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Abstract

The Machine Learning community has recently shown a growing interest in Optimal
Transport (OT). Methods that leverage entropy regularization based on OT have
proven especially effective for various tasks, including ranking, sorting, and solving
jigsaw puzzles Mena et al. [2018], Adams and Zemel [2011], Cuturi [2013]. In our
study, we broaden the application of entropy regularization methods to address the
NP-hard Travelling Salesman Problem (TSP). We first formulate TSP as identifying
the permutation of a Hamiltonian Cycle with the shortest length. Following this,
we establish the permutation representation using the Gumbel-Sinkhorn operator
with entropic regularization. Our findings indicate a balance between entropy and
generalization. We further discuss how to generalize across different hardnesses.

1 Introduction

Optimal Transport (OT) offers a structured approach to efficiently move one probability distribution
to another Villani et al. [2009]. Sinkhorn algorithm provides a differentiable approximation of the
discrete OT problem, making it suitable for gradient-based optimization techniques commonly used
in machine learning Sinkhorn [1964], Adams and Zemel [2011]. The Sinkhorn algorithm has been
demonstrated to be effective in the context of entropy regularization for optimal transport.

Recent studies have demonstrated that methods based on the Sinkhorn algorithm can effectively learn
to approximate permutations in a differentiable manner Mena et al. [2018]. The Sinkhorn operator
enhances the smooth optimization of the entropy regularization term, leading to robust and efficient
solutions for various optimal transport challenges. Given the pivotal role of permutations in numerous
applications, the Sinkhorn operator offers promising potential in addressing a variety of problems.
For instance, Linderman et al. [2018] introduced a rounding method employing the Sinkhorn operator
to draw samples from matrices close to the Birkhoff polytope. , Wang et al. [2019] constructed a
fully differentiable deep network architecture to learn affinity in graph matching, employing the
Sinkhorn Network Adams and Zemel [2011]. Meanwhile, Pang et al. [2020] illustrated that inferring
the permutation matrix through Sinkhorn iterations outperforms the traditional classifier approach of
Jigsaw self-supervision.

In our study, we broaden the application of entropy regularization methods to build a heuristic for
the NP-hard Travelling Salesman Problem (TSP). TSP is a classic optimization problem that holds
fundamental importance in operations research and combinatorial optimization. The problem poses
the question: With a given list of cities and the distances between them, how can you determine the
shortest route that passes through each city only once and then returns to the starting city? From a
graph perspective, this can be rephrased as: In a complete weighted graph (where cities are vertices,
and roads are edges), identify the Hamiltonian Cycle with the shortest distance.
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A variety of methods have been put forth to address the TSP. These include the exact solver Concorde
1 and the Lin-Kernighan-Helsgaun (LKH) heuristic Helsgaun [2000, 2017]. Recently, there has been
a surge in interest and research efforts focused on developing data-driven heuristics for solving the
TSP Bengio et al. [2021]. Researchers have been actively exploring various data-driven methodolo-
gies, including reinforcement learning (RL), supervised learning (SL), and unsupervised learning
(UL), to build heuristics for the TSP.

In reinforcement learning (RL), the agent interacts with the environment by iteratively selecting
actions (e.g., visiting cities in a specific order or performing 2-opt) to optimize the total tour length.
The agent receives feedback in the form of rewards or penalties based on the quality of the tours
it constructs Kool et al. [2018]. However, RL methods often come with certain challenges. One
primary issue is the sparse reward problem. The agent receives minimal or no immediate feedback
on the quality of its actions during exploration, making it difficult to learn from the rewards. As a
result, RL algorithms may struggle to converge to optimal or near-optimal solutions, especially in
high-dimensional and large-scale instances of the TSP.

In contrast, supervised learning (SL) models, often leveraging Graph Neural Networks (GNNs), learn
from labelled data to eliminate the need for extensive exploration. These GNN-based models typically
generate heat maps indicating edge probabilities in TSP tours, later converted to discrete decisions
via methods like greedy or beam search Joshi et al. [2019], Fu et al. [2021]. Yet, SL demands vast
labelled training sets, requiring optimal tour calculations for numerous TSP instances. For instance,
Fu et al. [2021] used 1 million solved TSP instances for TSP 100, while Sun and Yang [2023] used
1.5 million. Given TSP’s NP-hard nature, solving large instances is computationally expensive due to
exponentially growing possible solutions.

UL enables models to discover hidden structures in TSP without labelled training instances. In a
recent study by Min et al. [2023], the authors introduced an unsupervised learning method known
as UTSP. In UTSP, the training process incorporates a surrogate loss function to effectively train
the Graph Neural Network (GNN). This surrogate loss function consists of two components: one
encourages the model to discover the shortest path, while the other acts as a surrogate for the constraint
that the route must form a Hamiltonian Cycle. As mentioned, UL training does not depend on any
labelled training data, making it suitable for scenarios where obtaining labelled instances is difficult
or impractical. Additionally, UL training offers faster convergence compared to RL methods due to
the absence of the sparse reward problem that RL often encounters. As a result, UTSP presents a
promising solution for efficiently tackling the TSP without the need for extensive labelled data or
encountering convergence issues associated with RL Min et al. [2023].

In UL, for n city coordinates x ∈ Rn×2, the GNN generates a transition matrix T for the TSP. From
T, we derive a heat map H, where each element in H represents the likelihood of an edge being part
of the optimal solution. After building the heat map H, we then apply local search to find the TSP
solution. However, Min et al. [2023] focuses on generalization within a single distribution, meaning
both training and test data originate from the same distribution, we delve into broader scenarios where
training and test data might arise from different distributions.

Our contributions Here, we reformulate the TSP challenge as Identifying a permutation matrix
that reorders the nodes to yield the shortest Hamiltonian Cycle. Subsequently, we employ a method
based on the Gumbel-Sinkhorn operator to learn this permutation matrix. We train our model in an
unsupervised learning fashion, and our findings indicate that (1) there exists a trade-off between
entropy and generalization; (2) by adjusting the parameters of the Gumbel-Sinkhorn operator, we can
achieve better generalization; (3) we discuss a more general scenario where training and test data
might arise from different distributions, building upon the phase transition phenomenon observed
in Gent and Walsh [1996], we illustrate that the model learned from harder cases can be effectively
extended to easier instances.

2 Unsupervised Learning TSP

In UTSP, the authors leverage a GNN to generate a doubly stochastic matrix T ∈ Rn×n (a square
matrix of nonnegative real numbers, each of whose rows and columns sums to 1). Given TSP instance
with coordinates x ∈ Rn×2, the authors first feed the coordinates into a GNN and the model outputs

1http://www.math.uwaterloo.ca/tsp/concorde/index.html
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h ∈ Rn×n Min et al. [2023]. Subsequently, the authors apply a column-wise Softmax activation to
the matrix h and generate T. They then construct a heat map H based on T:

H = TVTT , (1)

where

V =



0 1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
...

...
...

. . . . . .
...

...
...

0 0 0 0
. . . 1 0 0

0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 0 1
1 0 0 0 · · · 0 0 0


(2)

is the Sylvester shift matrix, V ∈ Rn×n. H ∈ Rn×n and Hij estimates the probability of edge
(i→ j) belonging to the optimal solution. During the training phase, the model is optimized using
the following loss function:

L = λ1

n∑
i=1

(

n∑
j=1

Ti,j − 1)2︸ ︷︷ ︸
Row-wise constraint

+ λ2tr(H)︸ ︷︷ ︸
No self-loops

+

n∑
i=1

n∑
j=1

Di,jHi,j︸ ︷︷ ︸
Minimize the distance

, (3)

where H is constructed using Equation 1 and D ∈ Rn×n represents the distance matrix. The combi-
nation of column-wise Softmax activation and the row-wise penalty term λ1

∑n
i=1(

∑n
j=1 Ti,j − 1)2

serves as a surrogate to ensure that T behaves like a doubly stochastic matrix. Equation 3 can
also be expressed in another form: L = λ1

∑n
i=1(

∑n
j=1 Ti,j − 1)2 +

∑n
i=1

∑n
j=1 D̃i,jHi,j , where

D̃ = D+ λ2In, In ∈ Rn×n is the identity matrix, λ2 is the distance of self-loops.
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Figure 1: Illustration of T → H transformation.

The intuition behind the T → H transformation is to encode the Hamiltonian Cycle constraint
implicitly into the model. When we use T directly as the heat map, the corresponding route does not
satisfy the constraint, an example under binary assumption is shown in Figure 1. Figure 1(a) shows
the occasion when directly using T as the output heatmap: when city 2 and city 3 are close to each
other, minimize

∑n
i=1

∑n
j=1 Di,jHi,j can result in a loop between the cities. Since TSP asks us to

find the shortest Hamiltonian Cycle on a graph, this loop should be discouraged. Figure 1(b) shows
the situation when using T → H transformation. The first row of matrix H represents the probability
distribution of directed edges originating from city 1. Specifically, if the third element in the first row
is the only non-zero entry, it indicates the presence of a directed edge 1 → 3 in our TSP solution.
Similarly, the first column of matrix H corresponds to the probability distribution of directed edges
that terminate at city 1.

3 Learning TSP via Permutation

In fact, T represents an approximation of a general permutation matrix, which can be interpreted
as a differentiable relaxation of the a sequence of swapping nodes actions. Let’s first consider an
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elementary permutation matrix P(q, t) ∈ Rn×n which swaps the qth row with the tth row of a matrix:

P(q, t)i,j =


1, if i = j and (i 6= q) and (i 6= t)

1, if i = q and j = t

1, if i = t and j = q

0, otherwise

, (4)

When we apply the elementary permutation matrix P(q, t) on matrix A ∈ Rn×n, the qth and tth
rows of matrix A are interchanged while leaving all other elements unchanged. Similarly, if we
post-multiply A by P(q, t), it results in permuting the qth and tth columns of A while keeping the
remaining elements unaltered. So given A, P(q, t)AP(q, t)T = P(q, t)AP(q, t) permutes the qth and
tth columns and rows of A.

Figure 2: Illustration of an elementary operation on a Hamiltonian Cycle: 1 → · · · → p → q →
r → · · · → s → t → u → · · · → v → 1. (a): the original route; (b) the route corresponds to
AP(q, t)T ; (c) the route corresponds to P(q, t)AP(q, t)T .

Now let’s consider when A represents a Hamiltonian Cycle: 1 → · · · → p → q → r → · · · →
s → t → u → · · · → v → 1. As mentioned before, the qth or tth row of matrix A represents
the probability distribution of directed edges originating from city q or t, and the qth or tth column
of matrix A corresponds to the probability distribution of directed edges that terminate at city q or
t. That is to say: when we perform the post-multilpying operation AP(q, t)T , we swap the parent
nodes of city q and t, as shown in Figure 2 (b), it results in the removal of two directed edges: p→ q
and s → t, additionally, two new directed edges are added: p → t and s → q. We then apply the
elementary permutation matrix P(q, t) to the new route, which leads to the swapping of child nodes
associated with city q and city t: we remove the directed edges q → r and t → u rom the route,
and introduce the directed edges q → u and t → r instead, as shown in Figure 2 (c). Overall, the
operation P(q, t)AP(q, t)T corresponds to a node swapping operation. It swaps the child and parent
nodes of city q and t in the cycle, while preserving the order of the remaining nodes in the cycle.
This operation maintains the edge count and doesn’t introduce any new sub-loop. Therefore, the new
route after swapping nodes actions still satisfies the Hamiltonian Cycle constraint.

As mentioned, the doubly stochastic matrix T is a differentiable relaxations of permutation matri-
ces Adams and Zemel [2011]. Since any permutation matrix can be decomposed into a sequence
of elementary permutation matrices. Thus, T can be interpreted as a probabilistic relaxation of
a sequence of node swapping actions. Now, let’s recall Equation 1, if we visualize the Sylvester
shift matrix V in Equation 2 as a heat map, it actually represents the following Hamiltonian Cycle
Hv : 1 → 2 → 3 → · · · → n→ 1. Hence, the TSP can be formulated as: given Hv , our goal is to
find a permutation matrix that swaps the nodes, resulting in the shortest Hamiltonian Cycle.
The mapping T → H provides a probabilistic representation of the node swapping actions of the
Hamiltonian Cycle Hv .

In Min et al. [2023], the authors emphasize the significance of low entropy (non-smooth) repre-
sentations. When the heat map exhibits high entropy (smooth), then the probability distribution of
node-swapping actions is evenly spread, leading to a representation lacking significant meaning. In
other words, if the heat map shows a smooth transition of probabilities across different regions, it
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suggests that all swapping actions are equally possible, making it difficult to distinguish significant
swapping actions. On the contrary, by controlling the smoothness of the heat map, we can adjust the
probabilities of actions to be more distinct and informative (low entropy). Ideally, we aim to regulate
the "entropy" of the heat map, allowing for a clearer depiction of the probabilities associated with
actions.

4 Build Permutation Matrix using Gumbel-Sinkhorn operator

Here, we use the Gumbel-Sinkhorn operator mentioned earlier to control the entropy of a heat map.

Sinkhorn operator The Sinkhorn operator S(X) over X ∈ Rn×n can be written as:

S0(X) = exp(X), (5)

Sl(X) = Tc
(
Tr(Sl−1(X))

)
,

S(X) = lim
l→∞

Sl(X).

where Tr(X) = X � (X1n1
>
n ), and Tc(X) = X � (1n1

>
nX) as the row and column-wise normal-

ization operators of a matrix, with � denoting the element-wise division and 1n a column vector of
ones Jang et al. [2017], Maddison et al. [2017], Adams and Zemel [2011].

Building Gumbel-Sinkhorn distribution Mena et al. [2018] shows that we can build a differen-
tiable approximation of the permutation matrix by introducing Gumbel noise to the Sinkhorn operator.
To be specific, they show that we can build a continuous relaxation of a permutation matrix T by a
temperature-dependent Sinkhorn operator:

S(
X + ε

τ
), (6)

where ε is sampled from Gumbel noise, τ is the temperature and S is the Sinkhorn operator. Overall,
there are two parameters controlling the entropy (smoothness) of the approximation: the number of
iterations in Equation 5 and the temperature parameter in Equation 6.

(a) τ = 0.01, l = 10 (b) 0.01, 200 (c) 0.1, 200

Figure 3: Illustration on how the temperature parameter τ and iteration number parameter l control
the entropy of the representation. Higher temperature or smaller iteration number can lead to a higher
entropy presentation.

Figure 3 shows how a 10 × 10 matrix looks like under Gumbel-Sinkhorn operator with different
parameters, where X ∈ R10×10 is a random input matrix. In our model, given a GNN’s output
h ∈ Rn×n, we first construct the transition matrix T by applying a Gumbel-Sinkhorn Operator S on
h. This operation can be denoted as: T = S

(
h+ε
τ

)
, we then train the model using:

L = λ1

{ n∑
i=1

(

n∑
j=1

Ti,j − 1)2︸ ︷︷ ︸
Column-wise constraint

+

n∑
j=1

(

n∑
i=1

Ti,j − 1)2︸ ︷︷ ︸
Row-wise constraint

}
+ λ2tr(H)︸ ︷︷ ︸

No self-loops

+

n∑
i=1

n∑
j=1

Di,jHi,j︸ ︷︷ ︸
Minimize the distance

. (7)

Here, the entropy of T actually represents the clarity of the node swapping actions. A low-entropy T
implies that the transitions between different nodes are more distinct and well-defined, which can aid
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in better decision-making for node swapping during the search. On the other hand, an high-entropy
T might introduce more ambiguity in the node swapping actions, potentially leading to suboptimal
solutions. By adjusting the parameters in the Gumbel-Sinkhorn operator, we can control the entropy
of T and, consequently, fine-tune the optimization process to achieve better results for the TSP. Note
that the Gumbel-Sinkhorn Operator does not guarantee the matrix to be precisely doubly-stochastic.
Therefore, we additionally impose Column-wise and Row-wise constraints.

(a) Expansion (b) Explosion (c) Implosion (d) Uniform

Figure 4: Illustration of different distributions on a 2D plane.

The entropy and generalization trade-off We first introduce Dirichlet Energy as a metric to
measure the entropy of T to understand how the entropy affects the learned representations. The
Dirichlet Energy enables us to quantify the extent of smoothness in a d-dimensional representation
f ∈ Rn,d. The Dirichlet Energy is:

E = Trace(fT∆f), (8)

where ∆ = In − D−1/2WD−1/2 ∈ Rn×n is the graph Laplacian, W ∈ Rn×n is the adjacency
matrix andD ∈ Rn×n is the degree matrix of the graph. The Dirichlet EnergyE can be interpreted as
a measure of how much a function defined on the vertices of the graph deviates from being constant.
Given a Laplacian ∆, consider the eigenvectors ψ1, ψ2, ..., ψn with eigenvalues µ1 < µ2 < ... < µn,
ψ1 corresponds to a constant function. Subsequent eigenvectors correspond to increasingly oscillatory
patterns. Functions that are "smoother" with respect to the graph structure will have lower Dirichlet
Energy E and high entropy.

To delve into how entropy affects the model’s performance, we follows Min et al. [2023] and employ
overlap coefficient η as a descriptor for generalization assessment. Given a heat map H, we implement
these steps: 1: We select the M largest elements in each row of H (excluding diagonal elements)
and set the remaining n −M elements to 0; 2: The modified heat map is symmetrized to yield
H′ = H̃ + H̃T . We define Eij ∈ {0, 1} to indicate the presence of an undirected edge (i, j) in our
prediction. Without loss of generality, we assume 0 < i < j ≤ n. The definition of Eij is as follows:

Eij =

{
1, if H′

ij = H′
ji > 0

0, otherwise
.

Let Π denote the set of undirected edges in H′ with Eij = 1, and Γ represent the ground truth edge
set. The overlap coefficient η is defined as the ratio of the number of edges in the intersection of Γ
and Π to the total number of edges in Γ,where η = |Γ∩Π|

|Γ| . The value of η indicates how well our
predicted edge set Π covers the ground truth solution Γ. If η = 1, it implies that Γ is a subset of Π,
demonstrating successful inclusion of all ground truth edges in our prediction.

We then train and test the model on four different distributions: expansion, explosion, implosion,
and uniform. The visual representations of these four distributions are depicted in Figure 4. We
experiment with various τ and l values on the TSP 100 dataset, leading to different levels of entropy
(smoothness) in the models. Subsequently, we evaluate these models on 4 different distributions.
The outcomes are depicted in Figure 5, where, the x-axis represents the Dirichlet Energy E and
the y-axis corresponds to the fully overlapped ratio with the ground truth solutions, we use 1,000
test samples for each distribution. Figure 5 shows how the entropy (Dirichlet Energy) of heat map
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Figure 5: Generated using different τ ,l and learning rate.

affects the generalization performance. We observe a trade-off between entropy and generalization.
In other words, the resulting heat map becomes less informative when the Dirichlet Energy E is
lower, indicating a high entropy representation with equally possible swapping actions. When the
Dirichlet Energy is higher (> 0.3), indicating a low entropy condition, the model is no longer a
soft relaxation of a sequence of node swapping actions. Instead, it becomes limited to generating
only very few swapping actions, which also hurts the generalization. Our findings indicate that
both low Dirichlet Energy (high entropy) and high Dirichlet Energy (low entropy) hurt the model’s
generalization capability. To achieve the best generalization performance, it is crucial to control the
smoothness of the representation.

5 Hardness Generalization

Figure 5 also shows that various distributions exhibit distinct levels of generalization ability. For
instance, the expansion distribution shows a fully overlapped ratio of 0.15, while the explosion
distribution demonstrates a higher fully overlapped ratio of 0.50. Here, we aim to borrow a model
from one distribution and leverage it to enhance the overlapped ratio in another distribution. In other
words, our objective is to address the challenge of generalization across these different distributions.

TSP Difficulty and the Phase Transition Before exploring generalization across different distri-
butions, we start by constructing a hardness-based descriptor for each distribution. This descriptor
allows us to measure the characteristics of instances for a given distribution to gain insights into
which features of an instance make our model perform well or poorly Smith-Miles et al. [2010].

Cheeseman et al. [1991] show that computational difficulty is often associated with this phase
transition. The phenomenon of phase transitions in combinatorial problems has been observed in
various domains, such as Boolean satisfiability Kirkpatrick and Selman [1994], Mitchell et al. [1992]
and graph coloring Cheeseman et al. [1991]. Gent and Walsh [1996] identify a difficulty parameter γ
for the two-dimensional Euclidean traveling salesman problem. They demonstrate that when dealing
with random instances of the problem, there exists a rapid transition between soluble and insoluble
TSP instances at a critical value of γ. The difficult parameter γ is defined as:

γ = (lopt/
√
nA− 0.78)n1/1.5, (9)

where lopt is the optimal tour lengths, n is the number of cities and A represents the area covered by
the instance. By testing on various instances, they observe a mean value of γ = 0.58, which aligns
with the phase transition point and represents the most challenging condition, often referred to as the
hardest condition. We compute the levels of difficulty for various distributions shown in Figure 4.
Our findings indicate that the order from easy to hard is as follows: expansion, explosion, implosion,
and uniform, as depicted in Figure 6(a).

We evaluate the generalization performance across these four distributions on TSP 100. As shown in
Figure 6(b), where the x-axis represents the test dataset and different bars correspond to the training
dataset. The y axis is the fully overlap ratio with ground truth. Our results suggest that directly
learning on easy instances may result in a lack of generalization power for the GNN when applied
to other instances within the same distribution. On the other hand, learning on harder instances can
enable the GNN to generalize not only to those difficult instances but also to easier ones. For example,
when using an expansion distribution as the test dataset and training the model using expansion TSP,
we observe a fully overlapped ratio of 0.133. However, when we train models on harder datasets such
as explosion, implosion, and uniform data, we observe ratios of 0.258, 0.233, and 0.179, respectively.
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Figure 6: (a): Hardness of different distributions; (b): Generalization across different distributions.

Table 1: Results of using different models + Local Search. Each test dataset consists of 1000 TSP
instances, the Search is adapted from UTSP Min et al. [2023].

Test
Train Expansion Explosion Implosion Uniform

Expansion 0.002% -0.007% -0.005% -0.006%
Explosion - 0.005% -0.001% -0.003%
Implosion - - 0.002% -0.004%
Uniform - - - -0.001%

On the other hand, when using the hardest dataset, uniform, as the test dataset, training the model
using uniform data yields a ratio of 0.619. In comparison, the models trained on expansion, explosion,
and implosion datasets exhibit ratios of 0.49, 0.556, and 0.505, respectively.

We then study how these various models affect the TSP solution quality. Given a learned GNN model,
we use the local search method proposed in Min et al. [2023] to decode the final solution. Our results
are summarized in Table 1. We observe that models learned on harder instances are able to facilitate
the search process on easier instances, resulting in improved solution quality.

Overall, our results suggest that when the GNNs are trained solely on easy instances, the models
may not be exposed to the diverse range of patterns and complexities present in more challenging
instances. As a result, the learned models are not be capable of effectively capturing and generalizing
the underlying structures and relationships in the data. This limited generalization ability can hinder
its performance when applied to unseen or more difficult instances. By contrast, training the GNN on
harder instances forces the model to learn and adapt to a broader range of scenarios. The increased
complexity and variability in these instances provide a richer training environment, allowing the GNN
to capture more intricate patterns and relationships during the unsupervised training. As a result, the
learned model becomes more robust and capable of generalizing not only to the instances from same
distribution but also to easier instances.

6 Conclusion

In this work, we apply the Gumbel-Sinkhorn operator to the TSP. We first reformulate the TSP as
Identifying a permutation matrix that reorders the nodes to yield the shortest Hamiltonian Cycle. Our
model is trained unsupervised, and by controlling entropy with the Gumbel-Sinkhorn operator, we
observe a trade-off between entropy and the generalization of TSP models. Refining the operator’s
parameters helps improve the generalization. We further study how to generalize a learned model
across different distributions. Our results show that models learned from harder instances exhibit
better generalization capability. This highlights the importance of training with harder instances to
augment the model’s capacity to generalize to unseen instances. We anticipate that our model will
motivate researchers to employ machine learning and optimal transport techniques in addressing
more NP-hard problems using a data-driven approach.
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7 Appendix

7.1 Proof

Theorem: Any general permutation matrix T can be decomposed into a sequence of elementary
matrices.
Proof: Let T be a general permutation matrix. We will show that T can be decomposed into a
sequence of elementary matrices. We begin by considering an identity matrix In ∈ Rn×n and
initializing it as the starting point for the decomposition process.

• For each row i from 1 to n, we examine the ith row of T to identify the index j where the
element is 1.

• If j 6= i, we perform a row swap to bring the ith row to the jth position. We use a sequence
of elementary matrices. We apply the elementary matrix P(i, j) to the current matrix.

By iteratively applying the appropriate elementary matrices for each row, we eventually obtain a
matrix in which T is transformed into an identity matrix, as the rows are permuted to match the
original permutation. Thus, we have shown that any general permutation matrix T can be decomposed
into a sequence of elementary matrices, an example can be found in Equation 20. Since every general
permutation matrix can be decomposed into a sequence of elementary matrices, T can be interpreted
as a sequence of actions. That is to say, given a T in Figure 7, we have:

P(2, 6)P(6, 5)P(5, 1)P(2, 4)P(1, 3)T = I6, (10)

we then have:
T = P(1, 3)P(2, 4)P(5, 1)P(6, 5)P(2, 6), (11)

and
TT = P(2, 6)TP(6, 5)TP(5, 1)TP(2, 4)TP(1, 3)T . (12)

7.2 Example

Figure 7: Illustration of applying a general operation on H0.

A general permutation matrix is a square matrix that represents a permutation of its rows or columns.
There is exactly one nonzero entry in each row and each column. It rearranges the elements of
an identity matrix based on a specific permutation. Let’s consider a general permutation matrix
T ∈ Rn×n.

Given a Hamiltonian Cycle H0 in Figure 7, TH0TT represents applying a sequence of swap operation
on H0. T → H transformation corresponds to 5 swap operations: swap city (2, 6), (5, 6), (1, 5), (2, 4)
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TH0TT =P(1, 3)P(2, 4)P(5, 1)P(6, 5)P(2, 6)H0P(2, 6)T︸ ︷︷ ︸
swap 2,6

P(6, 5)TP(5, 1)TP(2, 4)TP(1, 3)T

= P(1, 3)P(2, 4)P(5, 1)P(6, 5)H1P(6, 5)T︸ ︷︷ ︸
swap 5,6

P(5, 1)TP(2, 4)TP(1, 3)T

= P(1, 3)P(2, 4)P(5, 1)H2P(5, 1)T︸ ︷︷ ︸
swap 1,5

P(2, 4)TP(1, 3)T

= P(1, 3)P(2, 4)H3P(2, 4)T︸ ︷︷ ︸
swap 2,4

P(1, 3)T = P(1, 3)H4P(1, 3)T︸ ︷︷ ︸
swap 1,3

.

(13)

and (1, 3), as shown in Equation 13. More specifically, these different routes are:

1 → 2 → 6 → 3 → 5 → 4 → 1 H0, swap(2, 6); (14)
1 → 6 → 2 → 3 → 5 → 4 → 1 H1, swap(5, 6); (15)
1 → 5 → 2 → 3 → 6 → 4 → 1 H2, swap(1, 5); (16)
5 → 1 → 2 → 3 → 6 → 4 → 5 H3, swap(2, 4); (17)
5 → 1 → 4 → 3 → 6 → 2 → 5 H4, swap(1, 3); (18)

5 → 3 → 4 → 1 → 6 → 2 → 5 TH0TT . (19)



0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0


P(1,3)−−−−→



0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0


P(2,4)−−−−→



0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0



P(5,1)−−−−→



1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0


P(6,5)−−−−→



1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0


P(2,6)−−−−→ I6

(20)
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