
A New Approach to Finding 2 x n Partially
Spatially Balanced Latin Rectangles
Renee Mirka #

Cornell University, Ithaca, NY, USA

Laura Greenstreet #

Cornell University, Ithaca, NY, USA

Marc Grimson #

Cornell University, Ithaca, NY, USA

Carla P. Gomes #

Cornell University, Ithaca, NY, USA

Abstract
Partially spatially balanced Latin rectangles are combinatorial structures that are important for
experimental design. However, it is computationally challenging to find even small optimally balanced
rectangles, where previous work has not been able to prove optimality for any rectangle with a
dimension above size 11. Here we introduce a graph-based encoding for the 2 × n case based on
finding the minimum-cost clique of size n. This encoding inspires a new mixed-integer programming
(MIP) formulation, which finds exact solutions for the 2 × 12 and 2 × 13 cases and provides improved
bounds up to n = 20. Compared to three other methods, the new formulation establishes the best
lower bound in all cases and establishes the best upper bound in five out of seven cases.

2012 ACM Subject Classification Applied computing → Operations research

Keywords and phrases Spatially balanced Latin squares, partially spatially balanced Latin rectangles,
minimum edge weight clique, combinatorial optimization, mixed integer programming, imbalance,
cliques

Digital Object Identifier 10.4230/LIPIcs.CP.2023.47

Category Short Paper

Funding This material is based upon work partially supported by the National Science Foundation
under Awards CCF-1522054 and CCF-2007009 and by AFOSR DURIP grant FA9550-21-1-0316,
AFOSR MURI grant FA9550-18-1-0136, and AFOSR grant FA9550-20-1-0421.

1 Introduction

Latin squares and rectangles are combinatorial objects represented by n × n or k × n grids
with entries assigned from {1, 2, . . . , n} such that no entry is repeated in a row or column.
They are important structures for experimental design. For example, in agronomic field
experiments, experts are interested in applying n treatments consisting of n fertilizers in
different orderings, which can be achieved by designing the treatment sequences following a
Latin square. Arbitrary Latin squares are not hard to generate. However, geometric imbalance
due to some treatments occurring closer together more frequently can bias experimental
results [21]. This motivates the use of spatially balanced Latin squares and rectangles which
require additional structure to capture the notion of distance between any two treatments in
the square or rectangle and are more computationally challenging to construct.

A large body of previous work has focused on spatially balanced Latin squares, including
introducing streamlining constraints [8], using stochastic optimization [11, 10, 12, 6], and
applying local search methods [22]. While spatially balanced Latin squares have been
extensively studied [9, 16, 17, 21], there has been much less work on spatially balanced Latin

© Renee Mirka, Laura Greenstreet, Marc Grimson, and Carla P. Gomes;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 47; pp. 47:1–47:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rem379@cornell.edu
mailto:leg86@cornell.edu
mailto:mg2425@cornell.edu
mailto:gomes@cs.cornell.edu
https://doi.org/10.4230/LIPIcs.CP.2023.47
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 A New Approach to Finding 2 x n Partially Spatially Balanced Latin Rectangles

rectangles [4], despite rectangular conditions occurring more frequently in practice. For
example, in the case of fertilizer treatments, the number of treatments is often less than the
number of fertilizers resulting in a rectangular structure.

The main previous work investigating spatially balanced Latin rectangles established
the non-existence of perfectly balanced Latin rectangles for an infinite family of sizes and
shifted focus to constructing partially spatially balanced Latin rectangles (PSBLRs) [4]. Diaz
et al. introduce and experimentally compare three approaches to generating PSBLRs: an
assignment-based mixed-integer program (MIP), a constraint satisfaction program (CP), and
a random-restart hill climbing local search. Using these approaches, Diaz et al. were able to
find the provably optimal imbalance for rectangles up to a size of 2 × 11 and provide bounds
up to 12 × 12.

In this work, we focus on the 2 × n case of constructing PSBLRs, introducing a new
graph-based encoding based on a reduction to a minimum-edge weight clique problem. The
maximum/minimum edge-weight clique problem (MEWC) is a generalization of the classic
max clique problem, where given an input graph G = (V, E) instead of finding the largest
complete subgraph the goal is to find the subgraph with the largest/smallest sum of weighted
edges. The MEWC problem has many applications including in experimental design [3],
molecular biology [20], and materials discovery [1]. Multiple approaches have been developed
for MEWC problems including linear and quadratic mixed-integer programs [5, 7, 18], branch-
and-cut [5, 15, 19], and heuristic methods [2, 14]. Several benchmarks have been developed
for MEWC, though less than half the instances have been solved to optimality [13].

For our experiments, we use a straight-forward MIP formulation of MEWC to emphasize
the benefits of the reduction instead of advanced techniques developed for MEWC. This
new MIP formulation for the problem of finding 2 × n PSBLRs finds optimal solutions for
the previously unsolved cases of n = 12 and 13 and provides new bounds for n = 14 − 20.
Further, we demonstrate the new clique-based MIP formulation outperforms the previous
assignment-based MIP formulation and A* search and finds comparable solutions to local
search while providing lower bounds.

2 Preliminaries

▶ Definition 1 (Latin Rectangle). Let k and n be positive integers with k ≤ n and R be
a k × n matrix. Then R is a Latin rectangle if every entry of R contains a number in
[n] = {1, 2, · · · , n} and no number is repeated in any row or column.

In order to discuss partially spatially balanced Latin rectangles, we first introduce the
notion of distance between two symbols in a Latin rectangle and imbalance:

▶ Definition 2 (Imbalance). For two symbols u, v ∈ [n] and i ≤ k, the distance between u and
v in row i, denoted di(u, v), is the absolute value of the difference of the indices of the positions
of u and v in row i. The overall distance between u and v is then d(u, v) =

∑
i≤k di(u, v).

The spatial imbalance of a Latin rectangle, R, is defined by

I(R) =
∑
i,j

∣∣∣∣d(i, j) − k(n + 1)
3

∣∣∣∣ .

▶ Definition 3 (Spatially Balanced Latin Rectangle). We say that a k×n rectangle R is spatially
balanced if all distances d(u, v) are the same. For brevity, we denote this as SBLR(k, n).

Note that in this case, Diaz et al. show that each distance must be exactly k(n+1)
3 and

thus the imbalance of the rectangle is 0; see [4] for a short proof of this proposition.

R. Mirka, L. Greenstreet, M. Grimson, and C. P. Gomes 47:3

▶ Proposition 4. If there exists a solution for SBLR(k, n) then the distance between any
pair of symbols is equal to k(n + 1)/3.

As a corollary, k ≡3 0 or n ≡2 2 are necessary conditions for the existence of SBLR(k, n)
as k(n+1) ≡3 0 must hold. Diaz et al. have further shown the non-existence of SBLRs of size
2 × n for n ̸= 2 and 3 × n for n ̸= 3, as well as experimentally demonstrated that no perfectly
spatially balanced rectangles with k ̸= n exist up to size 7 × 7 [4]. In practice, it is useful to
minimize the imbalance even if it is not possible to reduce it to zero. This motivates the
definition of the object of our study- partially spatially balanced Latin rectangles (PSBLRs):

▶ Definition 5 (Partially Spatially Balanced Latin Rectangle). A k × n Latin rectangle R

is partially spatially balanced if I(R) is minimized. In particular, R is partially spatially
balanced if for any k × n Latin rectangle R′, I(R) ≤ I(R′).

3 Graph Encoding

In this section, we describe a new graph-based encoding for the problem of constructing
PSBLRs. For the 2 × n Latin rectangles we consider, we will always assume the first row is
ordered and given by 1 2 . . . n, as any other solution can be transformed into a solution
in this form through relabelling symbols. This reduces the problem to selecting a single
imbalance-minimizing derangement, or permutation with no fixed points, for the second row
of the rectangle. It also simplifies the computation of the distance between any two symbols
u and v. Particularly, for 1 ≤ u < v ≤ n, we have d(u, v) = v − u + |iv − iu| where iv, iu

are the indices of v, u in the second row, respectively. For fixed u, v and n, d(u, v) is solely
determined by the choices for iu and iv. We exploit this through the construction of a graph
which encodes how these choices affect the imbalance.

The graph encoding is as follows. For a given n, construct a complete graph G = (V, E)
with V = {vij : 1 ≤ i, j ≤ n, i ≠ j} and E = {(u, v) : u, v ∈ V }. Intuitively, a vertex vij

represents a Latin rectangle where j is the index of i in the second row. We include a cost
on each edge (vst, vqr) which represents how much is contributed to the imbalance from
d(s, q) if t and r are the indices of s and q in the second row, respectively. In particular, for
e = (vst, vqr) ∈ E with s ̸= q and t ̸= r, let

ce =
∣∣∣∣d(s, q) − 2(n + 1)

3

∣∣∣∣
=

∣∣∣∣|s − q| + |is − iq| − 2(n + 1)
3

∣∣∣∣
=

∣∣∣∣|s − q| + |t − r| − 2(n + 1)
3

∣∣∣∣ .

If s = q or t = r, the cost on the edge is ∞, since the assignments these vertices represent
are not valid for a Latin rectangle. See Figure 1 for an example when n = 3.

To complete the problem encoding, we need to discern how to recover a PSBLR from
this complete graph. The key observation is that every n-clique where all edges have finite
cost corresponds to a valid Latin rectangle. The finiteness of the costs ensures that the
assignment rules of the Latin rectangle are obeyed. Furthermore, the sum of the costs on the
edges of an n-clique is exactly equal to the imbalance of its corresponding Latin rectangle.
As such, to find a PSBLR, it suffices to find an n-clique whose sum of edge costs is minimal.
Figure 1 illustrates an optimal clique corresponding to an optimal Latin rectangle for n = 3:[

1 2 3
2 3 1

]

CP 2023

47:4 A New Approach to Finding 2 x n Partially Spatially Balanced Latin Rectangles

Figure 1 (Left) The graph encoding after including all edges with infinite costs between vertices
vsq and vsr for s = 1, 2, 3 (thin edges) and between vertices vsq and vrq for q = 1, 2, 3 (bold edges).
(Center) The graph encoding after including all remaining edges with finite costs (bold edges) between
the remaining pairs of vertices. The boxed value is calculated as |(2 − 1) + (3 − 1) − 8/3| = 1/3.
(Right) A 3-clique (bold edges) in the graph encoding when n = 3 corresponding to a 2 × 3 PSBLR.

4 MIP Formulation

Now that we have reduced the problem of finding a 2 × n PSBLR to finding a minimum-cost
n-clique, we can model the problem through a new integer program:

minimize
∑
e∈E

cexe

subject to
∑
v∈V

zv = n, (1)

xe ≥ zv + zu − 1, ∀e = (u, v) ∈ E, (2)
xe ∈ {0, 1}, ∀e ∈ E,

zv ∈ {0, 1} ∀v ∈ V.

In this model, we have binary variables zv and xe for each vertex v and edge e in the graph
representing whether the vertex or edge is included in the n-clique. While (1) guarantees that
we select n vertices, (2) requires that any edges between two selected vertices are included in
the cost; together these ensure the model selects an n-clique.

Note that the size of this model is polynomial in n with n(n−1)+n(n−1)(n(n−1)−1)/2
variables and n(n − 1)(n(n − 1) − 1)/2 + 1 constraints. Furthermore, by construction, an
optimal solution will be a PSBLR. However, the presence of so many binary variables makes
finding the optimal solution a cumbersome computational task.

The following observation allows us to partially relax the integer program and significantly
reduce the number of binary variables:

▶ Observation 6. For each edge e ∈ E, xe will be 0 or 1 if zv is binary for all v ∈ V . In
other words, we can relax the restriction that xe is binary for all e ∈ E by replacing it with
xe ≥ 0 for all e ∈ E and still guarantee a binary solution.

The relaxed mixed integer program only requires n(n − 1) binary variables, one for each
vertex, where the remaining edge variables are continuous.

R. Mirka, L. Greenstreet, M. Grimson, and C. P. Gomes 47:5

5 Methods

We compared the min-cost n-clique MIP formulation, hereafter referred to as the clique
formulation, to an assignment-based MIP formulation, A* search, and a local search approach.

In the assignment based MIP formulation, we again assume the first row is fixed to
1 2 . . . n. Thus, we only need to introduce binary variables indicating whether value

i occurs in position j of the second row, i, j ∈ {1, 2, · · · , n} ≡ [n], i ̸= j. Note that
these exactly correspond to the vertex variables in the clique formulation, zv = zvij

for
v ∈ {vij : i, j ∈ [n], i ̸= j}. As the imbalance is dependent on pairwise positions in the second
row, we also introduce binary variables that are 1 if a pair of variables is included in the
solution. Note that these correspond exactly to the edge variables in the clique formulation,
xe for e ∈ {(u, v) : u, v ∈ V }, where the pairwise cost corresponds to ce. Finally, we introduce
constraints ensuring each value appears exactly once in the second row (3) and each position
in the second row is assigned exactly one value (4):

minimize
∑
e∈E

cexe

subject to
∑

j∈[n],j ̸=i

zvij
= 1, ∀i ∈ [n] (3)

∑
i∈[n],i̸=j

zvij
= 1, ∀j ∈ [n] (4)

xe ≥ zv + zu − 1, ∀e = (u, v) ∈ E,

xe ∈ {0, 1}, ∀e ∈ E,

zv ∈ {0, 1} ∀v ∈ V.

Similar to the clique formulation, we can partially relax the integer program by allowing
the xe variables to assume continuous values, reducing the number of binary variables to
n(n − 1).

Both MIP formulations were implemented in Gurobi and CPLEX using their respective
Python APIs. As previous work has established optimal solutions up to n = 11, we replicated
previous results and further tested instances with n = 12 − 20. For each n, both models were
tested for 6 hours running on a Intel Xeon 6154 processor and allowed 32GB of memory in
three configurations: a single instance running on a single thread, a single instance running
on 32 threads, and 8 instances running on a total of 32 threads.

For A* search, we again fix the first row and only consider positions in the second row.
Starting with an empty second row, we add all valid placements of the first digit to a priority
queue, assigning each node a cost based on the partial imbalance of the filled digits and an
admissible heuristic for the imbalance due to the unplaced digits. We repeatedly evaluate
the first node in the queue until we reach a node with all digits filled which is guaranteed to
be an optimal solution. As a heuristic, for each unplaced digit we calculated the minimum
increase to the imbalance that would result from placing it in one of the remaining positions,
accounting only for interactions with already placed digits. We then summed these values
across all unplaced digits.

A* search was implemented in C++ and was also tested for 6 hours each on instances
of size n = 12 − 20 on an Intel Xeon 6154 processor. As A* search is memory intensive,
runs were allocated 128GB of memory, compared to 32GB for the other methods. If A*
search does not complete, the value of the node at the front of the queue can be used as a
lower bound on the solution value. However if the algorithm does not run to completion, no
feasible solutions are found, resulting in no upper bound on the imbalance.

CP 2023

47:6 A New Approach to Finding 2 x n Partially Spatially Balanced Latin Rectangles

We implemented local search using a random walk from a random initial derangement,
where at each step the position of two random digits were swapped, maintaining feasibility.
The random walk was implemented in C++ and tested for 6 hours each on instances of size
n = 12 − 20 on an Intel Xeon 6154 processor and allocated 32GB of memory. Unlike the
other methods, a random walk cannot prove optimality or provide a lower bound on the
solution.

In addition to testing methods to bound the optimal solution, we performed several tests
to better characterize the solution space. First, for n = 2 − 10 we brute force computed all
solutions to determine the number of optimal solutions. We were inspired to characterize
the number of solutions due to the observation that mirroring either the first or second row
results in a rectangle with the same imbalance. For example if we have a solution R, we
can construct a rectangle R′ with the second row mirrored by setting R′

2i = n + 1 − R2i for
i ∈ [n]. This results in the same imbalance:

I(R′) =
∑
i,j

∣∣∣∣|R1i − R1j | − |(n + 1 − R2i) − (n + 1 − R2j)| − 2(n + 1)
3

∣∣∣∣
=

∑
i,j

∣∣∣∣|R1i − R1j | − |R2i − R2j | − 2(n + 1)
3

∣∣∣∣
= I(R)

However, it is not guaranteed that R′ is a Latin rectangle, as the rearrangement may not
respect the column constraint. Similarly, we can create a rectangle, R†, with the first row
mirrored by setting R†

1i = n + 1 − R1i for i ∈ [n]. While this does not result in a rectangle
with the first row ordered as 1 2 . . . n, we can relabel the variables so the first row goes
from 1 2 . . . n which results in the second row having the labels R†

2i = R2(n+1−i). While
this could potentially allow up to four solutions from a single solution, there is no guarantee
that these solutions satisfy the column constraints. As multiple solutions are not guaranteed,
we cannot use methods like streamlining. However, the presence of multiple solutions may
make it difficult for the MIP formulations to prove optimality.

Further, we sought to characterize the distribution of feasible solutions. For n = 2 − 10
we were able to compute the distribution exactly. For n = 11 − 16, we randomly sampled
a million solutions to approximate the distribution. The distribution of solutions impacts
all four methods, where having many solutions with nearly optimal imbalance will benefit a
random walk, while it will make it difficult for the MIP formulation and A* search to prove
optimality.

6 Results

While CPLEX had better runtimes up to n = 10, only Gurobi was able to prove optimality
for n = 12 and 13 and Gurobi consistently found better bounds for n = 14 − 20 (see Tables
3-5). Thus, for the remainder of the results we report the performance of the Guorbi model
for both MIP formulations. In general, running the model using a single instance and a single
thread performed better than running a single instance with multiple threads or multiple
instances, with the only notable exception being for n = 20, where running with multiple
instances found the smallest upper bound of 816 (See Tables 6-7).

While both MIP formulations were able to prove optimality for n = 12, only the clique
formulation was able to prove optimality for n = 13 within the 6 hours allotted (See Table
8). While local search is not able to prove optimality, it found the optimal solution for both

R. Mirka, L. Greenstreet, M. Grimson, and C. P. Gomes 47:7

n = 12 and 13. For all n = 2 − 20, the clique formulation resulted in the largest lower bound
(See Table 1). The results were more varied for the upper bound, where the random walk
found the lowest upper bound for n = 14 and 17, the clique found the lowest upper bound
for n = 18, 19, and 20, and both methods found the same upper bound for n = 15 and 16
(See Table 2). For n = 16, the assignment formulation matched the upper bound found by
the clique formulation and random walk.

A* was only able to run to completion for n = 12. For n = 13 − 15, A* ran out memory,
despite being allotted 128GB where all other methods used under 32GB. For n > 15, A* was
only able to reach configurations with at most seven fixed values, resulting in a weak lower
bound on the optimal solution.

Table 1 Lower bound by method for n = 12 − 20. Bold values indicate the best bound, i.e. the
largest lower bound, for each n. All methods were allotted 6 hours.

n

12 13 14 15 16 17 18 19 20
Clique MIP 168 218.66 191 252.66 273.66 252 402.66 465.33 155
Assignment MIP 168 218.66 131 141.33 133 91 121 138.66 47
A* search 168 191 166 169 164.66 134 159.33 158.66 106
Random walk - - - - - - - - -

Table 2 Upper bound by method for n = 12 − 20. Bold values indicate the best bound, i.e. the
smallest upper bound, for each n. All methods were allotted of 6 hours.

n

12 13 14 15 16 17 18 19 20
Clique MIP 168 218.66 272 345.33 427.33 522 617.33 732 816
Assignment MIP 168 218.66 272 346 427.33 526 621.33 732 886
A* search 168 - - - - - - - -
Random walk 168 218.66 268 345.33 427.33 508 623.33 742.66 866

For the exploratory tests, for all n = 2 − 10 there are multiple optimal solutions (See
Figure 2). The number of solutions did not show any obvious patterns, such as a monotonic
increase or alternation between odd and even digits. For n = 6 − 10 where we were able to
compute the distribution of solutions exactly, up to 10% of solutions were within 10% of
optimal and as many as 40% of solutions were within 20% of optimal (See Figure 2). For
n = 11 − 20 we looked at the distribution over a million random solutions instead of the full
solution space, so the best solution likely does not represent the optimal solution. However,
the trend of a large proportion of the cumulative distribution being within 20% of the best
solution continued, where at the high-end of the range over 40% of solutions were within
10% of the best solution and over 90% were within 20% of the best solution.

7 Discussion

Both the clique and assignment formulation were able to prove optimality for the previously
unsolved case of n = 12 and the clique formulation was further able to prove optimality for
n = 13. For n = 14 − 20, the clique formulation consistently found the best lower-bounds,
outperforming the assignment formulation and A* in all seven cases. While the clique
formulation and a random walk were comparable in establishing upper bounds, finding the

CP 2023

47:8 A New Approach to Finding 2 x n Partially Spatially Balanced Latin Rectangles

Figure 2 (Left) Number of optimal solutions by n. (Right) Cumulative distribution of solutions
as proportion of the best solution. For n = 6 − 10 (green), distributions represent all solutions. For
n = 11 − 20 (blue), distributions are over a million random solutions. Dashed lines indicate solutions
that are 10% and 20% greater than the best solution respectively.

best upper bound in five and four cases respectively, the clique formulation appeared to
perform better for large n, establishing the best upper bound for n = 18 − 20. Thus, the
clique formulation outperformed each of the other three methods individually, as well as
performed better than using a combination of other methods, such as using A* to establish
lower bounds and a random walk to establish upper bounds.

While the clique formulation outperformed the other methods, no method was able
to prove the optimality of a solution above n = 13. The exploratory results shed some
light on why it is difficult to find even relatively small PSBLRs. First, the potential for
mirror solutions as well as the presence of multiple solutions for all n = 3 − 10 make it
challenging for the MIP formulations to prove optimality, as potentially many branches of
the branch-and-bound tree include optimal solutions and must be extensively explored before
they can be pruned. Further, while there are likely multiple solutions, the possibility of a
mirror rectangle violating a column constraint means we cannot guarantee multiple solutions
and use techniques like streamlining constraints to guide the model towards a single optimal
solution.

The large portion of the cumulative distribution close to the optimal solution further
hampers the MIP formulations, making it difficult to prune branches that include near-
optimal solutions. This large number of near-optimal solutions also hampers A* search,
where a very tight heuristic is needed to allow for any significant amount of pruning, where
experimentally we found that most nodes could generally only be pruned once all but one or
two values had been assigned. While a random walk would benefit from multiple optimal
solutions, a random walk or other local-search based methods cannot establish optimality.

8 Conclusion

Spatially and partially spatially balanced Latin squares and rectangles are important com-
binatorial structures used for experimental design. While spatially balanced Latin squares
have been extensively studied, relatively little work has considered spatially balanced Latin
rectangles, despite them occurring more frequently in practice.

R. Mirka, L. Greenstreet, M. Grimson, and C. P. Gomes 47:9

We introduce a new graph-based encoding for a 2 × n Latin rectangle which inspires a
new MIP formulation based on the MEWC problem. This new formulation found optimal
solutions previously unsolved 2 × 12 and 2 × 13 cases and outperforms an assignment-based
MIP formulation, A* search, and a random-walk based local-search, establishing improved
bounds up to n = 20. Given the success of our straight-forward MIP implementation for
MEWC, a direction for future work is to explore whether more advanced MEWC methods
are able to find optimal PSBLRs for n > 13.

Further, our exploratory results help characterize what make finding PSBLRs computa-
tionally challenging. The potential, but not guarantee, of multiple optimal solutions makes it
difficult for mathematical programming methods to establish optimality and prevents the use
of standard methods for handling multiple solutions, such as streamlining. The large number
of near-optimal solutions makes it difficult for informed search-based methods to prune any
significant amount of solutions, requiring near brute-force exploration of the search space.
While simple to encode, this problem is quite challenging, making it an ideal benchmark
for future search and optimization methods and we encourage further exploration of the
problem.

References

1 Luis A Agapito, Marco Fornari, Davide Ceresoli, Andrea Ferretti, Stefano Curtarolo, and
Marco Buongiorno Nardelli. Accurate tight-binding hamiltonians for two-dimensional and
layered materials. Physical Review B, 93(12):125137, 2016.

2 Bahram Alidaee, Fred Glover, Gary Kochenberger, and Haibo Wang. Solving the maximum
edge weight clique problem via unconstrained quadratic programming. European Journal of
Operational Research, 181(2):592–597, 2007.

3 Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph. SIAM
Journal on Computing, 15(4):1054–1068, 1986.

4 Mateo Díaz, Ronan Le Bras, and Carla Gomes. In search of balance: The challenge of
generating balanced latin rectangles. In Proceedings of Integration of AI and OR Techniques
in Constraint Programming: 14th International Conference, pages 68–76. Springer, 2017.

5 G Dijkhuizen and Ulrich Faigle. A cutting-plane approach to the edge-weighted maximal
clique problem. European Journal of Operational Research, 69(1):121–130, 1993.

6 Stefano Ermon, Carla Gomes, Ashish Sabharwal, and Bart Selman. Low-density parity
constraints for hashing-based discrete integration. In Proceedings of International Conference
on Machine Learning, pages 271–279. PMLR, 2014.

7 U Faigle, R Garbe, K Heerink, and B Spieker. Lp—relaxations for the edge—weighted
subclique problem. In Operations Research’93: Extended Abstracts of the 18th Symposium on
Operations Research held at the University of Cologne September 1–3, 1993, pages 157–160.
Springer, 1994.

8 Carla Gomes and Meinolf Sellmann. Streamlined constraint reasoning. In Proceedings of
Principles and Practice of Constraint Programming: 10th International Conference, pages
274–289. Springer, 2004.

9 Carla Gomes, Meinolf Sellmann, Cindy Van Es, and Harold Van Es. The challenge of generating
spatially balanced scientific experiment designs. In Proceedings of the International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 387–394. Springer, 2004.

10 Carla P Gomes, Joerg Hoffmann, Ashish Sabharwal, and Bart Selman. Short xors for model
counting: from theory to practice. In Proceedings of Theory and Applications of Satisfiability
Testing–SAT 2007: 10th International Conference, pages 100–106. Springer, 2007.

CP 2023

47:10 A New Approach to Finding 2 x n Partially Spatially Balanced Latin Rectangles

11 Carla P Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy for
obtaining good bounds. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 10, pages 1597538–1597548, 2006.

12 Carla P Gomes, Willem Jan van Hoeve, Ashish Sabharwal, and Bart Selman. Counting
csp solutions using generalized xor constraints. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 204–209, 2007.

13 Seyedmohammadhossein Hosseinian, Dalila BMM Fontes, Sergiy Butenko, Marco Buongiorno
Nardelli, Marco Fornari, and Stefano Curtarolo. The maximum edge weight clique problem:
formulations and solution approaches. Optimization Methods and Applications: In Honor of
Ivan V. Sergienko’s 80th Birthday, pages 217–237, 2017.

14 Seyedmohammadhossein Hosseinian, DBMM Fontes, and Sergiy Butenko. A quadratic ap-
proach to the maximum edge weight clique problem. In XIII Global Optimization Workshop
GOW, volume 16, pages 125–128, 2016.

15 Marcel Hunting, Ulrich Faigle, and Walter Kern. A lagrangian relaxation approach to the
edge-weighted clique problem. European Journal of Operational Research, 131(1):119–131,
2001.

16 Ronan Le Bras, Carla Gomes, and Bart Selman. From streamlined combinatorial search
to efficient constructive procedures. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 26-1, pages 499–506, 2012.

17 Ronan Le Bras, Andrew Perrault, and Carla P Gomes. Polynomial time construction for
spatially balanced latin squares. Technical report, Cornell University, 2012.

18 Anuj Mehrotra. Cardinality constrained boolean quadratic polytope. Discrete Applied
Mathematics, 79(1-3):137–154, 1997.

19 Michael M Sørensen. New facets and a branch-and-cut algorithm for the weighted clique
problem. European Journal of Operational Research, 154(1):57–70, 2004.

20 Etsuji Tomita, Tatsuya Akutsu, and Tsutomu Matsunaga. Efficient algorithms for finding
maximum and maximal cliques: Effective tools for bioinformatics. IntechOpen, 2011.

21 HM Van Es and CL Van Es. Spatial nature of randomization and its effect on the outcome of
field experiments. Agronomy Journal, 85(2):420–428, 1993.

22 Pascal Van Hentenryck and Laurent Michel. Differentiable invariants. In Proceedings of
Principles and Practice of Constraint Programming: 12th International Conference, pages
604–619. Springer, 2006.

A Supplementary Results

Table 3 Runtime in seconds for single instances of the clique formulation run in Gurobi and
CPLEX using a single thread for n = 8 − 13. The dash indicates that the model was not able to
prove optimality in 6 hours (21,600 s). For all n less than 8, both models ran in under one second.

n
8 9 10 11 12 13

CPLEX 1.10 4.48 28.76 675.16 - -
Gurobi 1.15 4.99 51.13 171.22 614.22 4750.96

R. Mirka, L. Greenstreet, M. Grimson, and C. P. Gomes 47:11

n
14 15 16 17 18 19 20

CPLEX 132 119.29 97.54 88 47.79 40.06 45.06
Gurobi 191 252.66 273.66 252 402.66 465.33 155

Table 4 Comparison of the greatest lower bound found by single instances of the clique formulation
run in Gurobi and CPLEX using a single thread for 6 hours for n = 14 − 20.

n
14 15 16 17 18 19 20

CPLEX 272 354 437.33 526 631.33 762 878
Gurobi 272 345.33 427.33 522 617.33 732 876

Table 5 Comparison of the smallest upper bound found by single instances of the clique
formulation run in Gurobi and CPLEX using a single thread for 6 hours for n = 14 − 20.

n
Instances Threads/Inst. 14 15 16 17 18 19 20
1 1 191 252.66 273.66 252 402.66 465.33 155
8 1 159.69 185.28 203.11 198.56 - 389.50 92.5
1 32 201.57 249.79 273.82 240.90 185.75 371.95 28

Table 6 Comparison of the greatest lower bound found by three Gurobi configurations run for 6
hours for n = 14 − 20. The dashed cell indicates a run that failed due to numerical instability.

n
Instances Threads/Inst. 14 15 16 17 18 19 20
1 1 272 345.33 427.33 522 617.33 732 886
8 1 270 358.66 442.66 530 - 747.33 816
1 32 276 347.33 430.66 522 631.33 766 900

Table 7 Comparison of the smallest upper bound found by three Gurobi configurations run for 6
hours for n = 14 − 20. The dashed cell indicates a run that failed due to numerical instability.

n
8 9 10 11 12 13

Assignment MIP 1.09 6.23 59.02 678.39 3790.28 -
Clique MIP 1.15 4.99 51.13 171.22 614.22 8573.43
A* 0.07 0.78 8.72 98.70 1299.66 -

Table 8 Runtime in seconds for single instances of the clique and assignment formulations run in
Gurobi using a single thread and A* search for n = 8 − 13. The dash indicates that the model was
not able to prove optimality in 6 hours (21,600 s). For all n less than 8, all models finished in under
one second. The random walk is not included in this table as the method does not prove optimality.

CP 2023

	1 Introduction
	2 Preliminaries
	3 Graph Encoding
	4 MIP Formulation
	5 Methods
	6 Results
	7 Discussion
	8 Conclusion
	A Supplementary Results

