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Abstract—Phase mapping is a crucial challenge in materials
discovery, which entails determining crystalline phase distribu-
tion in condition space based on a collection of X-ray diffraction
(XRD) data. This task involves exploring the space of potential
phases, identifying existing phases, and determining their respec-
tive weight distribution in the condition space while adhering
to strict physics constraints. In recent years, there has been a
growing interest in leveraging machine learning (ML) techniques
to tackle the phase mapping problem. ML methods offer the
potential to handle larger and more complex phase mapping
instances and provide enhanced accuracy compared to traditional
approaches. Among promising ML approaches, DRNets, which
formulates the phase mapping problem as an unsupervised
pattern demixing problem, represents the current state of the
art. Despite its practical effectiveness, DRNets does have certain
limitations. For instance, it employs a single multiplicative factor
to calculate the stick locations in XRD patterns, which may not
accurately reflect the underlying physics of X-ray diffraction.
Additionally, DRNets relies on an expensive path-based schema
to enforce phase weight smoothness.

To overcome these limitations, we propose a novel approach
called Physically-informed Graph-based DRNet (PG-DRNet).
PG-DRNet incorporates a physical decoder that estimates the
crystals’ lattice parameters and reconstructs XRD patterns based
on Bragg’s law. Additionally, we introduce a graph-based schema
to enforce phase weight smoothness as well as lattice and peak
intensity shift. This graph-based schema provides several advan-
tages, including improved computational efficiency compared to
the path-based schema utilized in DRNets. To thoroughly evaluate
the effectiveness of our approach, we conducted experiments on
various chemical systems. Notably, our evaluation went beyond
the scope of previous studies that solely focused on varying
compositions and extends to explore the additional dimensions of
varying annealing time and temperature conditions. Our results
demonstrate that PG-DRNet achieves higher accuracy, lower
reconstruction loss and significantly faster performance when
compared to DRNet results.

†: These two authors contributed equally.
*: Shufeng Kong is also affiliated with the Department of Computer Science

at Cornell University and is the corresponding author.

Index Terms—phase mapping, unsupervised pattern demixing,
physically informed decoding, graph-based smoothness

I. INTRODUCTION

In materials science, a phase is uniquely defined by both its

crystal structure and chemical composition. A phase diagram,

often referred to as a phase map, provides crucial information

about the phases that exist under specific chemical compo-

sitions and processing conditions. This diagram serves as a

fundamental cornerstone for materials processing. Therefore,

how to rapidly construct phase diagrams has been an important

research area. The process of constructing phase diagrams

for crystalline materials starts by synthesis and processing of

materials. It is followed by crystal structure characterizations

using X-ray diffraction (XRD), which generates distinctive

signals for each phase characterized by multiple peaks and pro-

vide insights into the atomic arrangement of the phase. Finally,

the analysis of the set of XRD patterns demixes the contribu-

tion of different phases and assigns corresponding weights to

each phase at each experimental condition. The experimental

facet of phase diagram construction has been significantly ex-

pedited with the development of high-throughput experimental

techniques, e.g. combinatorial synthesis,high-throughput laser

annealing and high-throughput XRD techniques [2]–[4] On

the other hand, despite several advancements over the past

few years, analyzing a set of measured XRD data to construct

a phase diagram, also known as phase mapping, has been a

critical missing component in the high-throughput materials

research [5]–[7] To create an accurate phase diagram from

mixed XRD signals, we have to accurately identify the existing

phases and spectrally demix all XRD patterns to retrieve the

phase distributions in the phase diagram space while following

laws of thermodynamics. This has been shown to be a NP-

hard problem because the number of possible phase prototype

combinations can grow exponentially with data size [8]. Fur-
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Fig. 1: Illustration of PG-DRNet’s framework showcasing the importance of an interpretable structured latent space for

incorporating prior knowledge. (a): The original DRNets structure, as proposed in [1], encodes the input XRD pattern into

the variance/shifting-embedding of possible phases. (b): PG-DRNet (our model) encodes the input XRD pattern into the

lattice parameters of possible phases. This approach provides an interpretable representation that captures essential structural

information in the latent space.

thermore, the input XRD data can be contaminated by different

kinds of noise, making phase mapping more challenging.

Many phase mapping approaches methods are based on ma-

trix factorization [9]. These methods integrate thermodynamic

rules to various extents, such as analyzing the composition

graph, integrating demixing with clustering, and incorporating

constraint optimization within matrix factorization to enforce

thermodynamic rules [5], [10]. However, the use of known

prototype patterns in post-processing demixing results often

results in a more ill-conditioned demixing outcome.

Recently Chen et al. developed deep reasoning networks

(DRNets) [1], which provides the first framework that inte-

grates the enforcement of thermodynamic rules with reasoning

about crystal structure prototypes, solving arduous phase map-

ping problems. The DRNets framework first encodes the input

XRD signals to an interpretable latent space and expresses

the physical constraints through entropy-based continuous

relaxations. Figure 1 shows the pipeline of DRNets. The

encoder is composed of 3 three-layer neural networks and

the decoder is a generative Gaussian mixture model (GMM)

which incorporates prior knowledge about prototype phases

of the system. The loss of DRNets consists of two parts:

(1) a reconstruction loss between the input data and the

generated spectrum; (2) a reasoning loss that captures the

domain constraints. The reasoning loss consist of two major

constraints: the Gibbs phase rule and the phase field connec-

tivity. However, DRNets uses a path-sampling technique to

enforce phase connectivity, which involves generating 100,000

paths per epoch to obtain accurate results. In addition, this

large number of paths necessitates a large number of training

epochs for convergence.

In this paper, we propose a physically-informed graph-based

DRNet (PG-DRNet). Instead of using sampled paths to model

the phase field connectivity constraint, PG-DRNet incorporates

a graph-based smoothness constraint, PG-DRNet samples dif-

ferent sub-graphs and uses graph smoothness to approximate

physical constraints. The comparison between our method and

DRNets is shown in Figure 2. The green dots denote the

sampled sub-graphs in our model. On the sampled sub-graphs,

we use a graph smoothness penalty to encourage the activated

phases to form a connective component. More importantly,

PG-DRNet incorporates a physical decoder, which allows

PG-DRNet to modify the prototype phases more physically

and to be adequately expressive. By utilizing the physical

decoder, we can extract valuable information regarding the

lattice parameters of the crystals present in the XRD data. This

additional layer enhances our ability to analyze and interpret

the resulting phase diagram, facilitating further analysis and

exploration of different material systems.

II. BACKGROUND

a) The Gibbs phase rule: The Gibbs phase rule, a funda-

mental concept in thermodynamics, establishes the relationship

between the maximum phase count and thermodynamic de-

grees of freedom. For instance, under constant temperature and

pressure, a common assumption in materials science, the Gibbs
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rule dictates that the number of phases in a ternary chemical

system should be at most three. This necessitates a sparse

representation of the interpretable latent space, ensuring that

each XRD pattern is a mixture of, at most, three basis patterns.

In DRNets, the authors first define the entropy function as

−∑
p log p and set the threshold c of sparsity as log 3 to

control max phase count, where p ∈ R
m is the probability

distribution of possible phases in the interpretable latent space,

m is the number of candidate prototype phases.

b) Phase field connectivity: Phase field connectivity re-

quires that each phase field form a continuous region in the

composition space. This necessitates taking into account the

composition graph of the input XRD patterns. In order to

embed the connectivity constraint into the reasoning module,

DRNets first samples a number of paths in the composition

graph and optimizes the objective function using the data

points within the sampled paths. Figure 2 (left) shows the

scheme of how DRNets models the phase field connectivity

constraint. The red points denote a sampled path in the

composition space. DRNets penalizes the difference between

the phase activation of adjacent data points along the sampled

path. However, this can take a huge number of sampled paths

to successfully approximate the phase connectivity constraints

over the whole composition graph. In fact, for each XRD

dataset, DRNets samples 100,000 paths in the composition

graph via breadth first search and iteratively applies reasoning

to enforce the connectivity rules along the paths. This results

in a substantial training cost.

Fig. 2: Different ways of encoding the phase field connectivity

constraint in phase mapping. Left: the path-based method used

in DRNets. Right: the graph-based method used in PG-DRNet.

III. METHOD

To model the phase connectivity in PG-DRNet, we utilize

smoothness constraints that are based on the generated sub-

graphs. These constraints play a crucial role in enforcing

a smooth and connected phase distribution. By enforcing

sub-graph smoothness, we encourage neighboring data points

within sub-graphs to have similar phase assignments and

weights.

a) Sampling sub-graphs: In PG-DRNet, the first step

in generating sub-graphs is to construct a similarity graph

encompassing all samples. This graph is denoted as G and is

created by evaluating the similarity between input samples. For

a pair of XRD spectra, S1 and S2, with compositions (x1, y1)

and (x2, y2) respectively, we determine if they are connected

in G based on their Euclidean distance. If the distance is

smaller than a given threshold, we establish an edge between

S1 and S2; otherwise, we assume they are not connected in G.

We then randomly select a starting point from the composition

graph and perform a k-step diffusion along the edges. This

diffusion process generates a sub-graph, denoted as G′. By

selecting different starting points and varying the number of

diffusion steps, we can generate a pool of sub-graphs. This

process is illustrated in Figure 3.

During each iteration, we randomly select a sub-graph from

the pool and batch the data points within it. This approach

effectively captures the connectivity and similarity between

the XRD spectra, facilitating the training of PG-DRNet.

b) Building graph smoothness: As mentioned previously,

considering n samples and their corresponding XRD patterns

S1,2,...,n, we construct the similarity graph G by taking into

account the composition, time, and temperature of the input

samples. We then define the adjacency matrix A ∈ R
n×n as:

Aij =

{
1 if Si and Sj are connected in G
0 otherwise

. (1)

Let L = D − A denote the Laplacian matrix of G, where

D is the degree matrix. Given a sub-graph with size l, we

first generate a latent space p ∈ R
l×m using the encoder in

Figure 1. We then pad the learned latent representation p with

zeros and build a new representation p′ ∈ R
n×m, where p′ =

[p′
1|p′

2|...|p′
m], p′

i ∈ R
n is the distribution of i-th phase over

the input XRD samples. The smoothness constraint is then

defined as:

Ls = α
m∑
i=1

p′T
i Lp

′
i

||p′
i||2

. (2)

After applying eigen-decomposition to the graph Laplacian L,

we can rewrite Ls as α
∑m

i=1
1

||p′
i||2h

′T
i (

∑n
j=1 λjvjvT

j )p
′
i =

α
∑m

i=1

∑n
j=1

1
||p′

i||2λj |vTj p′
i|2, where λ1 ≤ λ2 ≤

... ≤ λn are different eigenvalues. When minimizing
1

||h′
i||2

∑n
j=1 λj |vTj h′

i|2 , the smoothness constraint pushes the

h′
i to the eigenstates with low eigenvalues. In other words,

h′
i will have more low frequency components. These low

frequency components will encourage local smoothness and

promoting the non-zero values h′
i (activated phases) to be more

connected. As an example, Figure 4 shows the composition

maps and their corresponding eigenvectors in the Bi-Cu-V

system. Lower eigenstates exhibit smooth transitions between

different compositions. By pushing the phase distribution

towards the lower frequency side, the connectivity constraint

is more likely to be satisfied, resulting in a more continuous,

connected and therefore more physical phase distribution.

c) Physical decoder: Each peak in the XRD patterns

corresponds a family of lattice planes (hkl) with its location in

the q space determined by the interplanar distance dhkl through

the equation qhkl = dhkl/2π. In practice, the interplanar

distance usually deviates slightly from the reference value

in the crystallography database due to non-idealities in the
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Fig. 3: Illustration of how sub-graphs are built. (a): Select a random start point; (b): After a three-step diffusion from the start

point, the diffusion process covers the blue nodes; (c): the resulting sub-graph.

Fig. 4: Different Eigenstates on Bi-Cu-V Graph. (a) to (d): 2nd to 5th eigenstates, (e): 10th eigenstate. The lower eigenstates

exhibit smoother transitions.

Fig. 5: Illustration of how we combine the graph smoothness

constraint and the physical decoder.

lattice, causing a shift in its peak along the q axis. How

to appropriately model such peak shifting is a critical part

of phase mapping algorithms. In DRNets and some other

phase mapping algorithms, [1], [11] the shifting of each phase

is modeled by one single multiplicative factor, which only

models isotropic expansion and compression of an cubic lattice

and is not general enough to model XRD patterns of crystals

with lower symmetry structures. This may lead to inaccurate

phase labeling. To improve upon this, we update PG-DRNet’s

decoder with a comprehensive lattice model governed by six

lattice parameters. These parameters encompass a, b, and c,

describing the lengths of the edges, as well as α, β, and

γ, representing the angles between the edges. For a specific

family of lattice plane (hkl), the XRD peak location pi in q

space can be calculated by

pi(h, k, l, a, b, c, α, β, γ) =

2π

V

(
h2b2c2 sin2 α+ k2a2c2 sin2 β + l2a2b2 sin2 γ

+ 2hkabc2(cosα cosβ − cos γ)

+ 2kla2bc(cosβ cos γ − cosα)

+ 2hlab2c(cos γ cosα− cosβ)
) 1

2

(3)

where V is the volume of the unit cell parallelepiped. [12]

The neural network is then trained using the sampling schema

described in the previous session to predict the shift in the

lattice parameters of each phase and subsequently construct

the XRD pattern through GMM. This method, while requiring

more computing time, is more physically-realistic and imposes

more rigorous constraints on the decoder model.

The key components in the PG-DRNet framework are sum-

marized in Figure 5. The graph smoothness constraint plays a

vital role in modeling the phase connectivity within the system.

By incorporating this constraint, we ensure that neighboring

data points have similar phase assignments, leading to a more

connected and continuous phase distribution. Additionally, we

utilize a physical decoder, which enables us to reconstruct

the X-ray diffraction (XRD) patterns based on the identified

phases. The physical decoder leverages prior knowledge and
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captures the structural information embedded in the XRD

data, allowing more accurate reconstructions of the observed

spectra. Overall, the combination of the graph smoothness

constraint and the physical decoder form a robust framework

that not only captures the phase connectivity but also enables

us to interpret and analyze the underlying structural properties

of the materials.

IV. RESULTS

We conducted evaluations of PG-DRNet on four distinct

material systems characterized by varying element composi-

tions, annealing time, and peak annealing temperature. Our ap-

proach successfully models the phase connectivity constraint,

resulting in a more accurate representation of the phases’

distribution. We also observe improvement in the reconstruc-

tion loss, indicating the effectiveness of our methodology in

accurately reconstructing the observed spectra.

A. Al-Li-Fe system

We evaluate the performance of PG-DRNet on a synthetic

benchmark dataset based on the Al–Li–Fe oxide system. The

results are presented in Figure 6. This system has a collection

of 231 X-ray diffraction (XRD) patterns representing different

compositions, with a total of 158 prototypes. The prototypes

exhibit considerable signal overlap, posing a challenging task

for manual analysis. PG-DRNet effectively identifies 6

distinct phases across 9 different regions, and the presence

of each phase is confirmed through ground truth verification.

Notably, PG-DRNet utilized only 421 sub-graphs, whereas

the original DRNets employed 100,000 paths during training.

This reduction in training samples significantly decreased the

training time. Previously, training a single epoch with DRNets

consumes over 2 hours. In contrast, the training time for

PG-DRNet has been dramatically reduced to approximately

2 minutes. Table I provides a summary of the performance of

different models on Al-Li-Fe system:

The original DRNets model achieves a reconstruction loss of

0.038. It successfully identifies 6 distinct phases without any

discontinuous regions. The training process involves 10,000

epochs, averaging 11.64 seconds per epoch. On the other hand,

when using the DRNets model with Smoothness only, the

reconstruction loss improves to 0.033. Similar to the original

model, it discovers 6 distinct phases without any discontinuous

regions. The training process consists of 50 epochs, with an

average duration of 13.82 seconds per epoch.

In comparison, the PG-DRNet model achieved the low-

est reconstruction loss of 0.027. It also identifies 6 distinct

phases, without encountering any discontinuous regions. The

training process took 50 epochs, averaging 10 minutes per

epoch. Overall, PG-DRNet improves performance in terms of

reconstruction loss and reduces the training time.

B. Bi-Cu-V-oxide system

We extend our evaluation by testing PG-DRNet on the

Bi-Cu-V oxide system, and the corresponding results are

presented in Figure 7. This system consists of a collection

of 307 X-ray diffraction (XRD) patterns with 100 prototypes.

Similarly to the previous systems, the prototypes in this system

exhibit significant signal overlap, making it challenging to

solve using manual analysis alone.

PG-DRNet successfully identifies 15 distinct phases in

19 different mixes within Bi-Cu-V system. The presence

of each phase was confirmed through manual examination.

Remarkably, PG-DRNet utilizes only 921 sub-graphs, while

the original DRNet requires 100,000 paths. This reduction

in the number of training samples significantly reduced the

training time. Previously, training a single epoch using DRNets

could take over 2 hours, whereas with PG-DRNet, it now

takes approximately 3 minutes. This reduction in training

time enhances the efficiency and scalability of the model,

allowing for faster analysis and exploration of phase behavior

in complex oxide systems. Similarly to Al-Li-Fe system, the

incorporation of graph smoothness with a physical decoder

in Bi-Cu-V-oxide system also leads to a lower reconstruction

loss, as demonstrated in Table II. The phases in Bi-Cu-V-oxide

system includes anisotropic strains in the lattice and thus can

only be well-fitted by the new physical-realistic decoder in

PG-DRNet, leading to much lower reconstruction loss. These

results further highlight the significance of incorporating both

physical knowledge and graph smoothness in achieving better

results for systems with varying compositions.

C. Bi-O system

To further assess the performance of PG-DRNet, we inves-

tigate the Bi-O system to explore its behavior under different

annealing times and temperatures, which is carried out by a

lateral-gradient laser spike annealing technique. [3] Unlike the

Al-Li-Fe or Bi-Cu-V-oxide systems, the Bi-O oxide system

has the same composition but different annealing conditions,

providing two degrees of freedom: annealing time and peak

annealing temperature.

Figure 8 presents our results for Bi-O system. By increasing

the graph smoothness weight α from 0.001 to 0.05, we ob-

served a greater connectivity in the phase map. This indicates

that the smoothness loss incorporated in PG-DRNet effectively

enforces the constraint of phase connectivity. In addition, The

graph smoothness constraint in the Bi-O system is effective in

eliminating unphysical solutions. Figure 8 demonstrates that

when the smoothness constraint is low, we observe the pres-

ence of melting or amorphous points in the low temperature

region (<500 ◦C). This occurrence is considered unphysical,

as the melting process typically takes place under high temper-

ature conditions. However, as we gradually increase the weight

of the smoothness constraint from 0.001 to 0.05, the melting

phase gradually disappears, resulting in a continuous phase

distribution on the time-temperature map. This indicates that

the smoothness constraint plays a crucial role in promoting

phase connectivity and suppressing unrealistic phase transi-

tions. By imposing a stronger smoothness constraint, the algo-

rithm encourages neighboring points in the Time-Temperature

map to have similar phase assignments, leading to a more

continuous and physically meaningful phase distribution. This
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Fig. 6: Activation maps generated by PG-DRNet for Al-Li-Fe oxide system.

Reconstruction loss # Discovered Phases # Discontinuous region # Training Epochs
DRNets (100K paths) 0.038 6 0 10000 (11.64s per epoch)

PG-DRNet (462 graphs) 0.027 6 0 50 (4 min per epoch)
DRNets with Smoothness only (462 graphs) 0.033 6 0 50 (7.35s per epoch)

TABLE I: Different models’ performance on Al-Li-Fe system.

Fig. 7: Activation maps generated by PG-DRNet for the Bi–Cu–V oxide system.

Reconstruction loss # Discovered Phases # Discontinuous region # Training Epochs
DRNets (100K paths) 3.916 13 0 10000 (13.82s per epoch)

PG-DRNet (921 graphs) 3.597 15 0 30 (10 min per epoch)
DRNets with Smoothness only (921 graphs) 4.398 15 0 30 (15.56s per epoch)

TABLE II: Different models’ performance on Bi-Cu-V system.

enhancement in the model’s performance further demonstrates

the effectiveness of PG-DRNet in accurately capturing and

representing complex phase behaviors. We further compare

the PG-DRNet activations with the ground truth solutions.

For Delta and Beta phases, we observe mean absolute errors

(MAE) of 0.0965, and 0.0723, respectively.

D. Ta-Sn-Co-O system

Previous results have shown that PG-DRNet achieves better

performance in material systems with varying compositions

or different time and temperature. In addition, we investigate

the Ta-Sn-Co-O system, which raises additional challenges

due to its four degrees of freedom. The presence of multiple

compositional variations (Ta, Sn, Co composition) and distinct

time-temperature conditions makes manual analysis extremely

challenging in this system.

The Ta-Sn-Co-O system consists of 96 XRD patterns. To

effectively analyze this system, we sampled 288 sub-graphs of

varying sizes. Our results are shown in Table IV.

PG-DRNet with the physical decoder obtains the lowest

reconstruction loss of 3.111, discovering 4 distinct phases

without encountering any discontinuous regions. Additionally,

it is noteworthy that utilizing DRNets with 100,000 paths

can also yield a relatively close reconstruction loss to that

of PG-DRNet. This observation can be attributed to the fact

that Ta-Sn-Co-O system has only 96 data points, making
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Fig. 8: From left to right: Phase maps with smoothness weight α = 0.05, 0.01 and 0.001. •: Delta + Melting/amorphous; •:

Beta; •: Melting/amorphous; •: Beta + Delta; •: Melting only.

Reconstruction loss # Discovered Phases # Discontinuous region # Training Epochs
DRNets (100K paths) 6.341 4 0 10000 (7.23s per epoch)

PG-DRNet (786 graphs) 5.342 4 0 30 (6 min per epoch)
DRNets with Smoothness only (786 graphs) 6.151 4 0 30 (9.34s per epoch)

TABLE III: Different models’ performance on Bi-O system.

Reconstruction loss # Discovered Phases # Discontinuous region # Training Epochs
DRNets (100K paths) 3.251 5 1 10000 (6.43s per epoch)

PG-DRNet (288 graphs) 3.111 4 0 50 (1 min per epoch)
DRNets with Smoothness only (288 graphs) 3.854 5 0 50 (4.12s per epoch)

TABLE IV: Different models’ performance on Ta-Sn-Co system.

(a) Ta2O5 phase distribution in the
composition space.

(b) SnO2 phase distribution in the
composition space.

(c) TaO2 phase distribution in the
composition space.

(d) Co4Ta2O9 phase distribution
in the composition space.

Fig. 9: Activation maps (w.r.t. composition) generated by PG-DRNet for the Ta–Sn–Co-O system.

100,000 paths sufficient for effectively modeling this particular

system. However, despite achieving a close reconstruction

loss, we observed an additional distinct phase, CoO2, which

does not belong to Ta-Sn-Co-O system when using DRNets

with 100,000 paths. This observation highlights limitations

of the path-based method in accurately modeling the con-

tinuous constraint in such a complex system. The Ta-Sn-

Co-O system, with its four degrees of freedom, requires the

modeling approach to not only cover all the data points but

also capture the connectivity constraint among them. While

the path-based method may successfully cover all the points,

it falls short in accurately modeling the connectivity constraint,

leading to the inclusion of the uncharacteristic phase CoO2.

This emphasizes the advantage of PG-DRNet in capturing the

underlying continuous constraints and improving the modeling

results in complex systems like Ta-Sn-Co-O. On the other

hand, the DRNets with Smoothness only model achieved a

reconstruction loss of 3.854, identifying 5 distinct phases

while satisfying the continuous constraint. However, it is worth

noting that without the inclusion of a physical decoder, we

observe the presence of an additional phase, SnO, which does

not belong to Ta-Sn-Co-O system. This further highlights

that the physical decoder accurately captures the specific

phases within a system, avoiding the inclusion of extraneous

phases. These findings underscore the importance of integrat-

ing physical knowledge and graph smoothness to enhance the

analysis and understanding of complex phase behaviors in

materials science systems with varying compositions and time-

temperature conditions. We further compare the PG-DRNet

activations with the ground truth solutions. For Ta2O5, SnO2,
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(a) Ta2O5 phase distribution in the
time-temperature space.

(b) SnO2 phase distribution in the
time-temperature space.

(c) TaO2 phase distribution in the
time-temperature space.

(d) Co4Ta2O9 phase distribution
in the time-temperature space.

Fig. 10: Activation maps (w.r.t. Time and Temperature) generated by PG-DRNet for the Ta–Sn–Co-O system.

TaO2, and Co4Ta2O9, we observe mean absolute errors (MAE)

of 0.0850, 0.0523, 0.0776, and 0.0233, respectively.

V. CONCLUSION

In this paper, we introduce PG-DRNet, a novel approach

for phase mapping in materials science. PG-DRNet incor-

porates two key novel components: graph smoothness and

a physical decoder. The graph smoothness component mod-

els the connectivity of the phase field by ensuring similar

phase assignments for neighboring data points. This promotes

a more connected and continuous phase distribution. The

physical decoder captures the structural information of the

identified phases, enabling more accurate reconstructions of X-

ray diffraction patterns and phase assignments. Additionally,

PG-DRNet demonstrates computational efficiency by reducing

the number of required training samples, making the phase

mapping process more efficient.

Through the comprehensive analysis of material systems

characterized by varying compositions, annealing time, and

peak annealing temperature conditions, we have evaluated

the effectiveness of PG-DRNet. Our findings demonstrate

that PG-DRNet effectively captures the phase connectivity

within complex systems, resulting in a more connected and

continuous phase distribution. Additionally, the integration of

a physical decoder has enhanced our ability to accurately

reconstruct X-ray diffraction (XRD) patterns.

Overall, by combining the graph smoothness component and

the physical decoder, PG-DRNet offers a new framework for

solving the phase mapping problem. The proposed approach

enhances our ability to study and understand complex phase

behaviors in materials science, providing insights into phase

connectivity and accurate reconstructions of experimental data.

PG-DRNet holds significant potential for advancing materials

research and development by enabling more accurate phase

mapping and characterization.
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