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ABSTRACT
Aquaculture is growing rapidly in the Amazon basin and detailed
spatial information is needed to understand the trade-offs between
food production, economic development, and environmental im-
pacts. Large open-source datasets of medium resolution satellite
imagery offer the potential for mapping a variety of infrastructure,
including aquaculture ponds. However, there are many challenges
utilizing this data, including few labelled examples, class imbalance,
and spatial bias. We find previous rule-based methods for mapping
aquaculture perform poorly in the Amazon. By incorporating tem-
poral information through percentile data, we show deep learning
models can outperform previous methods by as much as 15% with
as few as 300 labelled examples. Further, generalization to unseen
regions can be improved by incorporating segmentation informa-
tion through masked pooling and using contrastive pretraining to
harness large quantities of unlabelled data.

CCS CONCEPTS
• Computing methodologies→ Object identification; Image
segmentation.
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1 INTRODUCTION
Aquaculture describes the farming or cultivation of aquatic organ-
isms, including fish, molluscs, and crustaceans [7]. In contrast to
capture fisheries, in aquaculture steps are taken to enhance pro-
duction such as stocking, feeding, and controlling features of the
aquatic environment. Aquaculture can help meet multiple Sustain-
able Development Goals, including reducing hunger, improving
nutrition, and creating sustainable economic growth and has been
identified as a key way to reduce the environmental impacts of
animal-based foods [2, 41]. Previously, studies have shown that
aquaculture generally has lower freshwater use, carbon emissions,
and nutrient pollution than traditional livestock [9, 18]. However,
impacts such as freshwater use and carbon emissions can vary
by over two orders of magnitude based on factors such as species
farmed, production methods, and land-use change [13]. Thus, in-
formation at the level of individual aquaculture farms is important
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Figure 1: The Amazon basin (solid outline) covers over 7
million square kilometers and intersects 8 countries. In this
study, we train models for aquaculture detection using data
from the Brazilian state of Rondônia (dotted region) and test
generalization to the state of Amazonas (dashed region).

to develop socially, economically, and environmentally sustainable
food systems.

Currently, studies of aquaculture in the Amazon are hindered
by a lack of comprehensive data for even basic information, such
as farm location and pond sizes [8, 23]. Mapping aquaculture in
the Amazon is particularly important due to the region’s ecological
significance. Detailed maps can assist in environmental impact
assessments by revealing the spatial distribution of aquaculture
activities and their proximity to vulnerable ecosystems [13, 22].
Additionally, detailed spatial information aids in identifying areas
of potential expansion or conflict with other land uses [23, 42], and
is instrumental in decision-making processes, allowing for informed
policy creation and better management strategies [1]. Moreover, a
comprehensive map also provides the foundation for monitoring
and mitigating potential negative effects such as pollution, disease
spread, or habitat degradation [24].

Large open-source datasets of medium-resolution remote sens-
ing imagery create the possibility of large-scale, low-cost mapping
of a variety of resources and infrastructure. For example, since 2014,
the Sentinel-1 and 2 satellites have been producing a global dataset
of both radar and multispectral data at 10-60m2 resolution with
a revisit time as low as 5 days [35]. However, there are several
challenges to effectively using this data. First, while huge quantities
of data are available, there are often few labelled examples. Sec-
ond, labelled examples often have heavy class imbalances and are
spatially biased, making it difficult to create reliable models that
do not learn spurious correlations. Further, some resources such
as crops or aquaculture ponds may only be distinguishable from

similar resources with time series imagery that captures patterns
of human management over time.

1.1 Prior Work
Over eight papers have been published in the past five years map-
ping aquaculture from remote imagery [6, 10, 26, 28, 29, 31, 38, 44].
All studies focused on regions in Asia, ranging in scale from a small
island [10] to the full continent [26]. The majority of these studies
used Sentinel-1 and 2 medium resolution imagery (10-60m2) as
input, with Sentinel-1’s synthetic aperture radar (SAR) playing an
important role as it can penetrate the clouds that obscure optical
imagery [26–29, 38, 44]. A few studies used very high resolution
satellite imagery (VHRS, ≤3m2) [10] or Landsat data (30m2) [6, 31],
due to the ability to handle high-resolution data when consider-
ing a small area or the need for Landsat’s longer imaging record
when considering land-use change respectively. All studies took
a segment-then-classify approach, first segmenting water bodies
using variants of connected component segmentation (CCS), and
then using rule-based approaches, such as decision trees, for clas-
sification. These methods reported accuracies of 83-96%, though
sensitivities (precision values) only ranged from 83-89%.

There are several reasons why these methods may not generalize
well to the Amazon. First, all studies relied on expert opinion of
high-resolution satellite imagery to validate classifications, which
may have systematically misclassified some aquaculture ponds. For
example, several studies reported that it was difficult for humans to
distinguish aquaculture ponds from other man-made water bodies
like salt pans and rice paddies [27, 31, 38]. Studies that tried to
address this manually examined time series images to determine
whether a water body was an aquaculture pond, salt pan, or rice
paddy based on when and for how long it was drained or contained
vegetation. Additionally, the majority of aquaculture farms in Asia
are large complexes of geometric ponds, while aquaculture in the
Amazon includes a wider range of pond sizes and shapes, such as
ponds created by sectioning off parts of streams (see Fig. 2). These
pond shapes may not be correctly classified by the hand-crafted
features used in prior work.

Deep learning has the potential to address many of these limita-
tions by eliminating the need for manual feature selection, making
it easier to incorporate multispectral and temporal data. While to
our knowledge no studies have previously used deep learning to
map aquaculture, several studies have mapped other forms of in-
frastructure, including solar panels and livestock barns at national
and even global scales [19, 25, 33]. To handle having only thousands
of labelled examples, prior studies relied heavily on data augmenta-
tion. [33] used multiple images of the same location over time to
further increase dataset size, using an unsupervised approach to re-
move images before operations were built. All three studies trained
models with high recall and low precision, adding post-processing
steps to filter out false positives.

While it is encouraging that previous studies have been able
to successfully train deep models on satellite imagery with only
thousands of examples, for some regions in the Amazon we only
have hundreds of labeled examples. Further, we expect more het-
erogeneity in aquaculture ponds in the Amazon than in man-made
objects such as livestock barns or solar panels. Further, previous
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work suggests that temporal information is important for distin-
guishing aquaculture ponds from similar man-made water bodies
such as salt pans or rice paddies. However, incorporating time series
or multispectral information will increase the dimensionality of the
data, increasing the number of model parameters that need to be
fit with only a small number of examples.

In this work, we first demonstrate standard deep learning models
can outperform the previous rule-based methods for classifying
aquaculture in the Brazilian state of Rondônia using data from
small subregions with only 300-400 labeled examples. We show
performance can be further improved by incorporating temporal
information through percentile data. Further, we test the models’
ability to generalize to an unseen state with significantly different
environmental conditions; we show that generalization can be im-
proved by incorporating segmentation information throughmasked
pooling methods and by leveraging large quantities of unlabeled
data through contrastive pretraining.

2 METHODS
Mapping aquaculture from remote sensing data can be framed as a
semi-supervised segmentation and classification problem, where
given a set of labelled positive and negative examples we would
like to segment all water bodies in a region and then classify each
segmented water body as an aquaculture pond (pond) or non-
aquaculture pond (non-pond) water body. As previous work has
successfully identified and segmented water bodies using variants
of connected component segmentation, our work primarily focuses
on the classification task. As a classification baseline, we trained a
random forest using the best performing feature set from previous
work. For the baseline deep learning model, we used a standard
U-Net. We then tested several modifications to improve both per-
formance and generalization in a low-data setting, including using
percentile data to provide temporal information, using variants
of masking to incorporate segmentation information, and using
contrastive pretraining to harness large volumes of unlabeled data.

2.1 Data
While we plan to eventually map aquaculture across the Amazon
basin, labelled data was only available for the Brazilian states of
Rondônia and Amazonas (see Fig. 1). For positive examples, we re-
ceived 2322 manually identified aquaculture farms from the Brazil-
ian Agricultural Research Corporation (Embrapa), with 2068 in
Rondônia and 254 in Amazonas. Brazilian states are subdivided
into municipalities which can naturally be used to spatially split
the data. For negative examples, we obtained 2812 examples from
five non-aquaculture usage categories from a government dataset,
including 848 examples in Rondônia and 1964 in Amazonas [11].
These examples posed several challenges including heavy class
imbalances at a state-level, with over twice as many positive exam-
ples in Rondônia and nearly 8 times as many negative examples in
Amazonas, and further spatial imbalance within each state, where
of the 52 municipalities within Rondônia only 7 contained both
positive and negative examples.

Figure 2: Examples of aquaculture ponds from Rondônia
state. Unlike regions in Asia where post ponds are man-
made with strong geometric shapes, aquaculture ponds in
the Amazon include geometric ponds (left), ponds built into
segments of streams (center), and converted natural water
bodies (right).

2.2 Preprocessing and Image Segmentation
In previous studies, water was identified using a combination of
standard water indices, such as the NDWI, and variants of con-
nected component segmentation (CCS). However, we found that
some labelled examples did not have any pixels classified as water,
even using a low NDWI threshold. To avoid missing aquaculture
farms, we trained a random forest to detect water from Sentinel-
1 and 2 imagery, obtaining positive examples from the Brazilian
National Water and Sanitation Agency (ANA) and Embrapa and
negative examples from a land-cover classification dataset. To com-
pare the performance of the random forest water classifier to the
NDWI, we tested both methods on a set of individually mapped
ponds from the Embrapa dataset that were not used in training
the random forest and used a NDWI threshold of 0.1. The random
forest and NDWI models performed similarly at the pixel level,
correctly classifying 93 and 92% of water pixels respectively. How-
ever, when considering the number of water bodies in which at
least a single pixel was detected, the random forest showed a 4%
improvement over the NDWI, detecting some water in 84% of water
bodies compared to 80% for the NDWI.

The water-identification random forest was applied across both
states to create a binary raster of water pixels and water bodies were
extracted using CCS, filtering out all water bodies with fewer than
4 pixels, equivalent to <400m2. Water bodies were then spatially
intersected with the annotation polygons and labelled as positive
or negative if more than 50% of the water body overlapped the
annotation. This resulted in 5485 positive and 2516 negative water
bodies in Rondônia state and 284 positive and 1964 negative water
bodies in Amazonas state. Due to the heavy class imbalance in
Amazonas, negative water bodies were filtered to match the number
of positive examples, where we chose the negative water bodies
with the shortest distance to a positive example.

Features for the random forest were extracted in Google Earth
Engine (GEE) using the workflow described in [44]. For the U-Net,
we also used GEE [14] to extract raw Sentinel-1 and Sentinel-2
images; specifically, we extracted 14 spectral bands: the VV band
from Sentinel-1 and all bands from Sentinel-2 except for the QA
bands. We used the standard GEE preprocessing to filter cloudy
pixels. As the U-Net requires a standard input size, for the deep
models we cut the satellite imagery into 32 × 32 pixel tiles (320 ×
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320 m2). For each annotated water body, we determined the set of
overlapping tiles, considering all tiles with at least 10% annotation
or the tile with the most annotation pixels if no tile contained
≥10% annotation. For a water body that appeared in multiple tiles,
its classification was calculated as the area-weighted average of
classifications from its component tiles.

As labelled examples are only available for two Brazilian states
but we hope to map aquaculture across the Amazon, it was im-
portant to test generalization to unseen regions. We trained three
models, where two were trained on data from single municipalities
(Ariquemes and Jaru) and one was trained on a pair of nearby mu-
nicipalities (Machadinho and Itapuã do Oeste) so that each model
had a significant number of positive and negative examples and
300-400 total annotation examples. We validated these models on
another municipality with a significant number of positive and
negative examples (Monte Negro), and then tested the models on
all unseen examples, including data from an additional 17 Rondô-
nian municipalities. We further tested the generalization of the
models on examples from the state of Amazonas. As small datasets
can lead to variable performance, for each training set and model
configuration, models were trained using five random seeds and
both the mean and standard deviation in performance is reported.

2.3 Random Forest
As a baseline, we trained a random forest classifier using the feature
set from [44], which achieved the highest accuracy of previous
work. Ten features were extracted at 7 NDWI thresholds, where
roughly half of the features are geometric including area, perimeter,
compactness and the remaining features take the average of bands
or index across the water body. In addition to the 7 NDWI levels,
we calculated the features for the water bodies detected by the
random forest, as some water bodies had no NDWI signal. For each
model, the best random forest was selected from a grid of three tree
depths and number of tree parameter combinations using Shannon
information gain for rule selection.

2.4 Convolutional Neural Network Baseline
All deepmodels used a U-Net consisting of four up and down double-
convolution blocks followed by a fully connected layer. All models
augmented images during training through flips and rotations. The
U-Net takes in tiles, X𝑖 ∈ R𝐶×𝐻×𝑊 , and outputs a prediction for
each tile, 𝑦𝑖 ∈ {0, 1}. We tested two baselines for the CNN. First, to
test the performance of the model without temporal information,
we took the median cloud-free value for each channel of each pixel
in each 32 × 32 tile. Second, to test the performance of the model
without radar and multispectral data, we trained a model just using
the RGB bands, including temporal information through providing
data from multiple percentiles, as described in the next section.

2.5 Percentile Data
Previously, hard negative examples like salt pans and rice pad-
dies had been separated from aquaculture ponds through manual
inspection of time series imagery. Further, while it may be hard
to distinguish a natural pond converted for aquaculture from an
unaltered natural pond through a single image, you may expect
different patterns over time, such as more consistent water levels in

Figure 3: The percentile data helps capture temporal informa-
tion, including drained ponds or color changes (top, center)
and consistent water levels compared to natural water bodies
(center, bottom). Columns show percentiles, increasing from
left to right: 5, 10, 30, 50, 70, 90, and 95.

aquaculture ponds in dry periods. This inspired us to incorporate
temporal information into the model. As we have only a few thou-
sand labelled examples and, to test generalizability, we were limited
to training on only hundreds of labelled examples, we likely cannot
fit the large number of parameters found in more complex architec-
tures like Transformers or provide full satellite time series to the
model, as has been done in previous work [39, 45]. Instead, to pro-
vide temporal information with a more compact representation, we
provided the information for all 14 multispectral channels at seven
percentiles: 5, 10, 30, 50, 70, 90, 95. We simply stack the percentiles
along the channel dimension, resulting in 14× 7 = 98 channels. Un-
like a time series, each percentile level does not represent an image
at a particular point in time but instead captures pixel-by-pixel the
distribution of values in each channel over time. In particular, the
extreme percentiles help capture information about outlier events,
such as aquaculture ponds being drained for harvest, without re-
quiring information from a large number of observations (see Fig.
3).

2.6 Masked Models
Due to the small number of spatially balanced labelled examples,
the U-Net could easily learn features that are incidentally corre-
lated with aquaculture ponds or non-pond water bodies, such as
surrounding vegetation. However, these features are not reliable
predictors. Further, the baseline classification model does not make
use of the segmentation or water detection information. To encour-
age the model to learn relevant features from the water bodies,
we tested three methods of masking: a masked input model where
all channels of pixels outside of the segmented area were set to
zero in the input, masked average pooling where in the final pool-
ing step before classification information was only averaged over
segmented pixels, and masked attention pooling, where instead of
taking the average over all segmented pixels, the model learned an
attention vector which is masked to the segmented area, allowing
some pixels to contribute more to the classification.

While several forms of attention pooling have been suggested [30,
32, 40], we follow the model proposed in [40]. In standard attention,
the input𝑋 ∈ R𝑁×𝑑 is amatrix that contains a𝑑-dimensional vector
for each of 𝑁 tokens (assuming a batch size of one for simplicity). In
our case, there would be a token for each pixel, 𝑁 = 32 × 32, where
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Figure 4: In contrastive pretraining, each small tile is an
augmented view extracted from the samewaterbody, butwith
different position, orientation, and brightness; the model
should learn that these are semantically the same.

each token would have a vector of size 𝑑 = 64 from the output of
the final double up-convolution block in the U-Net. 𝑋 is projected
using learned weight matrices𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 into query, key, and
value matrices: 𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 ,𝑉 = 𝑋𝑊𝑉 . To compute
attention scores between each pair of tokens, we compute the dot
product of each query with each key, followed by a softmax. The
softmax scores are used as weights to compute weighted sums over
the tokens’ value vectors:

Attention(𝑋 ) = Softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 ,

where 𝑑𝑘 is a scaling factor based on the number of attention heads.
However, this results in an output with the same dimension as the
input and for pooling the dimension of the output must be reduced
to a single value. Thus, instead of a query for each token in the
input, we learn a single query vector, 𝑞𝑐𝑙𝑠 :

Attention Pool(𝑋 ) = Softmax

(
𝑞𝑐𝑙𝑠𝐾

𝑇√︁
𝑑𝑘

)
𝑉 .

To incorporate segmentation information, we introduce masked
attention pooling inwhich the non-water pixels are set to−∞ before
the softmax step, by element-wise multiplying a mask vector,𝑚:

Masked Attention Pool(𝑋 ) = Softmax

(
𝑞𝑐𝑙𝑠𝐾

𝑇√︁
𝑑𝑘

⊙𝑚
)
𝑉

2.7 Contrastive Pretraining
While labelled data is scarce, there are numerous unlabeled water
bodies from the segmentation step, with spatial and class distribu-
tions closer to the true underlying distribution. We were interested
in whether this large volume of unlabeled data could be leveraged
to learn better low-dimensional representations of complex multi-
spectral percentile satellite images. A popular approach that has
been very successful in computer vision is contrastive learning [4].
This approach extracts two noisy views from each image. Views
coming from the same image are encouraged to have similar repre-
sentations, while being different from the representations of other
images’ views. The augmentations used to add noise to the data
are key to learning a good representation. For example, if images
are simply augmented by rotation or flipping, the model can learn

to match histograms of pixel values instead of learning more gen-
eralizable representations. While this can be combatted by adding
Gaussian noise, adding too much noise can obscure key features.

Most work on contrastive learning has fine-tuned their augmen-
tations for RGB images, while satellite images are multi-spectral
and contain many bands outside of RGB. It is unclear how to adapt
RGB-specific augmentations like color jitter [4] to workwith images
with many channels and percentiles. Even if they can be adapted, it
is not obvious whether the augmentations used for RGB images will
generalize well to non-RGB bands. While some papers have tried
to generalize contrastive learning to multi-spectral remote sensing
images, they typically rely on geographic proximity to generate
views, encouraging tiles that are geographically-close (potentially
from different times) to have similar representations [3, 16, 17, 21].
Another approach creates views by extracting different subsets of
channels from each image [37]. While these approaches perform
well at general tasks like land cover classification, they perform
less well on our task. This may be due to the fact that land cover
classification relies primarily on the absolute intensity values of
each pixel, which is similar for nearby regions. However, our task
focuses on a single land cover type (water), and requires classifying
based on shape, structure, or subtle differences.

Unlike prior work, we want our model to specifically focus on
water bodies, not general landscape characteristics. Specifically,
we want two tiles drawn from the same water body subject to
random augmentations to have similar representations, while tiles
from different water bodies should have different representations.
Note that labels are not used in contrastive pretraining, so we can
pretrain on both labeled and unlabeled data. We pretrain on all the
waterbodies in Rondônia and Amazonas within our dataset.

For each distinct water body, we compute a bounding box around
it including all segmented water pixels, plus 16 pixels of padding on
each side.We extract the tile of satellite imagery,X, from that bound-
ing box, which can have arbitrary size, although if it is larger than
256 × 256 pixels, we cut it into smaller pieces. During pre-training,
we randomly sample two 32 × 32 sub-tiles from this bounding box
that contain at least 10% water. We then pass both tiles through a
large variety of random augmentations, including:

• Random flip/rotate/resize
• Percentile shift: for example, replace the 30th percentile im-
age with a weighted combination of the 30th and 50th per-
centile images, etc.

• Random sensor drop: inspired by [43], either keep all bands,
or zero out one of the following:
– radar (Sentinel-1)
– optical bands (Sentinel-2 bands 1-7)
– infrared bands (Sentinel-2 bands 8-12)

• Random percentile drop
• Random solarize, sharpness
• Mask land: with prob. 0.5, zero out non-water pixels
• Random band-wise linear transformation: for each band,
multiply by a random constant in [0.8, 1.2] and add a random
constant in [−0.2, 0.2].

After passing both sub-tiles through these augmentations, we
have two strongly distorted “views” of the same water body, X̃𝑖
and X̃𝑗 . We then follow the SimCLR framework proposed by [4].
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Table 1: Performance metrics for all models trained on municipalities in Rondônia and tested on unseen municipalities within
Rondônia. Values show mean and standard deviations over three spatial splits and five random seeds. Note that for contrastive
learning, we only pretrained one model due to computational constraints; we instead used 5 different seeds to train the linear
classifier. Bold values indicate the best mean performance across models. RF = random forest.

U-Net Models
RF Median RGB Percentile Masked Input Masked Pool Attn. Pool Masked Attn. Pool Contrastive

Prec. 0.74 ± 0.01 0.89 ± 0.00 0.88 ± 0.01 0.95 ± 0.01 0.86 ± 0.02 0.92 ± 0.02 0.93 ± 0.03 0.95 ± 0.01 0.91 ± 0.01
Rec. 0.99 ± 0.01 0.97 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.93 ± 0.04 0.95 ± 0.02 0.95 ± 0.02
F1 0.84 ± 0.01 0.92 ± 0.01 0.91 ± 0.00 0.95 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 0.93 ± 0.04 0.95 ± 0.01 0.93 ± 0.01
Acc. 0.77 ± 0.01 0.89 ± 0.01 0.87 ± 0.01 0.93 ± 0.01 0.87 ± 0.02 0.93 ± 0.02 0.90 ± 0.02 0.93 ± 0.01 0.90 ± 0.01

Table 2: Performance metrics for models trained on data from Rondônia on Amazonas state. Values show mean and standard
deviations over three spatial splits and five random seeds. Bold values indicate the best mean performance across models. RF =
Random forest.

U-Net Models
RF Median RGB Percentile Masked Input Masked Pool Attn. Pool Masked Attn. Pool Contrastive

Prec. 0.34 ± 0.32 0.97 ± 0.01 0.91 ± 0.01 0.99 ± 0.01 0.70 ± 0.04 0.88 ± 0.05 0.96 ± 0.03 0.89 ± 0.02 0.94 ± 0.00
Rec. 0.40 ± 0.34 0.74 ± 0.06 0.31 ± 0.03 0.56 ± 0.04 0.93 ± 0.01 0.87 ± 0.03 0.55 ± 0.04 0.86 ± 0.05 0.85 ± 0.01
F1 0.35 ± 0.30 0.81 ± 0.06 0.44 ± 0.05 0.69 ± 0.04 0.80 ± 0.02 0.87 ± 0.02 0.65 ± 0.04 0.86 ± 0.02 0.89 ± 0.00
Acc. 0.30 ± 0.29 0.86 ± 0.03 0.64 ± 0.02 0.78 ± 0.02 0.76 ± 0.04 0.86 ± 0.03 0.77 ± 0.02 0.86 ± 0.01 0.89 ± 0.00

We pass both views through a U-Net encoder, 𝑓𝑒𝑛𝑐 (·), to obtain
embeddings of each view, h𝑖 , h𝑗 ∈ R𝑑 , using embeddings of size 𝑑 =

256. We further pass these embeddings through a MLP projection
head, 𝑔(·), to obtain projection vectors z𝑖 = 𝑔(h𝑖 ). We then apply
the NT-Xent loss function [4] on a batch of 2𝑁 projection vectors
from 𝑁 water bodies. For a given view, we want its embedding to
be similar to that of the other view of the same water body, while
being different from all other tiles in the batch. For a given water
body’s two augmented views, (𝑖, 𝑗), the loss is defined as

ℓ𝑖, 𝑗 = − log
exp(𝑠𝑖𝑚(z𝑖 , z𝑗 )/𝜏)∑2𝑁

𝑘=1 1[𝑘≠𝑖 ] exp(𝑠𝑖𝑚(z𝑖 , z𝑘 )/𝜏)
,

where 𝜏 = 0.07 is a temperature parameter, and the similarity
function 𝑠𝑖𝑚(u, v) = u𝑇 v/(∥u∥∥v∥) is the dot product between the
L2-normalized embeddings.

After pre-training is complete, we freeze the encoder, use it to
extract embeddings from each tile, and then train a linear classifier
on top of these fixed embeddings. We also tried fine-tuning the
encoder, but this did not improve results, so we report results for
the fixed embedding version.

2.8 Training Configuration
Datawas prepossessed and spatially split as described in Sec. 2.2. For
all CNN models we used the RMSProp optimizer and tried learning
rates from {1e-2, 1e-3, 1e-4, 1e-5, 1e-6}. We chose the learning rate
based on F1 on the validation municipality, Monte Negro. Across
all CNN models, 1e-4 was consistently the best performing learning
rate. We used a batch size of 16, and found that 20 epochs was
sufficient for convergence. For contrastive learning, for pretraining
we used a learning rate of 3e-4 and a batch size of 512, stopping
when the loss did not improve for 10 epochs. While contrastive
learning generally requires pretraining with large batches [4], we

used ghost normalization [5] to retain the regularizing effect of
batch normalization with small batches. For training the linear clas-
sifier we also used 20 epochs, batch size 16, and tried learning rates
{1e-2, 1e-3, 1e-4, 1e-5, 1e-6}, again using the validation municipality
to choose the learning rate.

3 RESULTS
Previous work primarily used accuracy to evaluate aquaculture
classification performance. However, the F1 score can better reflect
performance on imbalanced data:

Prec =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , Rec =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , F1 =
2 Prec · Rec
Prec + Rec

Further, precision and recall alone provide important information
on model performance. For example, it may be preferable to choose
a model with high recall that does not misclassify any aquaculture
ponds (TPs) and use post-processing steps to filter false positives
(FPs). Precision, recall, F1, and accuracy scores for all models on
unseen data in Rondônia state are reported in Table 1.

The random forest performed significantly worse than the base-
line deep learning models, achieving 10% lower accuracy and 7%
lower F1 score. Adding the percentile data improved the accuracy a
further 4% and increased the F1 score to 0.95, with all deep models
achieving a low standard deviation of 0.01 for both metrics across
the three spatial splits and five random seeds. Masking the input
data decreased performance relative to the percentile data by 5% in
accuracy and 3% for F1. However, masking through masked pooling
and masked attention pooling both achieved the same performance
as the percentile model. Adding attention pooling without masking
decreased performance by 2-3% on all metrics. Contrastive pretrain-
ing also decreased performance by 2% F1 and 3% accuracy.

Performance generally decreased significantly when tested on
examples from the state of Amazonas (see Table 2). The random
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Figure 5: Examples of pairs of RGB images (left) and atten-
tion vectors (right). While in general the attention vectors
put heavy weight on the water bodies, they also often put
weight on portions of the surrounding landscape, potentially
learning incidentally correlated features that hurt general-
ization.

forest predicted most water bodies but also predicted some false
negatives, leading to performance worse than chance. The deep
models performed better, but still saw a significant decrease in
performance and increase in performance variability. The median
model generalized better than just using the percentile data, achiev-
ing accuracy and F1 scores of 86% and 0.81 compared to 78% and
0.69 for the percentile model. Masking the input or using attention
pooling resulted in a 1-2% decrease in accuracy compared to the
percentile data. However, the masked pooling and masked atten-
tion pooling models achieved the same accuracies as the median
model and a 5% better F1 score with lower variability. Contrastive
pretraining resulted in a slight further improvement (2-3%), with
an accuracy and F1 of 89%.

4 DISCUSSION
The previous hand-crafted feature set used to detect aquaculture
ponds in Asia generalized poorly to the Amazon basin. While in
Asia random forests trained on the feature set achieved accuracies
over 95%, in the Amazon they achieved only 77% accuracy and
resulted in models that generalized worse than chance. One po-
tential reason for the poor performance is that many aquaculture
ponds in Asia are man-made with clear geometric shapes, making
them easy to distinguish from natural water bodies using features
like area-to-perimeter ratio. However, in the Amazon there is more
heterogeneity in aquaculture ponds, including converted natural
ponds and ponds built from sectioned off stream segments. Another
potential reason for the random forests’ poor performance is that
some water bodies in the Amazon did not have a strong NDWI
signal, leading to minimal features. It is unclear if ponds with a
poor NDWI signal are specific to the region, or if prior methods
were potentially missing aquaculture ponds with weak NDWI sig-
nals. While it may be possible to design a better feature set for the
Amazon, the deep learning models perform well without the need
for extensive feature engineering.

Incorporating temporal information through percentile data im-
proved metrics by 3-4% within Rondônia but alone led to poorer
generalization than the median model. A potential reason for the
poorer generalization could be high levels of cloud-cover in Ama-
zonas. Even with filtering during preprocessing, in some cases cloud
pixels appeared in the high percentiles and these tiles were often
misclassified as ponds. While the median model generalized well,

Figure 6: Examples of pairs of RGB images (left) and masked
attention vectors (right). The masked attention vectors are
generally uniform, suggesting masked attention pooling
mostly benefits from the masking of surrounding areas.

the RGB model generalized extremely poorly with over a 45% drop
in F1 and a 25% drop in accuracy. These results suggest that data be-
yond RGB bands, such as multispectral and radar data is important
for learning robust models.

Masked pooling and masked attention pooling achieved the best
performance in Rondônia and significantly improved performance
in Amazonas over the standard percentile model, only general-
izing 2% worse than the contrastive model. In contrast, standard
attention pooling decreased performance compared to simply using
percentile data. Visualizing example attention vectors, standard at-
tention pooling may perform slightly worse because it often places
weight broadly outside of the water body, potentially learning corre-
lated features such as vegetation (see Fig. 5). The masked attention
vectors show fairly uniform weight across water bodies, suggesting
that the masked attention pooling is not learning to weight certain
areas’ pixels, such as boundaries, more strongly than others (see
Fig. 6). Thus, its performance was similar to the simpler masked
pooling approach, which simply averages the feature vectors across
the water pixels. These results suggest that it can be beneficial to
incorporate segmentation information through masking. However,
masking the input also performed worse than simply using the
percentile data. The benefit of masked pooling over the masked
input model may be that masking at the last step in the network
allows the representations for the water pixels to incorporate infor-
mation from the surrounding land pixels, allowing for contextual
information without overfitting.

Contrastive pretraining succeeded in extracting reasonable fea-
tures from the data, where training a linear classifier on top of the
extracted fixed embeddings achieved 93% F1 on Rondônia and 89%
F1 on Amazonas. This performance is still 2% behind the super-
vised percentile model and the masked pooling models in Rondônia.
However, it performs the best out of all methods when generalizing
to Amazonas, achieving 2% better performance on both F1 and
accuracy than the masked pooling methods and significantly better
than the supervised percentile model. Surprisingly, fine-tuning did
not improve results. While not shown in the table, the contrastive
learning results varied significantly based on the exact augmen-
tations used, and even the learning rate used to train the linear
classifier. Thus, even though contrastive learning has potential to
improve generalization, additional work is needed to make it more
reliable.

Both the contrastive learning and masked pooling approaches
encourage the model to focus on water, by only allowing pooling
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over water pixels or by masking out non-water pixels randomly in
the contrastive augmentations respectively, but do not completely
prevent the model from learning contextual information. We hy-
pothesize that this is a key factor why both approaches generalize
much better to Amazonas than the percentile model. The band-wise
linear transformation augmentation also forces the model to pay
more attention to relative shapes instead of absolute pixel values, as
multiplying a band by a constant would modify the absolute values,
but retain the rough shape of the pond, which may matter more.
This augmentation may be useful in other contexts to help models
focus on shape over texture, which has been noted as a challenge
for CNNs [12, 15].

While Rondônia and Amazonas are both states within Brazil,
they cover more than 1, 000, 000 km2 - an area more than three times
the size of France. The states have significantly different climates,
vegetation, and levels of development, as well as significant varia-
tion within each state. Thus, the models’ ability to perform well in
Amazonas state when only trained using data from Rondônia sug-
gest that the methods proposed here can help with generalization
to significantly different regions. However, more data and testing
would be needed to understand how well these methods would
generalize across the Amazon or even to other continents.

In principle, these modifications could be applicable to a range
of remote sensing tasks. For example, incorporating temporal infor-
mation through percentile data would help in crop type mapping,
where crops show different growth patterns over time [34]. Masked
pooling could help in tasks like building classification [36] and brick
kiln detection [20], where some background information could be
useful but incidental correlations would also likely occur. However,
further experiments would be needed to evaluate the performance
of these methods in other scenarios. Further, these methods are
isolated to the classification step, allowing them to potentially be
incorporated into a variety of segment-and-classify pipelines.

5 CONCLUSION
While the availability of large medium-resolution satellite datasets
creates the potential for low-cost mapping of a variety of infras-
tructure, many applications only have access to small numbers of
labelled examples that are often spatially biased and include heavy
class imbalances. We show that with as few as 300 labelled exam-
ples, standard deep learning models can outperform random forests
for aquaculture detection by 10% without the need for hand-crafted
features. Performance can be further improved by using percentile
data to compactly add temporal information. Generalization to
unseen regions can be improved by incorporating segmentation
information without eliminating contextual information through
masked pooling and contrastive pretraining. Contrastive pretrain-
ing further allows the model to harness the large quantities of
unlabelled data, including from regions lacking labeled examples.
Further, both masked pooling and contrastive pretraining can help
address the challenge of spatial imbalance, by reducing emphasis on
background features and incorporating unlabeled data respectively.
While these strategies were applied to detect aquaculture ponds,
they could potentially be useful for other tasks with a segment-then-
classify workflow, such as solar panel and livestock barn mapping

or building classification. While these methods improved signifi-
cantly over baseline approaches, there is still room for improvement
in generalization to new regions. Further, more work is needed to
understand and develop augmentations for multispectral images.
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