
Weighted Sampling without Replacement for Deep Top-k Classification

Dieqiao Feng 1 Yuanqi Du 1 Carla P. Gomes 1 Bart Selman 1

Abstract
The top-k classification accuracy is a crucial met-
ric in machine learning and is often used to eval-
uate the performance of deep neural networks.
These networks are typically trained using the
cross-entropy loss, which optimizes for top-1 clas-
sification and is considered optimal in the case of
infinite data. However, in real-world scenarios,
data is often noisy and limited, leading to the need
for more robust losses. In this paper, we propose
using the Weighted Sampling Without Replace-
ment (WSWR) method as a learning objective for
top-k loss. While traditional methods for evaluat-
ing WSWR-based top-k loss are computationally
impractical, we show a novel connection between
WSWR and Reinforcement Learning (RL) and
apply well-established RL algorithms to estimate
gradients. We compared our method with recently
proposed top-k losses in various regimes of noise
and data size for the prevalent use case of k = 5.
Our experimental results reveal that our method
consistently outperforms all other methods on the
top-k metric for noisy datasets, has more robust-
ness on extreme testing scenarios, and achieves
competitive results on training with limited data.

1. Introduction
Classification, as a fundamental discipline within the field
of machine learning, has undergone significant evolution in
recent years, particularly with the emergence of problems
involving hundreds or even thousands of classes. However,
despite its importance, classification tasks present inherent
challenges such as label confusion. This confusion can orig-
inate from a variety of factors, such as incorrect labeling
and ambiguities that obfuscate the ground truth label even

*Equal contribution 1Department of Computer Science, Cor-
nell University, Ithaca, U.S.. Correspondence to: Dieqiao Feng
<dqfeng@cs.cornell.edu>, Yuanqi Du <yd392@cornell.edu>,
Carla P. Gomes <gomes@cs.cornell.edu>, Bart Selman <sel-
man@cs.cornell.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

to a human expert. In the field of Reinforcement Learning
(RL), this confusion can manifest in the initial stages of
learning due to the poor policy of the RL agent (Silver et al.,
2016; Feng et al., 2020). As a result, the metric of top-k
classification accuracy has gained increasing importance,
where the model must correctly identify the label from one
of the top-k predictions. Conventionally, models are trained
to optimize for top-1 accuracy, with top-5 and other metrics
utilized solely for evaluation purposes. However, recent
research has challenged this approach, proposing alterna-
tive methods such as the smoothed top-5 margin loss and
differentiable sorting and ranking, which have been shown
to demonstrate superior robustness in the presence of label
noise and limited data when compared to the traditional
top-1 cross-entropy loss (Lapin et al., 2016; Berrada et al.,
2018; Petersen et al., 2022).

The design of a top-k loss function presents a signifi-
cant challenge due to the lack of smoothness and spar-
sity of the derivatives utilized in backpropagation (Berrada
et al., 2018). In this study, we propose a novel variant of
top-k learning, which is inspired by the Weighted Sam-
pling Without Replacement (WSWR) method (Hoeffding,
1963). Specifically, given a predicted positive weight vector
p = (p1, ..., pn), where n represents the number of classes,
we sample k items according to the weight vector p without
replacement. It is important to note that after several items
have been sampled, the sum of the remaining weights may
not equal one, thus necessitating the renormalization of all
weights into a probability distribution prior to each sam-
pling. Given any true label y, we can derive the closed-form
expression for the probability Pp

k,y of selecting y among the
first k samples with weight vector p. As such, it is natural
to specify the learning objective as minimizing the negative
log-likelihood of Pp

k,y .

The evaluation of Pp
k,y and its gradient poses a significant

challenge, as the closed-form expression of Pp
k,y consists of

O(
(
n−1
k−1

)
·k) terms, and there is currently no known polyno-

mial algorithm for solving this problem (Ben-Hamou et al.,
2018). In this work, we present a novel connection between
the WSWR procedure and Reinforcement Learning (RL).
Specifically, we designed a deterministic reward environ-
ment and established a link between the weight vector p
and the stochastic policy of RL, such that the expected total

1

Weighted Sampling without Replacement for Deep Top-k Classification

rewards of the RL environment given the policy are identical
to the closed-form expression of Pp

k,y. As a result, various
well-established RL optimization methods can be applied to
estimate the gradient of Pp

k,y .

The deterministic reward environment, however, presents
a significant limitation in the form of sparse gradients, par-
ticularly when py is orders of magnitude smaller than other
weights. This issue is particularly pronounced during the
initial training stages, making the optimization process dif-
ficult. To address this limitation, we propose an improved
learnable reward environment for WSWR, as well as vari-
ous techniques for optimizing RL problems when reward
functions are predicted by deep neural networks rather than
fixed functions. These techniques are aimed at address-
ing the problem of sparse gradients, thereby enhancing the
stability and efficiency of the training process.

We conducted an empirical evaluation of our method on the
CIFAR-100 dataset with label noise, as well as subsets of the
ImageNet-1K when training from scratch (Krizhevsky et al.,
2009; Deng et al., 2009). We compared our method with
multiple recent models, such as Bitonic Differentiable Sort-
ing Network, NeuralSort, SoftSort, and SmoothTopKLoss
(Berrada et al., 2018; Petersen et al., 2022; Grover et al.,
2019; Prillo & Eisenschlos, 2020). In the noisy CIFAR-100
experiment, for top-5 accuracy, we demonstrate that our
proposed method consistently outperforms all baselines, as
well as the best two differentiable sorting and ranking meth-
ods when augmented by relaxing the assumption of a fixed
k. On subsets of the ImageNet-1K dataset, we show that our
method can achieve better accuracy, both for top-1 and top-
5, as the ratio of training data decreases below 10%, while
the performance improvements for subsets larger than 10%
are limited. We also show our method consistently performs
well on boundary and extreme test scenarios, while other
top-k baselines experience significant performance drops
and instability.

We summarize our contributions as follows:

• We derived a novel top-k loss based on weighted sam-
pling without replacement.

• We proposed a novel problem remodeling technique to
simplify the estimation of the gradient of the WSWR-
based top-k loss.

• We empirically verified that it outperforms all other
baseline methods on the top-5 metric for noisy datasets,
has more robustness on extreme testing scenarios, and
achieves competitive results when training with limited
data.

2. Related Work
In the following section, an overview of recent state-of-
the-art top-k methods is presented, which are subsequently
evaluated in the experiment section.

In their study, Lapin et al. (2017) performed an in-depth
analysis of single-label multi-class methods and presented
a comprehensive study of efficient optimization algorithms
for them. The authors demonstrated that cross-entropy is
top-k calibrated for any value of k, which is a necessary
condition for the classifier to be consistent with regard to
the theoretically optimal top-k risk. In other words, cross-
entropy satisfies an essential property for the optimal top-k
classification decision for any k in the limit of infinite data.
This finding may explain the good performance of cross-
entropy on top-5 error on large-scale data sets. Additionally,
the authors proposed a number of top-k loss functions and
showed the possibility of further improvement for a specific
value of k. Despite the thoroughness of the study, it should
be noted that the experiments were conducted on linear
models or pre-trained deep networks that were fine-tuned.

Berrada et al. (2018) posited that top-k losses are challeng-
ing to optimize as a result of their non-smooth nature and
sparse derivatives. To mitigate these issues, the authors
introduced additional smoothness into the top-k SVM loss
and employed a polynomial algebra and divide-and-conquer
approach to simplify the calculation. Through experimen-
tal evaluation, the authors showed that the smoothed top-k
SVM loss outperforms cross-entropy in terms of both top-1
and top-5 accuracy on the CIFAR-100 dataset with label
noise. Furthermore, for subsets of the ImageNet-1K dataset,
the smoothed top-k SVM loss was found to be superior to
cross-entropy in terms of top-5 accuracy, but only on 5% of
the training data for top-1 accuracy.

Yang & Koyejo (2020) provided a theoretical analysis on the
consistency of top-k surrogate losses, which relates to the
convergence of the learned model to the population optimal
prediction in the finite limit. They proposed a weighted
top-k surrogate loss based on Bergman divergences. They
conducted experiments on synthetic data to empirically sup-
port the theoretical analysis.

Petersen et al. (2022) proposed a relaxation method which
instead of fixing k to be a constant value, draws k from
a distribution Pk which may or may not depend on the
confidence of specific data points or on the class label. Ex-
amples of distributions Pk are [0.5, 0.0, 0.0, 0.0, 0.5] (half
top-1 and half top-5) and [0.2, 0.2, 0.2, 0.2, 0.2] (average
over top-k for k ranging from 1 to 5). The authors found
that relaxing k not only led to better top-5 accuracy, but
also to improvements in top-1 accuracy. They evaluated
their method on the smoothed top-k SVM loss, as well as
NeuralSort (Grover et al., 2019), SoftSort (Prillo & Eisen-

2

Weighted Sampling without Replacement for Deep Top-k Classification

schlos, 2020), and Differentiable Sorting Network (Petersen
et al., 2021). NeuralSort relaxes permutation matrices to
unimodal row-stochastic matrices by using the softmax of
pairwise differences of cumulative sums of the top elements.
SoftSort is a faster alternative to NeuralSort by simplify-
ing the formulation and performs approximately equivalent
to NeuralSort in the experiments. Differentiable Sorting
Network is a continuous relaxation of the sorting network,
which uses softmin and softmax instead of min and max
when perturbing the values on the wires in each layer of the
sorting network.

In addition to the aforementioned baselines, Fan et al. (2017)
introduced a novel aggregate loss function that calculates
the average of the k largest individual losses within a train-
ing dataset for the purpose of binary classification and re-
gression. Lapin et al. (2015) extended the widely utilized
multiclass support vector machine (SVM) to optimize for
top-k error (Cortes & Vapnik, 1995). The proposed method
employs a fast optimization technique based on an efficient
projection onto the top-k simplex and demonstrated consis-
tent improvement on the top-k metric across five datasets.

3. WSWR-based Top-k Loss
3.1. Weighted Sampling without Replacement

Fagin and Price proposed an experimental methodology
referred to as Weighted Sampling Without Replacement
(WSWR) (1978). This experiment involves drawing a ran-
dom sample of size k from a population of n weighted
items, where 1 ≤ k ≤ n. The initial probability of drawing
each item i is represented by pi for i = 1, ..., n, and it is
assumed that

∑
i pi = 1. The process begins by selecting

the first item, i1, from the population. The probabilities of
the remaining n− 1 items are then renormalized such that
they sum to 1, resulting in the probability of drawing item j
becoming pj/(1− pi1) for j ̸= i1. The process is repeated,
selecting the next item, i2, and renormalizing the probabili-
ties of the remaining items, until k items have been sampled.
Fagin and Price utilized this experimental methodology in
their Monte Carlo evaluation of a combinatorial sum (Wong
& Easton, 1980).

Let I = (I1, ..., Ik) denote the k-tuple of random variables
of sampled indices, where I1, I2, ..., Ik are sampled in or-
der. The probability of each specific k-tuple (i1, ..., ik) of
distinct indices in {1, ..., n} can be represented as follows:

P((I1, ..., Ik) = (i1, ..., ik)) =

k∏
j=1

pij

1−
∑j−1

t=1 pit
. (1)

3.2. Top-k Classification

Given a data distribution D, a classification model is trained
to predict a positive weight vector p = (p1, ..., pn) (also

known as a probability distribution) among n classes, for
each pair of inputs (X, y) drawn from D, where X is the
input instance and y ∈ {1, ..., n} is its corresponding label.
The objective of WSWR-based top-k learning is to max-
imize the probability of sampling the true label y among
the first k samples, based on the predicted weight vector
p. Specifically, the loss function can be defined as negative
log-likelihood of the sampling probability:

L(p, y) = − log

 ∑
y∈(i1,...,ik)

k∏
j=1

pij

1−
∑j−1

t=1 pit

 . (2)

The summation is taken over all k-tuples (i1, ..., ik) of dis-
tinct indices that comprise true label y.

3.3. Computational Challenges

Upon initial analysis, the computation of L(p, y) may seem
computationally expensive. This is due to the presence of
a summation over all possible k-tuples (i1, ..., ik) that con-
tain y, which have a cardinality of

(
n−1
k−1

)
· k. In the case

of ImageNet-1K, which comprises 1, 000 classes, the com-
putation of the WSWR-based top-5 loss necessitates the
evaluation of

(
999
4

)
· 5 ≈ 2 · 1011 terms for each individ-

ual training instance. This renders the approach practically
infeasible. To address this computational challenge, we
discovered a hidden connection between the problem and
traditional reinforcement learning, and propose the appli-
cation of well-established policy gradient algorithms as a
means of providing a cheap way to approximate the real
sampling probability and gradients.

4. Reinforcement Learning Reframing
4.1. Background

Reinforcement Learning (RL) is a general-purpose frame-
work for decision-making (Kaelbling et al., 1996; Weng,
2018). Starting from some initial states S0, the agent and
environment interact through a sequence of actions and ob-
served rewards over time t, where t = 1, ..., T . During this
process, the agent accumulates knowledge about the envi-
ronment, improves the current policy, and makes decisions
on which action to take next in order to efficiently learn the
optimal policy. The state, action, and reward at time step t
are denoted as St, At, and Rt (may occasionally referred as
st, at, rt as well), respectively. The interaction sequence is
fully described by one episode, also known as a trajectory,
and the sequence ends at some terminal state ST :

S0, A1, R1, S1, ..., ST .

The model in RL is a descriptor of the environment. It en-
ables the agent to learn or infer how the environment will

3

Weighted Sampling without Replacement for Deep Top-k Classification

interact with and provide new observations and intermedi-
ate rewards to the agent. The model consists of two main
components: the transition probability function P and the
reward function R. The objective of RL is to construct an
artificial agent within the environment model to maximize
expected future rewards.

In a single transition step, from any state s, the agent takes
action a, leading to the next state s′ and obtaining reward r.
This is represented by the tuple (s, a, s′, r). The transition
function P records the probability of transitioning from
state s to s′ after taking action a and obtaining reward r:

P (s′, r | s, a) = P[St = s′, Rt = r | St−1 = s,At = a].

The policy of the agent is typically represented as a parame-
terized function πθ(a | s). The objective is to learn a policy
that maximizes the expected total rewards. Policy gradient
methods aim to directly model and optimize the policy. The
learning objective can be formalized as the maximization of
expected total rewards:

H(θ) = Eπθ

(∞∑
t=1

Rt · γt−1

)
,

where γ is a discount factor that reduces the importance of
future rewards.

Policy Gradient Theorem. The Policy Gradient Theorem
is a key concept in reinforcement learning that enables the
computation of the gradient of the expected total rewards
with respect to the policy’s parameters, ∇θH(θ) (Sutton
et al., 1999). Due to the trajectory sampling dependency on
πθ, directly computing the gradient is challenging. The Pol-
icy Gradient Theorem reformulates the gradient calculation
by moving the derivatives inside the expectation:

∇θH(θ) ∼ Eπθ
[Qπ(s, a)∇θ lnπθ(a | s)] ,

where Q(s, a) is the expected total rewards from the state s
after taking the action a. Many policy gradient algorithms,
such as REINFORCE and Advantage Actor-Critic (A2C),
have been developed based on the Policy Gradient Theorem
(Williams, 1992; Mnih et al., 2016). In this work, we will
primarily focus on these two algorithms.

Throughout the remainder of this paper, we will only ex-
amine RL environments in which the transition function is
deterministic given the previous state St−1 and the selected
action At, such that St = P (St−1, At).

4.2. Deterministic Reward Environment for WSWR

This section presents a deterministic reward environment
for the WSWR-based top-k sampling probability. The term
“deterministic” comes from the fact that the reward func-
tion is fixed, as in traditional RL problems, as opposed to

the learnable reward function as will be discussed in the
subsequent Section 4.3.

As described in Equation 2, let’s set J(θ) as the total sam-
pling probability:

J(θ) =
∑

y∈(i1,...,ik)

k∏
j=1

pij

1−
∑j−1

t=1 pit
. (3)

The ability to approximate both J(θ) and ∇θJ(θ), where
θ represents the parameters of the network, enables the
approximation of the gradients of the loss function through
the following equation:

∇θL(p, y) = −∇θJ(θ)

J(θ)
. (4)

To achieve this, J(θ) can be rewritten as:

J(θ) =
∑

y∈(i1,...,ik)

k∏
j=1

pij

1−
∑j−1

t=1 pit

=
∑

(i1,...,ik)

1y∈(i1,...,ik) ·
k∏

j=1

pij

1−
∑j−1

t=1 pit

=

∑
(i1,...,ik)

 k∑
j=1

1ij=y

 ·
k∏

j=1

pij

1−
∑j−1

t=1 pit

 .

(5)

If we view the k-tuple (i1, ..., ik) as the sequence of actions
of one episode in RL, 1ij=y as the reward for selecting
action ij , and pij/(1−

∑j−1
t=1 pit) as the probability of the

current RL policy π to pick action ij , then
∑k

j=1 1ij=y

can be viewed as the total reward for one episode and J(θ)
is actually calculating the expected total reward under the
policy π. With this, we can use the Policy Gradient Theorem
to estimate the gradient ∇θJ(θ).

We formally define the state at time t, St to represent the set
of remaining available indices and the actions to correspond
to the selection of an item from the current state set. As
a result, At = St−1, S0 = {1, ..., n}, and the cardinality
of St is n − t. At state St−1, for each action a ∈ At, the
policy can be defined as π(a | St−1) = pa/

∑
i∈St−1

pi, the
state transition function is defined as St = St−1 \ {a}, and
the intermediate reward Rt is defined as 1a=y. There is no
discount factor applied to future rewards and the length of a
single episode is fixed at k.

It can be easily verified J(θ), which is equivalent to the
WSWR-based top-k sampling probability, is equal to the
expected total reward of the above-defined RL environment:

J(θ) = Ea∼π

[∑k

j=1
Rj

]
. (6)

4

Weighted Sampling without Replacement for Deep Top-k Classification

Consequently, maximizing the sampling probability is equiv-
alent to maximizing the expected total rewards in a tra-
ditional RL setting. This equivalence enables the use
of well-established on-policy policy gradient algorithms,
such as REINFORCE and A2C, to approximate the true
gradients and optimize the predicted sampling weights
p = (p1, ..., pn).

J(θ) can be estimated by sampling multiple trajectories and
calculating the average total reward for each trajectory. To
estimate the gradient, we generate a set of m trajectories,
denoted as τu = (s0, a1, s1, ..., sk), for each pair of output
p and true label y, where 1 ≤ u ≤ m. These trajectories
are generated according to the policy π(a | s), and m is a
hyperparameter that controls the tradeoff between computa-
tional cost and gradient quality. As the number of sampled
trajectories increases, the computational cost also increases,
resulting in more accurate gradients.

To estimate the gradient, REINFORCE algorithm is applied
and the gradient is estimated as:

∇θJ(θ) = Eπ

[∑k

j=t
Rj∇θ lnπθ(At | St−1)

]
≈ 1

m
·

m∑
u=1

k∑
t=1

k∑
j=t

Rj∇θ lnπθ(At | St−1)

=
1

m
·

m∑
u=1

k∑
t=1

k∑
j=t

Rj∇θ ln

(
pat∑

i∈St−1
pi

)
.

(7)

4.3. Learnable Reward Environment for WSWR

The deterministic reward environment for WSWR, as pre-
viously discussed, presents one major limitation in its opti-
mization process. During the initial stages of training, the
weight py for the true label may be orders of magnitude
smaller than the other top k − 1 weights, resulting in a
near-zero probability of sampling the true label y. This, in
turn, implies that the total reward will be zero for almost
all trajectories and gradients will always be zero if the true
label is not sampled, as described in Equation 7.

To address this limitation, we proposed a trick that removes
the action of true label y from the action space and incor-
porates it into the reward function to encourage the agent
to increase py through maximizing total rewards. This ap-
proach is referred to as the learnable reward environment
for WSWR. Specifically, we can further rewrite J(θ) to

(8)

J(θ) = py +
∑

y/∈(i1,...,ik−1)

k−1∑
u=1

 py
1−

∑u
t=1 pit

·
u∏

j=1

1− py −
∑j−1

t=1 pit

1−
∑j−1

t=1 pit

·
k−1∏
j=1

pij

1− py −
∑j−1

t=1 pit

The whole deduction of Equation 8 can be found in Ap-
pendix A.

The outermost summation is taken over all (k − 1)-tuples
of distinct indices that exclude the true label y. The length
of a single episode is now fixed at k − 1, as only actions
that are not the true label are being sampled. The state
representation Ŝt also includes the remaining indices, with
the change that Ŝ0 = {1, ..., y− 1, y+1, ..., n}. The action
set Ât now comprises all indices i ∈ Ŝt−1, resulting in
Ât = Ŝt−1. For each action a ∈ Ât, the policy for state
Ŝt−1 is modified as π̂(a | Ŝt−1) = pa/

∑
i∈Ŝt−1

pi and the

state transition function is defined as Ŝt = Ŝt−1 \ {a}. The
expression

k−1∑
u=1

(
py

1−
∑u

t=1 pit
·

u∏
j=1

1− py −
∑j−1

t=1 pit

1−
∑j−1

t=1 pit
)

in Equation 8 can be interpreted as the total reward for one
episode. Therefore, we can define R̂t for each timestamp as
follows:

R̂t =
py

1−
∑t

t=1 pit
·

t∏
j=1

1− py −
∑j−1

t=1 pit

1−
∑j−1

t=1 pit

=
py

py +
∑

i∈Ŝt
pi

·
t∏

j=1

(1− py
py +

∑
i∈Ŝt−1

pi
).

(9)

The starting reward, R̂0 = py, is obtained without taking
any action and is immediately added to J(θ). As a result, the
gradient will be non-zero even if py is significantly smaller
than the other sampling weights.

So the total sampling probability J(θ) again matches the
expected total rewards in the learnable reward environment
defined above, as represented by Equation 10:

J(θ) = R̂0 + Ea∼π̂

[∑k−1

j=1
R̂j

]
. (10)

The calculation of the gradient ∇θJ(θ) poses a challenge
due to the fact that the reward function R̂ is also a predicted

5

Weighted Sampling without Replacement for Deep Top-k Classification

value. There are two learnable terms in J(θ): the policy π̂θ

and the reward R̂θ. To overcome this challenge, we use the
chain rule and fix one term as a constant while computing
the gradient of the other, as demonstrated below:

∇θJ(θ) = ∇θπ̂θ +∇θR̂θ (11)

∇θπ̂θ = Eπ̂

k−1∑
j=t

R̂j∇θ ln π̂θ(Ât | Ŝt−1)

 (12)

∇θR̂θ = ∇θ

R̂θ
0 + Eπ̂

k−1∑
j=1

R̂θ
j

 (13)

= ∇θR̂
θ
0 + Eπ̂

k−1∑
j=0

∇θR̂
θ
j (14)

Equation 12 is a result of the Policy Gradient Theorem,
while Equation 13 is a consequence of the exchange between
the expectation and the gradient.

Estimating J(θ) requires sampling multiple trajectories and
taking the average of total rewards. To estimate ∇θJ(θ), m
trajectories are sampled, and the gradients ∇θπ̂θ and ∇θR̂θ

are estimated separately.In this paper, we will adopt the use
of the same set of trajectories, as the sampling procedure is
computationally expensive.

4.4. Baseline for REINFORCE

According to the theory of the A2C, finding a suitable base-
line V (Ŝt−1) that estimates the future return

∑k−1
j=t R̂j and

subtracting the baseline from the future return can signifi-
cantly reduce the variance of gradients, thereby increasing
the training speed. In our problem setting, the dynamic
nature of the RL environment requires the derivation of
a closed-form expression for V (Ŝt−1). Additionally, the
computational efficiency of V (Ŝt−1) is a crucial factor, as a
complex formula can impede training speed. Taking these
factors into account, we have formulated a computationally
simple baseline approximator, which will be utilized in all
the experiments:

(15)
V (Ŝt−1) =

[
1− (

∑
i∈Ŝt

pi

py +
∑

i∈Ŝt
pi
)k−t

]

·
t∏

j=1

(1− py
py +

∑
i∈Ŝt−1

pi
).

5. Experiments
5.1. Baseline Setup

We evaluate our proposed WSWR-based top-k loss against
five baseline methods: Cross Entropy (CE), Smoothed Top-
k SVM (SSVM), Relaxed-k Bitonic Differentiable Sorting

Network (RBitonic), Relaxed-k NeuralSort (RNeuralSort),
and Relaxed-k SoftSort (RSoftSort) (Berrada et al., 2018;
Petersen et al., 2022). The default value for k is set to 5,
and the distribution Pk = [0.2, 0.2, 0.2, 0.2, 0.2] is used for
the relaxed-k losses. The hyperparameters for each loss are
set as per Berrada et al. (2018); Petersen et al. (2022). By
default, the number of sampled trajectories for our WSWR-
based top-k loss is 100, which may vary with further notice.

5.2. CIFAR-100 with Label Noise

Dataset. The CIFAR-100 dataset comprises 50, 000 train-
ing images and 10, 000 test images. All images within the
dataset are colored and possess a resolution of 32x32 pix-
els. The dataset is comprised of 100 distinct classes, each
containing 600 images, with 500 images designated for
training and 100 images designated for testing. These 100
classes are further grouped into 20 superclasses, referred
to as coarse labels, and each coarse label is comprised of
five fine labels. For example, the coarse label ”flowers” is
composed of the fine label ”orchids,” ”poppies,” ”roses,”
”sunflowers,” and ”tulips.” To enhance the diversity of the
training dataset, a standard technique of data augmentation
is employed, which includes random cropping with padding
of 4 pixels, random horizontal flipping, and random rotation
of up to 15 degrees (Shorten & Khoshgoftaar, 2019; Perez
& Wang, 2017). Subsequently, all images are normalized
channel-wise before being fed into the network.

In order to introduce additional noise into the training
dataset, a randomization procedure is implemented, in
which the label of each image is replaced by a random label
within the same coarse class, with probability p. It should
be noted that the randomized label may be identical to the
original true label. This randomization process is performed
once on the training dataset and the labels of each image are
preserved throughout the entire training process. Therefore,
with a probability of p = 0, the training dataset remains
unmodified and with p = 1, each image will have a chance
of 80% of having a wrong label. Through this method, a
perfect top-5 classifier can still attain 100% accuracy on the
top-5 metric by consistently predicting all five fine labels
within the same coarse class as the true label.

Training details. To evaluate our methods, we used the
architecture ResNet-18 from He et al. (2016) and train it
from scratch. We used stochastic gradient descent with
momentum 0.9 and weight decay 0.001 as the optimizer.
We trained the networks for 200 total epochs with batch size
128. The initial learning rate was set to 0.1 and decayed by
0.2 after epoch 60, 120, and 160. In addition, we also added
1 warm-up epoch at the beginning of training to stabilize
the initial training. All experiments were performed using
Nvidia V100 GPUs.

Results. Table 1 demonstrates the test accuracy of CIFAR-

6

Weighted Sampling without Replacement for Deep Top-k Classification

Table 1. The test accuracy of CIFAR-100 was evaluated under varying levels of label noise, with results averaged over three distinct seeds.
The top-5 metric demonstrates that WSWR, our proposed method, consistently outperformed all other baseline methods across all noise
levels. Furthermore, it is noteworthy that WSWR was the only loss function that exhibited superior performance in comparison to the
traditional cross-entropy loss when the level of noise was small. In terms of the top-1 metric, WSWR exhibited the highest prediction
accuracy within the noise range of [0.2, 0.4]. (Best performances are bolded and second best are underlined.)

Noise Top-1 Accuracy (%) Top-5 Accuracy (%)
Level CE SVM RBitonic RNeuralSort RSoftSort WSWR (ours) CE SVM RBitonic RNeuralSort RSoftSort WSWR (ours)

0.0 76.470 68.177 68.790 71.720 69.850 71.633 93.417 92.890 81.117 91.983 89.863 94.043
0.1 71.530 63.463 55.703 67.157 68.427 70.497 90.847 90.767 79.030 90.023 86.610 92.513
0.2 66.187 58.043 42.683 62.223 67.137 68.803 87.983 88.793 64.990 88.733 85.103 91.080
0.3 61.343 52.293 52.833 58.583 65.683 66.623 86.310 86.970 78.977 87.870 84.763 89.803
0.4 55.380 44.747 54.270 53.727 63.490 63.520 84.180 86.230 76.300 87.140 84.457 89.247
0.5 48.713 35.747 45.893 47.133 60.600 60.020 81.207 85.410 73.637 86.103 83.973 88.047
0.6 42.483 25.677 45.707 43.027 55.577 55.467 79.737 84.943 75.817 85.750 83.857 87.763
0.7 35.613 19.070 29.153 38.307 48.627 47.897 76.533 84.240 60.503 85.017 83.513 86.867
0.8 29.447 17.817 32.423 35.640 40.250 37.720 74.103 84.063 69.877 84.773 83.603 85.893
0.9 22.660 17.307 22.787 29.283 26.373 23.343 70.683 83.833 68.643 84.290 83.547 85.453
1.0 16.073 17.267 15.543 17.563 17.210 17.377 65.283 83.983 67.107 83.933 83.450 84.760

Speed 29.300 19.102 17.401 27.564 29.029 19.713 29.300 19.102 17.401 27.564 29.029 19.713

Table 2. Speed and scaling test for multiple choices of the number
of sampled trajectories m for WSWR on CIFAR-100 with the
noise level of 0.5. The results show that increasing m consistently
improved both top-1 and top-5 accuracy for WSWR, but at the
cost of a significant reduction in training speed. As shown in the
table, WSMR-m10 has comparable top-1 and top-5 accuracies to
the best loss, while still maintaining a competitive training speed
compared to the cross-entropy loss. (Best performances are bolded
and second best are underlined.)

Training Speed Top-1 (%) Top-5 (%)(batch per sec)

CE 29.300 48.713 81.207
SVM 19.102 35.747 85.410

RBitonic 17.401 45.893 73.637
RNeuralSort 27.564 47.133 86.103

RSoftSort 29.029 60.600 83.973

WSWR-m1 26.320 56.607 87.733
WSWR-m10 24.975 59.757 88.027

WSWR-m100 19.713 60.020 88.047
WSWR-m1000 5.288 60.270 88.247

WSWR-m10000 0.744 60.732 88.424

100 under varying levels of label noise. Our proposed
method, WSWR, consistently outperforms all other base-
line methods in all levels of label noise when evaluating the
top-5 metric. It is noteworthy that WSWR is the only loss
that achieves higher top-5 accuracy than the cross-entropy
loss when the noise level is less than 0.1.

In terms of the top-1 metric, we found that when the noise
level is less than 0.5, WSWR outperforms all other top-k
losses and even the cross-entropy loss when the noise level
is larger than 0.1. As the noise level increases above 0.5,
sort-based losses achieve slightly higher top-1 accuracy,
though the margin of difference is relatively small.

Speed and scaling test. In addition to accuracy, the speed

Table 3. We tested the robustness and stability of the top-50 losses
by setting k to 50 and noise level to 1.0. Our results indicate that all
other top-k losses exhibit strong instability, including a significant
decrease in top-1 or top-50 accuracy. In contrast, WSWR (our
method) performed consistently and achieved the highest top-50
accuracy. Additionally, our top-1 accuracy was also the most
competitive when compared to cross-entropy. (Best performances
are bolded and second best are underlined.)

Training Speed Top-1 (%) Top-50 (%)(batch per sec)

CE 29.345 15.980 96.155
SVM 4.573 2.750 85.210

RBitonic 14.440 2.565 64.425
RNeuralSort 24.080 0.025 98.950

RSoftSort 26.284 4.790 98.470
WSWR 10.345 11.237 99.203

of loss functions is an important metric to consider, as top-k
losses often significantly increase the computational cost
compared to the cross-entropy loss. Furthermore, we aimed
to investigate how the accuracy scales with the number of
sampled trajectories m.

To this end, we conducted a speed and scaling test for multi-
ple choices of m for WSWR with a fixed label noise level of
0.5. The results, presented in Table 2, demonstrate that the
incremental increase of m can consistently improve both top-
1 and top-5 accuracy, however with a trade-off of reduction
in speed. As m increases, WSWR reaches the highest accu-
racies for both metrics. The accuracy gain after increasing
m above 100 is marginal and less noticeable. Specifically,
WSWR-m10 achieves comparable top-1 and top-5 accura-
cies to the best loss, while still maintaining a competitive
training speed compared to the cross-entropy loss.

Boundary condition test. The top-k loss calculation typi-

7

Weighted Sampling without Replacement for Deep Top-k Classification

cally involves a large number of terms, specifically O(
(
n
k

)
),

where n is the number of classes. Various simplifying tech-
niques are employed to reduce computational demands. In
practice, a common value for k is 5, as it is relatively small
compared to n and does not significantly affect floating pre-
cision or training speed. In this experiment, k was set to
50, where

(
n
k

)
reaches its maximum, to test the performance

of top-k losses in extreme cases in terms of training speed,
numerical stability, and prediction accuracy. The noise level
was set to 1.0 to maximize the level of noise in the training
dataset.

As seen in Table 3, other top-k losses exhibit strong insta-
bility in this extreme test case, while WSWR maintains
consistent performances. The significant performance drop
of other top-k losses may be due to improper hyperparam-
eter settings, as these losses have 3 to 5 hyperparameters.
This highlights the advantage of WSWR, as it only has one
hyperparameter (the number of sampled trajectories), which
is more generalizable across various testing scenarios.

5.3. Subsets of ImageNet-1K Training

The ImageNet-1K dataset is comprised of over 1.28 million
training images and 50,000 validation images, organized
into 1000 distinct categories, including objects, scenes, and
animals. Each category contains a varying number of im-
ages, ranging from several hundred to thousands. The im-
ages were sourced from the Internet and annotated by human
labelers, resulting in a dataset that presents a degree of am-
biguity and noise within the labels. For experimentation,
subsets of varying sizes are extracted from the 1.28 million
training images, and the unmodified validation dataset of
50,000 images is used for testing. To augment the training
set, standard data augmentation methods are employed, such
as random resized crop to 224x224 and random horizontal
flipping. All validation images are resized to 256x256 and
undergo a center crop to a size of 224x224. Prior to be-
ing fed into the networks, all images undergo channel-wise
normalization.

In order to construct subsets of the training dataset, ex-
periments were conducted in the following ratios: 100%
(1.28M images), 50% (640K images), 25% (320K images),
10% (128K images), and 5% (64K images). To maintain
consistency with the original dataset, the proportion of each
class within the subsets was kept constant. Additionally,
to ensure that each run of the experiment would utilize the
same subset of training images with the same ratio, the
random seed was fixed for all experiments.

Training details. We used the architecture ResNet-50
from He et al. (2016) and trained all networks from scratch.
We used stochastic gradient descent with momentum 0.9
and weight decay 0.0001 as the optimizer. We trained the
networks for 90 total epochs with batch size 256. The initial

Table 4. The accuracies of ImageNet-1K were tested with different
ratios of the training dataset. Cross-entropy has better top-1 accu-
racy than top-k losses, except at a ratio of 5%, where overfitting is
a significant problem. Our method still consistently achieves the
second best accuracy for the top-1 metric. For the top-5 metric,
WSWR-m100 performs worse than SSVM, while WSWR-m1000
outperforms CE and SSVM. The study highlights the significance
of using a higher number of sampled trajectories m for WSWR
to achieve a more accurate gradient estimate, as Imagenet-1K
has many more classes than CIFAR-100. (Best performances are
bolded and second best are underlined.)

Top-1 Accuracy (%) Top-5 Accuracy (%)
ratio of CE SSVM WSWR WSWR CE SSVM WSWR WSWR
dataset m100 m1000 m100 m1000
100% 75.76 68.50 69.53 69.59 92.79 92.10 92.29 92.33
50% 71.59 64.77 65.77 65.91 90.16 89.72 89.78 89.95
25% 62.06 59.54 60.14 60.32 85.92 86.02 88.12 89.20
10% 51.03 47.69 46.26 47.81 75.27 76.05 73.91 76.87
5% 34.39 35.48 34.08 35.56 58.56 63.92 60.62 64.12

learning rate was set to 0.1 and decayed by 0.1 after epoch
30 and 60. In addition, we also added 1 warm-up epoch at
the beginning of training to stabilize the initial training. All
experiments were performed using Nvidia A100 GPUs.

Result. Table 4 presents the results of the ImageNet-1K
experiment, where the validation accuracy was evaluated
under varying ratios of the training dataset. The family of
sort-based top-k losses was not included in this experiment,
as Petersen et al. (2022) fine-tuned on state-of-the-art mod-
els for ImageNet-1K, rather than training from scratch. Un-
like the marginal difference in accuracy observed between
WSWR-m100 and WSWR-m1000 in the CIFAR-100 exper-
iment, Table 4 demonstrates that a larger number of sampled
trajectories play a crucial role in achieving higher top-1 and
top-5 accuracies. One possible explanation for this is that
as the number of classes increases, the length of trajectories,
which is fixed at k−1 = 4, becomes relatively small in com-
parison to the total number of classes. As a result, too few
sampled trajectories may not cover a sufficient number of in-
dices, leading to gradients for most of the predicted weights
being zero. The training speed reduction when increasing m
for ImageNet-1K is less significant compared to CIFAR-100
since larger network architecture will lower the impact of
the computation of loss functions. The performance gain
of using WSWR over cross-entropy is more significant as
the ratio of training data becomes smaller. This confirms
the theoretical result that when the training data is sufficient,
cross-entropy is the best choice.

6. Conclusion
We introduced a new Weighted Sampling Without Replace-
ment (WSWR) based top-k loss. By uncovering a novel link
between WSWR and reinforcement learning, we developed
an efficient method for estimating the gradient. Through

8

Weighted Sampling without Replacement for Deep Top-k Classification

empirical testing, we found that the proposed WSWR-based
top-k loss significantly improves performance across var-
ious datasets and test scenarios, especially for the top-5
metric on noisy datasets. Additionally, we evaluated the
robustness of various losses in extreme test cases where
k is close to the half of the total number of classes, and
found that WSWR was the only top-k loss that performed
consistently.

References
Ben-Hamou, A., Peres, Y., and Salez, J. Weighted sampling

without replacement. Brazilian Journal of Probability
and Statistics, 32(3):657–669, 2018.

Berrada, L., Zisserman, A., and Kumar, M. P. Smooth loss
functions for deep top-k classification. arXiv preprint
arXiv:1802.07595, 2018.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20:273–297, 1995.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Fagin, R. and Price, T. G. Efficient calculation of expected
miss ratios in the independent reference model. SIAM
Journal on Computing, 7(3):288–297, 1978.

Fan, Y., Lyu, S., Ying, Y., and Hu, B. Learning with average
top-k loss. Advances in neural information processing
systems, 30, 2017.

Feng, D., Gomes, C. P., and Selman, B. A novel automated
curriculum strategy to solve hard sokoban planning in-
stances. Advances in Neural Information Processing
Systems, 33:3141–3152, 2020.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic
optimization of sorting networks via continuous relax-
ations. arXiv preprint arXiv:1903.08850, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. Journal of the American statistical
association, 58(301):13–30, 1963.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. Re-
inforcement learning: A survey. Journal of artificial
intelligence research, 4:237–285, 1996.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lapin, M., Hein, M., and Schiele, B. Top-k multiclass svm.
Advances in neural information processing systems, 28,
2015.

Lapin, M., Hein, M., and Schiele, B. Loss functions for top-
k error: Analysis and insights. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 1468–1477, 2016.

Lapin, M., Hein, M., and Schiele, B. Analysis and optimiza-
tion of loss functions for multiclass, top-k, and multilabel
classification. IEEE transactions on pattern analysis and
machine intelligence, 40(7):1533–1554, 2017.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PMLR, 2016.

Perez, L. and Wang, J. The effectiveness of data augmen-
tation in image classification using deep learning. arXiv
preprint arXiv:1712.04621, 2017.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen, O. Dif-
ferentiable sorting networks for scalable sorting and rank-
ing supervision. In International Conference on Machine
Learning, pp. 8546–8555. PMLR, 2021.

Petersen, F., Kuehne, H., Borgelt, C., and Deussen, O. Dif-
ferentiable top-k classification learning. In International
Conference on Machine Learning, pp. 17656–17668.
PMLR, 2022.

Prillo, S. and Eisenschlos, J. Softsort: A continuous relax-
ation for the argsort operator. In International Conference
on Machine Learning, pp. 7793–7802. PMLR, 2020.

Shorten, C. and Khoshgoftaar, T. M. A survey on image
data augmentation for deep learning. Journal of big data,
6(1):1–48, 2019.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Weng, L. A (long) peek into reinforcement
learning. lilianweng.github.io, 2018. URL
https://lilianweng.github.io/posts/
2018-02-19-rl-overview/.

9

https://lilianweng.github.io/posts/2018-02-19-rl-overview/
https://lilianweng.github.io/posts/2018-02-19-rl-overview/

Weighted Sampling without Replacement for Deep Top-k Classification

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Rein-
forcement learning, pp. 5–32, 1992.

Wong, C.-K. and Easton, M. C. An efficient method for
weighted sampling without replacement. SIAM Journal
on Computing, 9(1):111–113, 1980.

Yang, F. and Koyejo, S. On the consistency of top-k sur-
rogate losses. In International Conference on Machine
Learning, pp. 10727–10735. PMLR, 2020.

10

Weighted Sampling without Replacement for Deep Top-k Classification

A. Derivation of Equation 8

J(θ) =
∑

y∈(i1,...,ik)

k∏
j=1

pij

1−
∑j−1

t=1 pit

=
∑

y/∈(i1,...,ik−1)

k−1∑
u=0

 u∏
j=1

pij

1−
∑j−1

t=1 pit

 · py
1−

∑u
t=1 pit

·
k−1∏

j=u+1

pij

1− py −
∑j−1

t=1 pit

=

∑
y/∈(i1,...,ik−1)

k−1∑
u=0

 u∏
j=1

pij

1− py −
∑j−1

t=1 pit
·
1− py −

∑j−1
t=1 pit

1−
∑j−1

t=1 pit

 · py
1−

∑u
t=1 pit

·
k−1∏

j=u+1

pij

1− py −
∑j−1

t=1 pit

=

∑
y/∈(i1,...,ik−1)

k−1∑
u=0

 u∏
j=1

1− py −
∑j−1

t=1 pit

1−
∑j−1

t=1 pit

 · py
1−

∑u
t=1 pit

·
k−1∏
j=1

pij

1− py −
∑j−1

t=1 pit

=

∑
y/∈(i1,...,ik−1)

k−1∑
u=0

 py
1−

∑u
t=1 pit

·
u∏

j=1

1− py −
∑j−1

t=1 pit

1−
∑j−1

t=1 pit

 ·
k−1∏
j=1

pij

1− py −
∑j−1

t=1 pit

= py +

∑
y/∈(i1,...,ik−1)

k−1∑
u=1

 py
1−

∑u
t=1 pit

·
u∏

j=1

1− py −
∑j−1

t=1 pit

1−
∑j−1

t=1 pit

 ·
k−1∏
j=1

pij

1− py −
∑j−1

t=1 pit

(16)

11

