of atoms
in the crystal structure. Moreover, we define xi

α ∈ Rh as the
feature vector of the ith atom of type α in a primitive cell
and naturally xi

α(T) for this atom and its periodic repeats.

Crystal Graph Construction
Given a crystal graph, G(V, E), where V is the set of vertices
representing atoms, and E is the set of edges representing
spatial connections between atoms. V can be defined as

V = {viα(T)|(α,pi
α(T)) ∈ C}, (5)

where viα(T) is the vertex corresponding to the ith atom of
type α at position pi

α(T).

Multi-edge Graph In a multi-edge graph, an edge (or mul-
tiple edges) exists between two vertices if their spatial dis-
tance falls within a specified radius R:

E = {(viα(T), vjβ(T
′))|dist(pi

α(T),pj
β(T

′)) ≤ R)} (6)

where dist(·) is the Euclidean distance function || · ||2, and
T and T′ are translation vectors corresponding to the posi-
tions of two atoms. Using this graph construction, the spatial
relationships between atoms in a crystal structure within a
specified radius can be captured. The multi-edge nature al-
lows for more complex and nuanced relationships between
atoms, capturing different types of interactions.

k-connected Graph k-connected graph shares the same
concept with fully-connected graph presented in Ying et al.
(2021) and Yan et al. (2022), in which each atom is connected
to its k nearest neighbors. Since the term "fully-connected
graph" has a different definition in traditional graph the-
ory, here we switch to k-connected graph for clarity. In a
k-connected graph, and the set of edges is determined by

E = {(viα(T), vjβ(T
′))|vj

β(T
′) ∈ N k(vi

α(T))} (7)

where N k(vi
α(T)) represents the set of k closest neighbors

of the atom located at pi
α(T).

Physical Constraints of Crystals
There are two essential properties of crystals in 3D space, i.e.,
E(3) invariance with respect to the primitive cell, and periodic
invariance. The former refers to the invariance of the structure
of a primitive cell under the 3D Euclidean transformations.
Formally, it can be defined as follows:
Definition 1 (E(3) Invariance for Primitive Cell). Let f : C →
X denote a function and E(3) be the Euclidean group. The
function f is E(3) invariant with respect to the primitive
cell ⇐⇒ ∀A ∈ E(3), ∀t ∈ R3, f(C′) = f(C), where
C′ = {(α,Api

α(T) + t)|T ∈ L, (α, riα) ∈ B}. A refers to
a rotation or reflection transformation.

The latter indicates the invariance of the crystal represen-
tation when the periodic boundaries of a primitive cell are
shifted or scaled up. This can be formally defined as well.
Definition 2 (Periodic Invariance). Let f : C → X de-
note a function that is E(3) invariant with respect to the
primitive cell and Λ ∈ R3×3 be a primitive-cell trans-
formation (e.g., rotations, shearing, etc.). The function f
is periodically invariant ⇐⇒ f(P) = f(P ′) where
P ′ = {(α,Λriα + o)|(α, riα) ∈ B,o ∈ R3} where o de-
notes the translation of the reshaped primitive cell.

The primitive-cell transformation, represented by Λ, em-
bodies a change of basis in the lattice. While the transformed
primitive cell still reflects the periodic nature of the original
crystal, it represents a different periodic unit by redefining
the primitive vectors of the cell.

Robust Encoding for Periodic Invariance
Previously discussed graph construction methods (Xie and
Grossman 2018; Ying et al. 2021; Yan et al. 2022), effec-
tively encode periodic invariance in standard settings. How-
ever, they falter in specific scenarios where their methods
fail to achieve this invariance. More recent works (Widdow-
son et al. 2022; Widdowson and Kurlin 2022) dedicate to
solve incompleteness problem by introducing matrix-form
crystal representations, which are still likely to break the
completeness in practice.

In this section, we first examine the limitations of two
dominant graph construction models—for multi-edge and
k-connected graphs—and provides solutions to these chal-
lenges. Then we discuss how the matrix-form crystal repre-
sentations potentially fail to preserve completeness practi-
cally. Lastly, we introduce a new graph construction method
that ensures efficient and robust encoding of periodic invari-
ance and completeness.
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Limitations of Existing Graph Constructions
Two primary crystal graph construction methods are preva-
lent: the radius-based graph construction (Xie and Grossman
2018; Louis et al. 2020; Choudhary and DeCost 2021) and the
k-connected graph construction (Ying et al. 2021; Rampášek
et al. 2022; Lin et al. 2023). While both have been tailored
to ensure periodic invariance under general conditions (Yan
et al. 2022), they exhibit significant drawbacks in preserv-
ing this invariance in practical scenarios. These limitations
include (1) the random selection of multiple neighbors based
on the kth smallest pairwise distance in k-connected graph
construction; (2) the inability of the k-connected graph to
leverage information beyond Euclidean distance, such as an-
gular data; and (3) challenges posed by experimental crystal
structures with minor atomic position deviations. We delve
into these issues in the subsequent sections.

In k-connected graph construction, as illustrated in Equa-
tion (7), neighbors are selected based on the k nearest neigh-
bors criterion. However, when several neighboring atoms of
varying atomic types share the kth smallest pairwise distance,
the selection of a particular atom can be arbitrary, leading to
inconsistencies across iterations. This introduces stochastic-
ity, jeopardizing periodic invariance as the resulting graphs
might differ each time. On the other hand, when neighboring
atoms of the same atomic type share the kth smallest distance,
periodic invariance is typically preserved in standard scenar-
ios where basic vertex and edge attributes, such as atomic em-
bedding and interatomic distance, are considered—making
these atoms indiscernible. Nonetheless, this periodic invari-
ance is compromised when incorporating higher-order infor-
mation, like unique atomic angles.

A straightforward solution would be to incorporate all
atoms at the kth smallest pairwise distance into the neighbor
set, rather than solely including the exact k closest ones:

E = (viα(T), vjβ(T
′))|dist(pi

α(T),pj
β(T

′)) ≤ dk(p
i
α(T))

(8)
where dk(p

i
α(T)) is the distance to the kth nearest neighbor

of the atom at pi
α(T). This method guarantees deterministic

neighbor selection in every situation. However, empirical
evidence suggests that its performance is suboptimal.

Another challenge lies within the robustness of periodic
invariance in crystal structure determination. In materials
science, crystal structures are predominantly determined
through experimental methods like X-ray crystallography
(Ackland and Jones 2006). Consequently, the derived crys-
tal structure may exhibit minor, random perturbations. Such
discrepancies, although subtle, can cause notable variations
in the atomic positions across different measurements of the
same crystal. Given that neighboring atoms are identified
based on a fixed radius cutoff, these minor changes can sig-
nificantly alter the resulting graph’s topological structure. We
provide illustrative figures and details in the Appendix.

To address this challenge, one could introduce a buffer
or a stability margin during the neighbor selection, rather
than relying on a strict cutoff. A straightforward method
would be to add a tolerance to the cutoff, transforming it into
a narrow range. However, setting a precise tolerance value
requires a comprehensive understanding of the perturbations

and their statistical patterns. This may be impractical given
the extensive lab work involved.

An alternative approach is the parameter-free Voronoi tes-
sellation (Voronoi 1908), which also offers a natural neigh-
bor selection strategy. The crystal structure is initially parti-
tioned via a Voronoi decomposition of its atomic sites. In this
method, each atom’s domain is characterized by a polyhe-
dron. Its faces are demarcated by equidistant borders between
the atom and its neighboring sites. Atoms sharing a face are
considered neighbors, and edges are consequently drawn be-
tween them (see the Appendix for illustrative figures and
details). Nevertheless, the Voronoi-based method still has
drawbacks: (1) the number of edges and their respective
pairwise distances can be highly variable and may exhibit
significant fluctuations across atoms (Ruff et al. 2023); (2)
computational efficiency diminishes noticeably in spaces be-
yond 2D (Vassiliades, Chatzilygeroudis, and Mouret 2017).

Addressing the challenge of incompleteness in crystal rep-
resentation is another crucial issue. Recent advancements
(Widdowson et al. 2022; Widdowson and Kurlin 2022), have
developed matrix forms that could be complete. However,
employing these representations to predict crystal properties
while maintaining their completeness poses practical diffi-
culties. (1) The proposed matrix-form representations for
stable crystal structures neglect atom types, whose complete-
ness relies on the premise that no two crystals with identical
structures differ solely in atom type, which is only attainable
in stable structures. (2) Ensuring completeness requires pre-
defining a large number of neighbors that is impractical and
costly (Balasingham, Zamaraev, and Kurlin 2022).

The Proposed Graph Construction Method
As previously discussed, a robust and complete graph con-
struction technique should minimize variability and reduce in-
consistency in neighbor selection. To address this, we present
a new graph construction method that incorporates a hierar-
chical weighting approach. This method assigns normalized
weights to represent the preference of each neighboring atom.

Reciprocal Weight We begin by considering the recip-
rocal of interatomic distances, normalized by the distance
to the nearest neighbor. To limit the number of neighbors,
we restrict our attention to atoms within the kth small-
est pairwise distance. For ease of notation, let dij repre-
sent dist(pi

α(T),pj
β(T

′)) and dkij be dk(p
i
α(T)). Here, d0ij

stands for the smallest pairwise distance. With this notation
in place, the reciprocal weight is formally given by:

wr
ij =

d0ij
dij

, for dij < (1 + δ)dkij (9)

where δ serves as a tolerance parameter1, enhancing robust-
ness against experimental discrepancies.

Distance-penalizing Weight While the reciprocal weight
accounts for penalizing distances from close to distant neigh-
bors, it overlooks a crucial factor: the radius riα of the

1δ is distinct from the tolerance value discussed earlier. Rather
than an absolute distance, it’s a relatively minor parameter, conve-
niently set at 0.1 by default for all tasks.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

285



species at pi
α(T). To integrate this, we introduce a distance-

penalizing weight that incorporates atomic radii:

wd
ij =

√
cos

π(dij − dlc)

2(dhc − dlc)
(10)

where dlc = riα + rjβ + d0ij and dhc = riα + rjβ + dkij . Note
that the choice of radius type often hinges on the available
structural information and is typically ranked by descending
preference. We expound upon this in the Appendix.

In the realm of materials science, electronegativity plays
a pivotal role in determining inter-atomic interactions. Fol-
lowing Pan et al. (2021), we represent the difference in elec-

tronegativity as: we
ij = 1 + λ

√
|χi

α − χj
β |/3.3 where χi

α

denotes the Pauling electronegativity of the atom at pi
α(T)

and λ is a parameter that adjusts the preference for neigh-
boring atoms with pronounced electronegativity differences.
The normalization factor is set to 3.3 in the denominator, as
it corresponds to the maximal electronegativity difference
observed between any two atoms. Through this formulation,
atoms exhibiting larger electronegativity disparities with the
central atom are assigned greater weights.

Lastly, we perform neighbor selection following Pan et al.
(2021). We first normalize the weights to the range [0, 1] us-
ing wij = wr

ij · wd
ij · we

ij/max(wij). For the final neighbor
selection, a straightforward approach entails calculating the
largest weight gap between two consecutive weights, once
they are sorted in descending order. Yet, given the domi-
nant interactions in a proximal coordination environment,
an alternative strategy might be preferred. Pan et al. (2021)
proposes to project the normalized weights onto a quarter-
circle placed in the first quadrant. Then, neighbors are chosen
based on the highest AUROC observed between successive
weights (see the Appendix for details). In this way, we elimi-
nate the stochasticity to the maximal extent. In practice, both
techniques yield similar performance. Additionally, to en-
capsulate periodic patterns, we add self-connected edges for
each vertex (Yan et al. 2022).

Preserving Implicit Angular Information
Modeling angular information within GNNs has previously
demonstrated notable performance improvements. However,
these gains often come at the cost of increased computa-
tional demands, largely due to the line graph construction
(Choudhary and DeCost 2021). More recent methodologies
(Yan et al. 2022) introduce efficient techniques for processing
angles in graph transformers, but intriguingly, these meth-
ods don’t harness the expected performance gains from the
additional information.

Here, we demonstrate that any constructed graph intrinsi-
cally encapsulates angular information within its topological
structure and associated edge attributes. Subsequently, we
put forth a novel method designed to implicitly integrate and
preserve this angular information throughout the model.

Implicit Angular Information
From the outset, the angular information has been incorpo-
rated implicitly within the constructed crystal graphs’ edge

attributes. Let e⃗ij denote the edge attribute, signifying the
relative position vector between two neighboring atoms.
Definition 3. An angle, ∠ikj, arises from two adjacent
edges: e⃗ki and e⃗kj . Here, vkγ(T

′′) is the mutual neighbor
of vertices viα(T) and vjβ(T

′).

Given that the edge attributes in e⃗ki and e⃗kj denote rela-
tive positions, the magnitude of ∠ikj can be quantified by its
cosine value: cos∠ikj = e⃗ki · e⃗kj/∥e⃗ki∥ ∥e⃗kj∥. Leveraging
the capacity of neural networks as universal approximators
(Hornik, Stinchcombe, and White 1989; Scarselli and Tsoi
1998), one can derive a nonlinear mapping from edge at-
tributes to the cosine value of angles. This is made feasible
through GNNs, in which a multi-layer perceptron is em-
ployed to interpret messages from attributes of neighboring
vertices and edges.

Nevertheless, a persistent challenge lies in ensuring the
preservation of the angular information throughout multiple
GNN layers. In practical scenarios, not only might the infor-
mation not be consistently preserved, but expressive GNN
architectures could also inadvertently neglect this angular
information amidst a sea of input features.

The Preservation Approach
Conformal mapping (Schinzinger and Laura 2012) serves
as a potent tool for preserving angular information and has
found extensive applications in areas such as image rectifi-
cation (Zhang, Li, and Wang 2023) and texture generation
(Lévy et al. 2023). However, the rigorous nature of conformal
mapping poses challenges for its direct integration into neural
networks (Nehari 2012).
Lemma 1. Let U and V denote real normed spaces. A map
f : U → V is conformal at a point u0 ∈ U if it is differen-
tiable at u0 and its derivative at that point is an isomorphism
that preserves angles and orientations between vectors.

Rather than imposing rigid constraints to achieve confor-
mal mapping, which would compromise the differentiability
of neural networks, we can consider approximating it concur-
rently with the optimization of training objectives. One poten-
tial approximation is harmonic mapping, attributed to the har-
monicity of conformal mapping, characterized by functions
that adhere to the Laplace equation across the domain (Ne-
hari 2012). Nonetheless, this unconstrained approximation
may introduce inherent distortion, potentially undermining
the preservation of angles.
Definition 4. Let u : Ω → Rn be a differentiable function
defined over a domain Ω in Rn. The Dirichlet energy of u is
given by Edir(u) =

1
2

∫
Ω
∥∇u∥2 dV , where ∇u represents

the gradient of u and dV denotes the area element in Ω.
Proposition 1. Given a domain Ω in Rn, a conformal map-
ping f : Ω → Rn can be approximated by a harmonic
mapping that minimizes the Dirichlet energy. If the Dirichlet
energy has been sufficiently minimized and the mapping is bi-
jective, then the mapping is approximately conformal within
Ω (Wu and Yau 2020).

Although conformal mapping can be efficiently and accu-
rately approximated by harmonic mapping using the mini-
mizer of Dirichlet energy, obtaining a closed form for this

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

286



Graph Construction:

𝒞 Preprocessing 𝑑𝑖𝑗 
𝑟𝛼

𝑖
Distance-penalizing

Weight

𝜒𝛼
𝑖

Reciprocal Weight

Electronegativity 
Weight

𝑤𝑖𝑗
𝑑

𝑤𝑖𝑗
𝑟

𝑤𝑖𝑗
𝑒

Projection
AUROC

Weight Sorting

Neighbor 
Selection

𝒢(𝒱, 𝓔)

Embedding Block:

𝒞 𝑑𝑖𝑗 

റ𝑒𝑖𝑗 

Radial Basis Function

Harmonic Map 𝐇

𝜎(𝑊 ·)
𝜎(𝑊 ·)

||

𝐱𝛼
𝑖

Period and 
group numbers

Physical 
properties

||
𝜎(𝑊 ·)
𝜎(𝑊 ·)

One-hot 
Encoding

𝜎(𝑊 ·)

𝐡𝑖
(0)

𝐞𝑖𝑗
 

Message Passing:

𝐡𝑖
(𝑙)

𝐡𝑗
(𝑙)

𝐞𝑖𝑘
(𝑙,𝑚) 𝐞𝑘𝑗

(𝑙,𝑛)

Query 𝐐(𝑙)

Key 𝐊(𝑙)

Value 𝐕(𝑙)

||

||

||

ʘ 𝛼𝑖𝑘
(𝑙,𝑚)

𝑑𝑘
 

𝜎(𝑊 ·)

𝑓𝐿𝑁

MLP(·)

𝑓𝐿𝑁

MLP(·)

𝛴

𝐦𝑖𝑘
(𝑙)

𝐦𝑖
(𝑙)

𝑓𝐿𝑁

SiLU(·)

𝑓𝐵𝑁

MLP(·) 𝑓𝐽𝐾 𝐡𝑖
(𝑙+1)

Output Block:

𝐡𝑖
(𝐿)

𝜙(·)

𝜎(𝑊 ·)

𝛴

·

𝐦𝑖
(𝑙)

𝜎(𝑊 ·)
𝜎(𝑊 ·)

Overall Framework:

𝒞 Graph Construction

Embedding

Message Passing

Output

[···]

Atomic 
Attributes

Prediction

Edge-aware

Node-aware
Message	Passing 𝐝!"

Dirichlet	energy	
Minimization

Edge-aware
Message	Passing

Figure 1: Architecture Overview. CrystalFormer accepts an input crystal structure C. It preserves both periodic invariance and
E(3) primitive cell invariance in its predictions. This is achieved by successively processing the input through stages: a graph
construction step, an embedding block, multiple (node, edge)-aware message-passing layers, and finally, an output block.

optimization objective on graph-structured data, especially
for multi-edge crystal graphs, remains challenging. Here, we
introduce a formulation for the Dirichlet energy on graph
data: given a harmonic mapping H ∈ Rd×d′

that is shared
across edges, the Dirichlet energy can be written as (we de-
note vjα(T), vjβ(T

′), vjγ(T
′′) as vi, vj , vk below for brevity):

Edir(H) =
1

2

∑
(vi,vj)∈U

κij∥He⃗ij∥2

=
1

2

∑
(vi,vj)∈U

(cot∠ikj) ∥He⃗ij∥2
(11)

where U = {(vi, vj) | ∀vi, vj ∈ V , ∃vk ∈ V , s.t. (vi, vj) /∈
E and (vi, vk), (vj , vk) ∈ E}, κij represents the elastic coef-
ficient between the unconnected vertex pair (vi, vj), and cot
denotes the cotangent function.

In the context of multi-edge crystal graphs, a key issue
is the presence of multiple potential relay vertices vk and
multiple corresponding topological connections e⃗ik and e⃗kj ,
which will introduce much complexity. For the latter, we
consider all existing connections, which ensures that angular
information associated with distant atoms can be sufficiently
retained, beneficial for encoding long-range interactions and
periodicity inherent to crystal structures. For the former, i.e.
when selecting relay vertices, it’s essential to follow the un-
derlying physical principle: atoms in closer proximity exhibit
stronger interactions. Denote the neighborhood of vertices as
Ni := N (vi

α(T)) and Nj := N (vj
β(T)). The selection for

k can be articulated as:

k = argmax
o∈Ni∩Nj

[
e⃗io · e⃗jo

∥e⃗io∥ ∥e⃗jo∥

]
. (12)

Above we only consider the situation in which we utilize
interatomic distances as edge attributes. For those seeking
to initialize atomic positions as vertex attributes, we present

a more computationally efficient method to handle matrix
operations (with the proof available in the Appendix):

Edir(H) =
1

2

∑
(vi,vj)∈U

κij∥Hp⃗i −Hp⃗j∥2

= tr
(
FT (D−K)F

)
.

(13)

Here, p⃗i signifies the atomic position. The function tr(·) re-
turns the trace of a matrix. Additionally, K is defined as
(κij)n×n; F can be expressed as (Hp⃗1;Hp⃗2; · · · ;Hp⃗n); and
D is a diagonal matrix denoted as diag(d1, d2, ..., dN ), where

each di is given by
n∑

j=1

κij .

CrystalFormer
In this section, we unveil our proposed crystal graph trans-
former architecture, CrystalFormer, as illustrated in Figure 1.
Drawing from the graph construction method and the angle-
preserving framework described earlier, CrystalFormer seam-
lessly integrates 3D geometric data based on atomic rel-
ative positions while preserving periodic invariance. This
is achieved without the need to apply restrictive architec-
tural constraints. Notably, CrystalFormer inherits the theo-
retical guarantees of the preservation approach, ensuring it
upholds the intrinsic invariant physical constraints within
crystal graphs. The combination of these features provides
the architecture with better modeling flexibility. Furthermore,
the inclusion of a plug-and-play angle-preserving layer ampli-
fies the model’s performance in evaluating crystal properties.

Embedding Block Expanding on the foundational work of
Xie and Grossman (2018), we integrate additional domain-
specific knowledge to initialize the vertex attribute of each
vertex vi. To this end, we adopt atomic embedding, achieved
by concatenating the one-hot encoding of both group and
period numbers together with a suite of physical properties.
Further details are available in the Appendix.
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In our pursuit to aptly encapsulate the 3D topology inher-
ent in atomic systems, we employ a blend of atom relative
positions, denoted as e⃗ij , and the interatomic distances de-
noted by dij . Our approach entails the application of har-
monic mapping directly on e⃗ij to obtain eij . Concurrently,
we harness a 2-layer MLP on RBF derived from dij to get dij .
eij will be used as the edge embedding for our edge-aware
message-passing layer while dij will be the edge embedding
for the node-aware message-passing layer (Yan et al. 2022).
Note that, in practice, replacing dij with eij achieves better
prediction performance.

Edge-aware Message Passing Within each interaction
block, messages are propagated from neighboring vertices
vj ∈ Ni to the center vertice vi via a unique graph trans-
former block. To establish an invariant architecture, we im-
plement an edge-aware attention mechanism that integrates
embeddings from vertices and their adjacent edges (e⃗ik, e⃗kj)
in both the query and key. This is followed by an inner prod-
uct operation to compute the attention coefficient.

For a given vertex embedding h
(l)
i and the mth edge em-

bedding at the lth layer e(l,m)
ij , we compute query q

(l,m)
ik , key

k
(l,m)
ik , and value v

(l,m)
ik in line with Vaswani et al. (2017):

q
(l,m)
ik =

(
Q(l)h

(l)
i ||Q(l)h

(l)
i ||e(l,m)

ik

)
k
(l,m)
ik =

(
K(l)h

(l)
i ||K(l)h

(l)
j ||e(l,n)kj

)
v
(l,m)
ik =

(
V(l)h

(l)
i ||V(l)h

(l)
j ||V(l)h

(l)
j

) (14)

where Q(l), K(l), and V(l) are linear transformations. This
formulation allows us to integrate self-attention for the central
vertex, cross-attention between adjacent vertices, and edge-
aware attention, all within a single transformer block.

Subsequently, the attention coefficients α
(l,m)
ik and mes-

sages m(l,m)
ik are derived as:

α
(l,m)
ik =

q
(l,m)
ik ⊙ k

(l,m)
ik√

dk

m
(l)
ik =σ

(
fLN

(
α
(l,m)
ik

)
MLP

(
v
(l,m)
ik

)) (15)

where fLN denotes layer normalization, while dk represents
the embedding dimension of k(l,m)

ik . Then we impose jump-
ing knowledge (Xu et al. 2018) into feature update after
aggregating the messages:

m
(l)
i =

∑
k∈Ni

∑
m

fLN

(
MLP

(
m

(l)
ik

))
h
(l+1)
i = fJK

(
MLP

(
h
(l)
i

)
, SiLU

(
fBN

(
m

(l)
i

)))
(16)

where fJK and fBN are the jumping knowledge layer and
batch normalization. Note that we stack node/edge-aware
message passing layer alternately.

Output Block We derive the final atom predictions (y) by
channeling the obtained atomic representations through two
dense layers. This process effectively maps the embeddings

to the appropriate dimensionality. Given that the prediction
tasks for crystal properties are graph-level, we employ a
weighted average strategy for the atomic representations.

Experiments
Experimental setup
Baselines Baseline methods encompass CGCNN (Xie
and Grossman 2018), SchNet (Schütt et al. 2017), MEG-
NET (Chen et al. 2019), and others up to PotNet (Lin et al.
2023). For these methods, results are sourced from their re-
spective publications or directly from the authors unless noted
otherwise. All CrystalFormer models employ the Adam opti-
mizer (Kingma and Ba 2015), weight decay (Loshchilov and
Hutter 2018), and a one-cycle learning rate scheduler (Smith
and Topin 2018). Learning rates and training epochs are
mildly adjusted, starting from 0.0005 and 1000 respectively,
depending on the task. Specific configurations for each task
can be found in the Appendix.

Datasets We test on five crystal property prediction tasks
using the JARVIS (Choudhary et al. 2020) benchmark, specif-
ically its DFT-2021.8.18 3D version, which features 55,722
crystals. Our evaluations focus on essential crystal proper-
ties, including two types of bandgaps (OPT functional and
MBJ potential), total energy, formation energy, and Ehull.
We adopt data splits as per (Lin et al. 2023; Yan et al. 2022)
to ensure a fair comparison.

Metrics We evaluate performance and scalability. The pri-
mary performance metric is mean absolute error (MAE).
Scalability assesses training time per epoch and throughput
during inference2, labeled Train and Infer respectively.

Model Evaluation
Experimental Results The results for Jarvis are presented
in Table. 1. CrystalFormer surpasses baseline methods in 4
out of 5 tasks: bandgap (OPT), bandgap (MBJ), total en-
ergy, and Ehull. Its performance on formation energy is
slightly below the state-of-the-art but remains competitive.
CrystalFormer’s robust graph construction technique accu-
rately encodes unique crystal structures and effectively dif-
ferentiates between crystals. Unlike PotNet, which focuses
solely on interatomic geometric information, CrystalFormer
also retains angular data, leading to an average improvement
of 26.9% across the 5 tasks. In comparison to Matformer,
CrystalFormer not only boasts the aforementioned advan-
tages but also processes long-range information through 2-
hop adjacent edges, akin to PotNet’s approach with com-
plete interatomic potentials. This capability significantly ele-
vates CrystalFormer and PotNet above Matformer. Contrast-
ing ALIGNN, CrystalFormer sidesteps the need for large-
scale line graphs, resulting in lower computational costs.
Notably, CrystalFormer achieved the best performance for
Bandgap(MBJ) in JARVIS with just 14,537 training samples,
underscoring its adaptability to varied data scales. In essence,
these exceptional results underscore the efficacy of our Mat-
former’s periodic pattern encoding in message passing.

2Throughput refers to the model’s average processing speed in
samples per second during its forward pass.
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Bandgap (OPT) Bandgap (MBJ) Total Energy Formation Energy Ehull

Method eV eV eV/atom eV/atom eV

CGCNN (2018) 0.20 0.41 0.078 0.063 0.17
SchNet (2017) 0.19 0.43 0.047 0.045 0.14
MEGNET (2019) 0.145 0.34 0.058 0.047 0.084
GATGNN (2020) 0.17 0.51 0.056 0.047 0.12
ALIGNN (2021) 0.142 0.31 0.037 0.033 0.076
Matformer (2022) 0.137 0.30 0.035 0.033 0.064
PotNet (2023) 0.127 0.27 0.032 0.029 0.055
CrystalFormer 0.101 (-20.5%) 0.13 (-51.9%) 0.017 (-46.9%) 0.033 (+12.1%) 0.040 (-27.3%)

Table 1: Comparison between CrystalFormer and baselines regarding MAE (↓) on JARVIS. The best results are shown in bold
and the second best results are shown with underlines. We also provide the performance gain in percentage improvement (%)
between CrystalFormer and the state-of-the-art. All scores have ±0.5% confidence intervals.

Time Efficiency (↓) Graph Size (↑)

Methods ms/structure # edges

Voronoi 79.24 126.1
Ours 8.67 207.9

Table 2: Comparison of the two robust graph construction
methods (Voronoi and ours).

MAE (↓) Train (↓) Infer (↑)

Methods eV s/epoch samples/s

ALIGNN 0.31 107 35.7
Matformer (SBF) 0.31 56 55.9
Matformer (RBF) 0.30 53 56.7
CrystalFormer 0.13 43 69.6

Table 3: Comparison of CrystalFormer and baselines that use
angular information.

Graph Construction Efficiency We examined the effi-
ciency of two graph construction techniques: the Voronoi-
based method and our proposal, comparing them in terms of
time efficiency and neighbor count, as detailed in Table 2.
Our method constructs a crystal structure in approximately
8.67 milliseconds, which is about 8.14 times faster than the
Voronoi-based approach that takes 79.24 milliseconds. More-
over, our technique extracts an average of 207.9 edges per
graph, approximately 0.65 times more than the Voronoi coun-
terpart. Previous studies (Xie and Grossman 2018) have il-
lustrated that an increased neighbor count can enhance per-
formance. Consequently, our method proves superior in both
time efficiency and neighbor extraction.

Model Efficiency We assessed CrystalFormer’s efficiency
against other models integrating angular information, us-
ing bandgap (MBJ) as the consistent dataset for all models.
Results presented in Table 3 show that, CrystalFormer con-
siderably surpasses ALIGNN in training speed (43 vs. 107
s/epoch) and inference efficiency. It also marginally exceeds

Graph Construction Robustness MAE (↓)

Multi-edge × 0.28
k-connected × 0.30
Modified k-connected ✓ 0.29
Ours ✓ 0.13

Table 4: Comparison of different graph construction methods.
We provide the availability of robustness and model perfor-
mance (MAE) on bandgap (MBJ).

Matformer, which incorporates preprocessed angular data
using SBF with Spherical Harmonics (Gasteiger, Groß, and
Günnemann 2020) and RBF. Notably, CrystalFormer avoids
the complexities of line graph construction and angular data
preprocessing, enhancing its efficiency relatively.

Ablation Studies We conducted an ablation study to assess
the significance of various components in our method. This
analysis confirms the importance of both the robust encoding
of periodic invariance (Table 4) and our angle-preserving
graph transformer block to the model’s performance. No-
tably, we contrasted CrystalFormer, built using our graph
construction method, with one leveraging previous multi-
edge and k-connected graph construction (Yan et al. 2022).
We also considered a modified version of the k-connected
graph for a thorough assessment. Additionally, we conduct
another ablation study by excluding the angular-preserving
graph transformer blocks while retaining our graph construc-
tion. We found CrystalFormer surpassed its counterpart by
approximately 53% (0.13 vs. 0.28 in terms of MAE).

Conclusion
In our study on predicting crystal materials properties, we
introduced a graph construction method ensuring robust peri-
odic invariance and a technique for preserving angular infor-
mation in GNNs. The developed CrystalFormer highlights
an innovative angular attention mechanism, reinforcing long-
range data. Rigorous testing on the Jarvis materials bench-
mark confirmed our method’s superior performance, herald-
ing a potential to accelerate materials design.
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