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Abstract: Effective solutions to conserve biodiversity require accurate community and species-

level information at relevant, actionable scales and across entire species’ distributions. However, 

data and methodological constraints have limited our ability to provide such information in 

robust ways. Herein we employ DMVP-DRNets, an end-to-end deep neural network framework, 

to exploit large observational and environmental datasets together and estimate landscape-scale 

species diversity and composition at continental extents. We present results from a novel year-

round analysis of North American avifauna using data from 9M eBird checklists and 72 

environmental covariates. We highlight the utility of our information by identifying critical areas 

of high species diversity for a single group of conservation concern, the North American wood 

warblers, while capturing spatiotemporal variation in species’ environmental associations and 

interspecific interactions. In so doing, we demonstrate the type of accurate, high-resolution 

information on biodiversity that deep learning approaches such as DMVP-DRNets can provide 

and that is needed to inform ecological research and conservation decision-making at multiple 

scales. 

Keywords: artificial intelligence; biodiversity; critical areas; eBird; joint species distribution 

modeling; species richness 

Introduction 

Biodiversity loss is rapidly accelerating globally (Butchart et al. 2010), with significant 

implications for ecosystem function (Hooper et al. 2005, 2012) and human health (Cardinale et 

al. 2012). Several hundred international agreements focused on sustainability (e.g., United 

Nations Sustainable Development Goals (United Nations 2020) and conservation (e.g., 

Convention on Biological Diversity (CBD; Secretariat of the Convention on Biological Diversity 

2020a) goals have recently been adopted, but with variable success. A marked example is the 
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recent failure to meet even one of the 20 Aichi Biodiversity Targets included in the CBD’s 

Strategic Plan for Biodiversity 2011-2020 (Secretariat of the Convention on Biological Diversity 

2020b). Pathways to success under the new post-2020 Global Biodiversity Framework 

(Secretariat of the Convention on Biological Diversity 2020a) will require that ratifying nations 

can assess the current state of biodiversity, quantify the impact of environmental change (e.g., 

climate change, changes in human land-use), and evaluate how present-day initiatives (e.g., 

national networks of protected areas) align with the protection of current and future biodiversity. 

With nearly one million plant and animal species facing extinction in the coming decades (Díaz 

et al. 2019), there is an increasingly urgent need for accurate, high-resolution information on 

biodiversity. 

Unfortunately, information on species diversity (i.e., species richness, the number of 

species in a local community) and composition (i.e., the identity of species present in a local 

community) is notoriously difficult to estimate for large, diverse communities because of data 

limitations and sampling biases (Gotelli and Colwell 2001). Species richness is typically 

estimated across large spatial extents by overlaying expert range maps (Hurlbert and Jetz 2007), 

stacking of species distribution model predictions (Ferrier and Guisan 2006), or predicted 

directly via macroecological models (Francis and Currie 2003). In all cases, inferences about 

biodiversity are limited by the spatial and temporal resolution of available expert knowledge or 

modeling efforts (Hurlbert and Jetz 2007, Merow et al. 2017), and scale-dependent (Chase et al. 

2019). Often, estimates are too coarse in spatial resolution and fail to capture seasonal changes in 

community composition (e.g., migratory species) and relative abundance, hindering the 

applicability of this information for conservation decision-making. Moreover, most methods are 

unable to account for the interspecific interactions that, in addition to environmental features, 
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influence what species can occur where and when (Ovaskainen et al. 2017). These challenges 

have impeded our ability to answer one of the most pressing questions in ecology today: how 

does biodiversity vary over space and time? 

Recently developed deep learning joint species distribution models (e.g., Chen et al. 

2018, Kong et al. 2020) provide a promising alternative to other statistical approaches for 

estimating species diversity and composition across a broad range of spatial and temporal scales. 

These methods use state-of-the-art artificial intelligence technologies (Chen et al. 2017) to 

decompose the spatial distributions of multiple species into shared environmental affinities and 

residual patterns of co-occurrence (Pollock et al. 2014, Warton et al. 2015, Ovaskainen et al. 

2017), and are capable of scaling to the large numbers of species, locations, sample sizes, and 

environmental predictors necessary for broad-scale applications (Gomes et al. 2021). These 

methodological developments parallel the recent growth of digital citizen science platforms that 

can provide cost-effective and high-resolution information on entire ecological communities 

(Theobald et al. 2015, Thornhill et al. 2016, Chandler et al. 2017). Together, these advances 

greatly expand the scope of application, making it possible to predict, document, and study the 

spatiotemporal patterns of biodiversity at relevant, actionable scales and continental extents. 

Here, we employ such an approach to make inferences on patterns of avian species 

diversity and composition at a high spatiotemporal resolution throughout the annual cycle. More 

specifically, we apply a Deep Reasoning Network (Chen et al. 2020, 2021) implementation of 

the Deep Multivariate Probit model (Chen et al. 2018; DMVP-DRNets) to citizen science data 

from 9,206,241 eBird checklists to examine the year-round spatiotemporal distributions, species-

environment associations, and interspecific interactions for 500 species of North American 

avifauna while considering 72 environmental covariates. We highlight the utility of our results 
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by identifying areas of high species diversity throughout the annual cycle using the North 

American warblers (order Passeriformes, family Parulidae) as an exemplar group. Warblers are a 

subset of the Neotropical migrants that largely breed in temperate and northern forests and 

overwinter in tropical forests. Warblers are also a group of conservation concern, as 64% of 

species are currently experiencing widespread population declines (Rosenberg et al. 2019). Due 

to the migratory nature of this group, full annual cycle information is vital for identifying year-

round critical areas for species diversity and key migration corridors to combat further declines. 

Moreover, understanding the seasonal habitat associations and interspecies interactions that 

structure species diversity can help prioritize research on the drivers of species declines across 

the annual cycle. Our results show how the information generated by the application of DMVP-

DRNets to large-scale citizen science data can ultimately lead to more effective solutions for 

biodiversity conservation and improve our understanding of ecological communities. 

Methods 

Modeling Framework 

We used a Deep Reasoning Network (Chen et al. 2020, 2021) implementation of the 

Deep Multivariate Probit (Chen et al. 2018) model (DMVP-DRNets; Chen et al. 2023), which 

employs a 3-layer-fully-connected network encoder to learn the relative importance of a large 

number of input features and generates a two-part structured latent space to express species’ 

environmental associations as well as the interactions among species (Figure 1). A key advantage 

of deep learning is the ability to incorporate large, complex environmental data sets, allowing for 

a more accurate characterization of the high-dimensional processes that structure species’ 

ecological niches and entire communities. Additionally, deep learning can isolate patterns that 
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are shared by multiple species, thereby improving predictions across all species but particularly 

those that are detected less frequently (Chen et al. 2017, Botella et al. 2018).  

DMVP-DRNets integrates the multivariate probit model into an end-to-end deep learning 

framework with an interpretable latent space to produce three ecologically relevant outputs: 1) 

environmental association embeddings, which capture the multivariate associations of different 

environmental covariates, and interactions among these, on species’ occurrences; 2) interactive 

association embeddings, which capture interactions among species via a residual correlation 

matrix; and 3) estimates of joint species occurrence probabilities across the study extent, which 

can be summarized at both the species- and community-level (e.g., to map species-specific 

distributions or species richness; Figure 1).  

DMVP-DRNets uses a 3-layer-fully-connected network (denoted as MLP or multi-layer 

perceptron) to extract high-dimensional predictors ℎ𝑖𝑖, from the raw environmental data 𝑥𝑥𝑖𝑖 and 

encode a two-part latent space, which captures species-environment associations as 𝜇𝜇𝑖𝑖 =  𝑆𝑆𝑇𝑇 ∙ ℎ𝑖𝑖 

and the residual association among species as Σ = 𝐼𝐼 + Λ𝑇𝑇Λ. We structured our MLP to have 

1024, 1024, and 512 hidden units for each layer using the ReLU (Nair and Hinton 2010) 

activation function. The generative decoder then uses a multivariate probit distribution to map 

detection/non-detection data 𝑦𝑦𝑖𝑖,𝑗𝑗 to a sequence of latent Gaussian random variables 𝑟𝑟𝑖𝑖,1, … , 𝑟𝑟𝑖𝑖,𝑚𝑚. 

Here, 𝐫𝐫𝑖𝑖 is subject to a multivariate normal distribution with mean 𝜇𝜇𝑖𝑖 and covariance Σ: 

𝐫𝐫𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖, Σ), which captures species-specific environmental associations and residual 

interspecific interactions, respectively. A technical description of the model likelihood and 

implementation can be found in Appendix S1. 

Model Evaluation 
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Before applying DMVP-DRNets at-scale, we first conducted a comprehensive 

comparison with the nearest neighbor approximation version of the spatial Gaussian Process 

HLR-S (Tikhonov et al. 2020). HLR-S is a hierarchical multivariate probit model with latent 

factors and explicit spatial correlation (Wilkinson et al. 2019, Niku et al. 2019) and is among the 

most widely applied joint species distribution model (JSDM) in ecology. We used 12 metrics 

(Norberg et al. 2019) to evaluate model performance with respect to accuracy, discrimination, 

calibration, and precision on three ecological levels: 1) species-specific occurrence, 2) species 

richness, and 3) community composition, which measured using three indices of pairwise 

community similarity: the Sørsenson-based dissimilarity index, the Simpson-based dissimilarity 

index, and the nestedness-resultant dissimilarity index. To aid in comparison, we modified the 

"discrimination" metrics to be 1 minus its original value and averaged the three similarity indices 

(Sorensen, Simpson and nestedness) to produce a singular community-level metric for each of 

the four performance categories. We refer readers to Norberg et al. (2019) for a more detailed 

description of these evaluation criteria. 

We compared DMVP-DRNets and HLR-S using a variety of ecological datasets, 

including data from the 2011 Breeding Bird Survey (BBS; Pardieck et al. 2019), 5 other 

benchmark datasets used in recent JSDM comparisons (Wilkinson et al. 2019, Norberg et al. 

2019), and random subsets of 1,000 and 10,000 eBird checklists from the full dataset described 

below. The BBS dataset contained detection/non-detection records from 2,752 sites, with 

observations of 370 species across North America and 8 climate-based site covariates. The other 

5 datasets contained 1,200 presence-absence observations of 50 to 242 species with 3 to 5 

environmental covariates. Additional information about each of these datasets can be found in 

Appendix S2. 
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We used the R-implementation of HLR-S (Tikhonov et al. 2020) with a similar MCMC 

configuration to conduct these model comparisons. We fitted HLR-S with 10,000 MCMC steps, 

discarding the first 2,000 samples as burn-in, and thinned to keep 1 out of every 80 iterations. 

Unlike deep learning models, Bayesian methods do not need a validation set to conduct model 

selection. Moreover, the training set was too small (only 600 data points) for each of the 5 

benchmark datasets to split out a validation set. For these datasets, we trained DMVP-DRNets 

for a fixed number of epochs and then directly evaluated on the test set. For the BBS and eBird 

datasets, we randomly split 25% of the data to use as the test set, and 10% of the training data 

points to use as the validation set to perform model selection. Finally, we compared the 

computational efficiency of DMVP-DRNets to HLR-S by evaluating the wall-clock running time 

to train on each of the datasets. All models were trained and evaluated on one NVIDIA Tesla 

V100 GPU with 16GB memory. For the training process of our model, we selected a learning 

rate in (0:0001; 0:0005; 0:001) with Adam optimizer (Kingma and Ba 2017).  

Finally, we compared DMVP-DRNets to a single-species approach that assumes species 

independence by constraining the shared covariance matrix to be zero. We evaluated differences 

in model performance associated with the estimation of these species-species associations for the 

BBS and eBird datasets. All model evaluation results can be found in Appendix S2. 

eBird Data Description 

We used a subset of eBird (Sullivan et al. 2009) data in which the time, date, and location 

of each checklist were reported and observers recorded all bird species detected and identified 

during the survey period, resulting in a “complete checklist” of species. The checklists used in 

this analysis were collected using the “stationary” or “traveling” protocols from January 1, 2004, 

to February 2, 2019, and within the spatial extent between 170° to 60° W longitude and between 
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20° to 60° latitude. We applied the best-practices for use of citizen science data from eBird 

(Johnston et al. 2021) to additionally filter checklists to those with durations of at most 1 hour 

and for traveling surveys at most 1km. We also removed duplicate records from group checklists 

where appropriate. The resultant dataset consisted of 9,206,241 eBird checklists. 

We present an analysis of the 500 most frequently detected species on these filtered eBird 

checklists. This set of species includes a taxonomically diverse group of species, including both 

migrants and resident species that spanned a range of prevalence and range sizes, from common 

to infrequently detected species. To estimate the joint occurrence of these 500 species, we 

included 72 covariates of three general classes, including: 1) five observation-effort covariates to 

account for variation in detection rates; 2) three covariates to account for variation in detection 

rates at different temporal scales; and 3) 64 environmental covariates from remote sensing data 

to capture associations of birds with a variety of landscapes across the continent.  

The observation-effort covariates capture heterogeneity in the observation process (i.e., 

effort expended and observer skill) and included: a) the duration spent searching for birds; b) 

whether the observer was stationary or traveling; c) the distance traveled during the search; d) 

the number of people in the search party; and e) the checklist calibration index, a standardized 

measure indexing differences in behavior among observers on checklists (Kelling et al. 2015, 

Johnston et al. 2018). We also included covariates to capture the time of day, day or year, and 

year of each observation. To account for differences in how time is recorded across time zones, 

the observation time of day was standardized as the difference from solar noon, the moment 

when the Sun crosses the local meridian and reaches its highest position in the sky at a given 

location. The day of the year (1–366) on which the search was conducted was used to capture 

intra-annual variation and the year of the observation was included to account for inter-annual 
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variation. Our initial data filtering combined with these observation-effort covariates helped to 

control for potential biases related to variable effort, spatial coverage, and preferential species 

reporting (Johnston et al. 2021).  

The environmental descriptors included variables describing elevation, topography, 

shorelines, islands, land cover, land use, hydrology, and human development. To account for the 

effects of elevation and topography, each checklist location was associated with elevation 

(Becker et al. 2009), eastness, and northness. These latter two topographic variables combine 

slope and aspect to provide a continuous measure describing geographic orientation in 

combination with slope at 1km2 resolution (Amatulli et al. 2018). Each checklist was also linked 

to a series of covariates derived from the NASA MODIS land cover, land use, and hydrology 

data (Carroll et al. 2017). We selected this data product for its moderately high spatial resolution, 

annual temporal resolution, and global coverage. We used the FAO-Land Cover Classification 

System which classifies each 500m pixel into land cover one of 21 vegetative cover classes, 

along additional classifications describing the land use and hydrology of each pixel. Checklists 

were linked to the MODIS data by year from 2001-2017, capturing inter-annual changes in land 

cover. The checklist data after 2017 were matched to the 2017 data, as MODIS data from after 

2017 were unavailable at the time of analysis. To improve the classification of areas of human 

development, we also included the nighttime reflectance values from the 2016 NOAA VIIRS 

dataset (Cao et al. 2014). Additionally, to delineate the interface between terrestrial and marine 

environments we used NASA MODIS land water classification (Carroll et al. 2017) in 

conjunction with 30m shoreline and island data from GSV71 and the elevation data described 

above to classify each location into land, ocean, island and coastal areas. Finally, to identify 
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habitat for coastal species tidal mudflats were classified based on Murray’s approach (Sayre et 

al. 2019). 

To describe the composition and configuration of the local landscapes searched by 

participants, all cover classes were summarized within a 2.9km x 2.9km (877 hectare) 

neighborhood centered on the checklist location. In each neighborhood, we computed the 

composition as the proportion of each class in the neighborhood (PLAND). To describe the 

spatial configuration of each class we computed class level ED, an index of the edge density 

using the R package landscapemetrics (McGarigal et al. 2012). Because the elevation, eastness, 

northness, and VIIRS nighttime reflectance data are continuous measures, we computed the 

median and standard deviations of the values to capture the amount and variability of values 

within each neighborhood. A full list of the datasets analyzed in this study can be found in 

Appendix S3.  

The STEM Wrapper 

Our analysis uniquely captures spatiotemporal variation in both habitat and species 

associations using spatiotemporal exploratory models (STEM; Fink et al. 2010) as a wrapper 

around DMVP-DRNets to generate valuable insight into community-level processes across broad 

spatial and temporal extents. To do so, we repeatedly partitioned the study extent into randomly 

located grids of spatiotemporal blocks. Within each block, we trained DMVP-DRNets using a 

random split of 80% of data points falling within the block. The remaining data within the block 

were equally and randomly split into a validation (10% of data points), and test set (10% of data 

points). Within each spatiotemporal block, we also assumed the relationships between species’ 

occurrence and the model covariates, and the relationships between species were stationary. This 

ensemble of partially overlapping local models was designed as a Monte Carlo sample of 484 
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randomly located spatial partitions of the study extent, with dimensions 15° longitude x 10° 

latitude, applied to each month of the year. This resulted in a uniformly distributed set of 

spatiotemporal blocks, and up to 24 local models covering each location in the study extent. 

Estimates at a given location and date were made by averaging across all the local models that 

contained that location and date and met a minimum sample size of 15,000 checklists. 

Spatiotemporal blocks that did not meet these minimum sample size requirements were removed 

from the ensemble.  

Training over many smaller spatiotemporal extents with more localized datasets allows 

the ensemble to adapt to non-stationary species-species associations, i.e., seasaonal and regional 

changes in community structure across the study extent. Thus, the STEM ensemble functions to 

provide additional model flexibility, thereby reducing bias and providing better control for 

spatiotemporal extrapolation, compared to a single global model. Combining estimates across the 

ensemble provides control for inter-model variability associated with smaller sample sizes. 

Accounting for the spatiotemporal differences in these relationships not only provides novel 

insights into the factors structuring avian communities but also results in more accurate estimates 

of species’ occurrences across broad spatial extents (Fink et al. 2010). The cumulative training 

time of all local models when using the STEM wrapper was 39.5 hours. 

Critical Areas for Species Diversity 

We used joint estimates of species occurrence to estimate richness of North American 

warbler species throughout the annual cycle. To calculate richness, we first applied a species-

specific threshold that resulted in the maximum value of the kappa statistic (Monserud and 

Leemans 1992) to convert occurrence probabilities to a binary 0/1 scale. Occurrence 

probabilities greater than this threshold were set to 1, while probabilities less than this threshold 
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were set to 0.  We then summed the binary predictions across all warbler species in a 2.9km x 

2.9km pixel in each month to calculate species richness throughout the annual cycle. Our 

monthly estimates of warbler richness were reviewed by two world-renowned bird experts who 

oversee the data quality process in eBird. We also used the assessment of two co-authors of the 

paper (OR & VRG) who are well versed in the ecology and distribution of Neotropical migrants. 

To identify critical areas of high warbler diversity, we first calculated the year-round 

maximum richness in each pixel. Pixels containing a high concentration of warbler species were 

then defined as those that exceeded the 95th percentile of year-round maximum richness across 

the entire study extent, excluding pixels with 0 warbler species. Medium and low concentration 

areas were defined as pixels that fell within the 90-95th and 80-90th percentiles, respectively. To 

better align our information with conservation decision-making, we overlapped these critical 

areas with existing Bird Conservation Regions (BCRs) that are composed of similar bird 

communities, habitats, and resource management issues (Bird Studies Canada and NABCI 

2014). Within the BCRs that overlapped with year-round critical areas, we summarized 

maximum warbler richness as well as richness in the pre-breeding migration (i.e., May), 

breeding (i.e., June), and post-breeding migration (i.e., September) seasons. Finally, we 

identified critical migration areas using the estimated warbler richness in the months of May and 

September, respectively, where areas of highest concentration fell above the 95th percentile, areas 

of medium concentration fell between the 90th and 95th percentiles, and areas of low 

concentration fell between the 80th and 90th percentiles. 

Shared Environmental Associations 

We highlight year-round shared habitat relationships among warbler species across the 

Northeastern United States (i.e., within the spatial extent between 85° to 70°W longitude and 
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between 35° to 50°N latitude), while considering a broader community-level context. That is, we 

also examined shared habitat relationships among all species with a prevalence rate higher than 

1% on all eBird checklists submitted in the Northeastern United States in each month. 

To group species according to their similarity in environmental associations, we first z-

standardized DMVP-DRNets’ environmental association embedding and then used an average 

clustering algorithm on the correlation-based distance matrix. We then visualized patterns among 

species using hierarchical dendrograms and conducted 1000 bootstrap samples to calculate node 

support, defining relationships with >80% support as those that were strongly supported by the 

data. We also categorized species by primary breeding habitat and conservation status as defined 

by the Partners in Flight (PIF) database (Partners in Flight 2021). Categories of primary breeding 

habitat included: boreal forest, temperate forest, forest generalist, grassland, generalist, wetland, 

and coast. We used the range-wide population trends to define a species’ conservation status, 

where a > 0.25% decline per year was defined as a negative population trend of concern. Species 

names listed are common names from the American Ornithological Society’s checklist of North 

American birds (Chesser et al. 2020). We used the R packages pvclust (Suzuki and Shimodaira 

2006), ggdendro (de Vries and Ripley 2020) and dendextend (Galili 2015), to compute and 

visualize dendrograms. 

Interspecific Interactions 

We examined the year-round residual correlations in occurrence between all pairs of 

warbler species, and between warblers and other 1) boreal forest species, 2) temperate eastern 

forest species, and 3) forest generalist species that also occur in the Northeastern United States. 

To do this, we first converted the residual covariance matrix Σ into a correlation matrix and then 

subset species groups according to their breeding habitat categories described previously. 
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Results 

Critical Areas for Species Diversity 

Using warblers as an exemplar species group, we generated monthly estimates of species 

richness at a spatial resolution of 2.9km x 2.9km. Warbler richness was incredibly dynamic 

throughout the annual cycle, with hotspots of species diversity that shifted drastically across the 

continent from one month to the next (Video S1). Critical areas with the highest number of 

warbler species year-round primarily overlapped with the Appalachian Mountains (Figure 2) but 

spanned 19 different Bird Conservation Regions (Bird Studies Canada and NABCI 2014) 

(BCRs; Appendix S4) established by the North American Bird Conservation Initiative. The 

Appalachian Mountains and Central Hardwoods BCRs consistently had the highest species 

richness of the regions that overlapped with year-round critical areas, but the distribution of 

species diversity across all other BCRs varied by season (Appendix S4: Figure S1). 

Our results also allowed us to identify critical areas with a high concentration of warbler 

species in each of the migratory periods (Figure 3). Although these critical migration areas were 

similar between the two periods, we found key differences in the relative importance of areas 

based on the concentration of species diversity (Appendix S4: Figure S2). For example, the 

Appalachian Plateau of Ohio, West Virginia, and Pennsylvania hosts a higher concentration of 

species diversity during the pre-breeding migration season, while the northern Appalachians 

appear to be more important post-breeding. 

Shared Environmental Associations 

Our results on joint-species distributions also allow us to capture and disentangle the 

dynamic processes that structure species diversity and composition throughout the annual cycle. 

That is, our results not only provide information on the spatiotemporal distribution of species 
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diversity, but also retain information on the identity, habitat associations, and interspecific 

interactions of the individual species that make up that diversity across North America. Here, we 

use the Northeastern United States (i.e., within the spatial extent between 85° to 70° W longitude 

and between 35° to 50° latitude) to demonstrate how species’ relationships with their 

environment vary over space and time.  

At a coarse level, we were able to distinguish between species that are primarily 

associated with aquatic habitats from those associated with terrestrial environments in the 

Northeastern United States (Figure 4). Within these groups, our results allowed us to 

differentiate among species based on their primary habitat in the breeding season. For example, 

our results on habitat associations allowed us to accurately distinguish between warbler species 

that largely breed in boreal habitats from those that breed in temperate forests (Figure 4). These 

associations were further filtered by finer-scale habitat features. Warblers that are closely 

associated with riparian habitats or other water features, including the Prothonotary Warbler 

[Protonotaria citrea], Northern Parula [Setophaga americana], and Yellow-throated Warbler 

[Setophaga dominica], clustered strongly together, whereas the Pine Warbler [Setophaga pinus] 

clustered more strongly with other pine-associated species such as the Brown-headed Nuthatch 

[Sitta pusilla] and Red-headed Woodpecker [Melanerpes erythrocephalus]. As seasons change, 

our analysis captured the changing environmental associations of species as well (Appendix S4: 

Figure S3–S14). For example, most warblers clustered strongly together during the post-breeding 

migration season (Figure 5), except for the Palm Warbler [Setophaga palmarum] that tends to 

migrate later in the fall and the Pine Warbler and Yellow-rumped Warbler [Setophaga coronata] 

that remain prevalent in some parts of the Northeast throughout the year. 

Interspecific Interactions 
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Our results on the co-occurrence patterns of species also discovered spatiotemporal 

variation in interspecific interactions, revealing drastically different patterns in residual 

correlation among species during the breeding, non-breeding, and migratory seasons. These 

unique insights allow us to demonstrate the ecological relevance of co-occurrence patterns for 

warblers in the Northeastern United States (Figure 4-5, Appendix S4: Figure S15). We found that 

warblers were negatively or weakly correlated in the breeding season when species are actively 

defending territories (Figure 6a). Among these were species pairs that have similar habitat 

preferences but exhibit interspecific aggression on the breeding grounds (e.g., Hooded Warbler 

[Setophaga citrina] and American Redstart [Setophaga ruticilla]). In general, warblers were 

more positively correlated with boreal species than with forest generalists or other species that 

breed in temperate forests but there was considerable interspecific variation in these relationships 

(Appendix S4: Figure S15a). The Yellow Warbler [Septophaga petechia], which is among the 

most abundant and widespread of warblers in the Northeast, was the only warbler strongly 

correlated with at least one species in each of the three different habitat types, including the 

Alder Flycatcher [Empidonax alnorum] (boreal forest), Cedar Waxwing [Bombycilla cedrorum] 

(forest generalist), Warbling Vireo [Vireo gilvus] (temperate eastern forest), and Willow 

Flycatcher [Empidonax traillii] (temperate eastern forest). 

We further observed stark differences in interspecific interactions during migration, when 

most species were strongly correlated with each other (Figure 6b). Warblers were also positively 

correlated with most other forest species (Appendix S4: Figure S15b). These patterns align with 

anecdotal observations of warblers participating in mixed-species flocks with both migratory 

(e.g., Red-eyed Vireo [Vireo olivaceus] and resident passerines (e.g., Black-capped Chickadee 

[Poecile atricapillus]) during this time. Warblers were negatively correlated only with birds of 
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prey, including the Broad-winged Hawk [Buteo platypterus], Sharp-shinned Hawk [Accipiter 

striatus], Cooper’s Hawk [Accipiter cooperii] and Red-shouldered Hawk [Buteo lineatus]. 

Discussion 

Estimates of species diversity and composition are fundamental for studying processes 

that shape biological communities, and critically important for conservation planning (Myers et 

al. 2000, Fleishman et al. 2006). We applied a deep learning approach, the DMVP-DRNets, to 

uniquely generate continental estimates of species diversity and composition at relevant, 

actionable resolutions for decision-making, while also capturing year-round spatiotemporal 

variation in species’ environmental associations and interspecific interactions. Our full annual 

cycle perspective reveals year-round critical areas for North American warblers, including key 

movement corridors during the pre-breeding and post-breeding migrations. This information can 

be used to coordinate adaptive conservation strategies (Reynolds et al. 2017) across regions and 

seasons (Sauer et al. 2003), and to identify and prioritize landscapes of high conservation value 

(Capmourteres and Anand 2016). Furthermore, the broad-scale community information provided 

by deep learning models allows us to integrate the influence of regional and seasonal processes 

across space throughout the year, making it possible to conduct accurate population-wide impact 

assessments. This is particularly important for studying various environmental and 

anthropogenic factors that contribute to or are affected by species declines, many of which are 

multi-scale processes, ranging from climate (Ådahl et al. 2006, Small-Lorenz et al. 2013) and 

land-use change (La Sorte et al. 2017) to ecosystem services (Birkhofer et al. 2015). 

The fine-scale spatial structure shown in our maps of species richness arises from the 

environmental associations and interspecific interactions discovered through the deep learning 

process, and provides detailed, continental-extent information on the processes structuring 
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ecological communities. Using warblers in the Northeastern United States as an example, we 

show meaningful species-specific relationships with habitat and co-occurring species throughout 

the annual cycle. Communities were structured by shared environmental preferences (e.g., 

species associated with riparian habitats) and then further filtered by fine-scale biotic interactions 

(e.g., negative correlations indicative of spatial avoidance between predators and prey observed 

in the post-breeding migration season). These results not only provide basic ecological 

information about avian communities but may also help in the development of effective 

conservation strategies (i.e., targeted restoration to benefit an entire group of species) and 

identification of indicator groups that can be used to monitor species of conservation concern or 

the impacts of environmental change. Moreover, understanding the mechanisms underlying 

spatiotemporal patterns of species diversity can help prioritize research on the factors 

contributing to variable population trends across species’ distributions. 

A key contribution of deep learning approaches such as DMVP-DRNets is the increased 

computational power to handle more environmental covariates, species, and larger sample sizes 

than standard multi-species frameworks used to estimate richness. In addition, we show how 

end-to-end deep learning can allow us to characterize complex and high-dimensional 

relationships between entities, including species-environment associations and interspecific 

interactions. These advances greatly expand the scope of inference, making it feasible to predict, 

document, and study patterns of species diversity and community composition across a broader 

range of spatial and temporal scales. The application of deep learning methods that estimate 

relative abundance for multiple species (Kong et al. 2020), accommodate other data types (e.g., 

time series data), or that relax the assumption of symmetric, pairwise associations (Zhao et al. 

2021) between species may also lead to more accurate predictions of species diversity and 
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composition that can better inform the prioritization of limited conservation resources (Johnston 

et al. 2015). Addressing challenges associated with interpretability of deep learning models and 

prediction uncertainty, more specifically, can further inform conservation decision-making and 

ensure that resources are more precisely directed to critical areas associated with high prediction 

certainty (Jansen et al. 2022, Wadoux et al. 2023). While our current application of DMVP-

DRNets does not generate estimates of uncertainty, pixel-level estimates could be produced by 

assessing the variation among overlapping block-level estimates in the STEM ensemble. 

Another promising avenue for future research includes extensions that explicitly estimate 

detection probabilities (e.g., Tobler et al. 2019). Our approach does not explicitly separate the 

observation and ecological processes by estimating species-specific detection probabilities 

(Dorazio and Royle 2005). Rather, we account for heterogeneity in the observation process (e.g., 

variation in detection rates) via model covariates. Estimates of occurrence should therefore be 

interpreted as a relative index of species occupancy probabilities (sensu Fink et al. 2020). 

Improvements in feature engineering to more fully describe known sources of variation in the 

observation process would provide inferential benefits without a need for the repeated sampling 

design needed to estimate detection probabilities. We also do not address challenges associated 

with the use of imbalanced data, which arise when the number of positive detections for a 

species is small compared to the number of locations where the species was not observed. Highly 

imbalanced data can be problematic for rare and infrequently detected species, but the 

performance of single-species distribution models can be improved using case-control sampling 

(Fithian and Hastie 2014, Robinson et al. 2017). Case-control sampling in the context of a 

multivariate (i.e., multispecies) problem is not trivial and remains an ongoing area of research 

(Tarekegn et al. 2021). Our joint model’s structure likely provides some benefits for rare and 
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infrequently detected species (Ovaskainen and Soininen 2011, though see Erickson and Smith 

2023) but additional work should be done to quantify the extent to which imbalanced data 

influence model performance and resulting inferences. 

Amidst accelerating environmental changes, there is an increasingly urgent need for 

scalable ways to generate accurate, high-resolution information on biodiversity. Because of their 

ability to capture complex, community-level processes at multiple scales and across broad spatial 

extents, deep learning approaches such as DMVP-DRNets can serve as comprehensive, cost-

effective, and adaptable methods by which to set biodiversity baselines and assess change in 

community composition at relevant spatiotemporal scales (Oliver et al. 2021). For example, 

estimates of species occurrence and biodiversity attributes (i.e., taxonomic, phylogenetic, and 

functional diversity) can inform several Essential Biodiversity Variables (Pereira et al. 2013, Jetz 

et al. 2019) proposed in the post-2020 Global Biodiversity Framework (Secretariat of the 

Convention on Biological Diversity. 2020a). While we highlight the utility of deep learning 

species distribution models as applied to eBird checklist data, broad-scale citizen science 

programs are just one of many growing sources of large ecological data streams (Farley et al. 

2018). The integration of data across long-term monitoring networks (e.g., LTER, NEON) or 

automated sensor networks (e.g., wildlife camera traps), for instance, will provide a wealth of 

community-level information for other geographic regions and many other taxonomic groups 

(e.g., mammals; Ahumada et al. 2020) in the near future. In addition, the availability of new, 

high-resolution environmental data sources that better capture local habitat conditions (e.g., 

GEDI-derived data products on ecosystem structure; Dubayah et al. 2020) will further improve 

our ability to make robust ecological inference at high resolution and across broad 

spatiotemporal extents. Deep learning approaches can unlock the full potential of these large 
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observational and environmental datasets for both species- and community-level inference about 

biodiversity, and thus open a new and exciting frontier for data-driven conservation and ecology. 
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Figure 1. An overview of the modeling framework used in our study. DMVP-DRNets extracts 

high-dimensional predictors from the raw environmental data to encode the environmental 

association embeddings 𝑠𝑠𝑗𝑗 and the interspecific association embeddings 𝜆𝜆𝑗𝑗 for each species j. 

These embeddings are used to compute species-specific habitat relationships and estimate the 

residual covariance among species, respectively. The generative-decoder then maximizes the 

joint likelihood of species j being present at location i under the multivariate probit distribution. 

DMVP-DRNets model outputs include: 1) environmental association embeddings 𝑠𝑠𝑗𝑗 that capture 

high-dimensional representations of species-habitat relationships; 2) interspecific association 

embeddings 𝜆𝜆𝑗𝑗, which are used to derive the pairwise covariance matrix Σ that describes residual 

species-species associations; and 3) species-specific occurrence predictions across the study 

extent, which can be summarized at either the species- or community-level (e.g., to calculate 

species richness). 

 

Figure 2. Maps of year-round a) maximum warbler richness and b) critical areas of high warbler 

diversity across the study extent predicted at a spatial resolution of 2.9km. Full annual-cycle 

animation of warbler richness is included in Video S1. Critical areas are defined as the locations 

that fall above the 80th percentile of year-round maximum warbler richness, where areas of low 

concentration fall between the 80th and 90th percentiles, areas of medium concentration fall 

between the 90th and 95th percentiles, and areas of high concentration fall above the 95th 

percentile of maximum warbler richness. 

 

Figure 3. Critical areas with high warbler diversity during a) pre-breeding and b) post-breeding 

migration seasons. Locations highlighted here fall above the 80th percentile of warbler richness 
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in the months of May and September, respectively, where areas of low concentration fall 

between the 80th and 90th percentiles, areas of medium concentration fall between the 90th and 

95th percentiles, and areas of high concentration fall above the 95th percentile. 

 

Figure 4. Hierarchical clustering dendrogram showing the similarity in environmental 

associations of species in the Northeastern United States during the breeding season. These 

dendrogram is a visual representation of the high-dimensional environmental association 

embeddings learned by DMVP-DRNets; additional months can be found in Appendix S3: Figure 

S3-S14. Solid lines indicate relationships with ≥ 80% bootstrap support, whereas dotted lines 

indicate relationships with < 80% bootstrap support. 

 

Figure 5. Hierarchical clustering dendrogram showing the similarity in environmental 

associations of species in the Northeastern United States during the post-breeding migration 

season. This dendrogram is a visual representation of the high-dimensional environmental 

association embeddings learned by DMVP-DRNets; additional months can be found in 

Appendix S3: Figure S3-S14. Solid lines indicate relationships with ≥ 80% bootstrap support, 

whereas dotted lines indicate relationships with < 80% bootstrap support. 

 

Figure 6. Residual pairwise correlation matrices for warbler species in the Northeastern United 

States during the a) breeding and b) post-breeding migration seasons. Species pairs that are 

negatively correlated (e.g., Yellow Warbler [Setophaga petechia] and Black-throated Green 

Warbler [Setophaga virens] in the breeding season) are less likely to co-occur, while positively 

correlated species pairs (e.g., Blackburnian Warbler [Setophaga fusca] and Bay-breasted 

 19399170, ja, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4175 by C

ornell U
niversity, W

iley O
nline L

ibrary on [04/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Warbler [Setophaga castanea] in the post-breeding migration season) are more likely to co-occur 

than expected after accounting for shared habitat preferences. Residual associations between 

species vary across the annual cycle, with drastically different patterns in the breeding, non-

breeding, and migration seasons. 
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