
A Novel Automated Curriculum Strategy to Solve
Hard Sokoban Planning Instances

Dieqiao Feng
Department of Computer Science

Cornell University
Ithaca, NY 14850

dqfeng@cs.cornell.edu

Carla P. Gomes
Department of Computer Science

Cornell University
Ithaca, NY 14850

gomes@cs.cornell.edu

Bart Selman
Department of Computer Science

Cornell University
Ithaca, NY 14850

selman@cs.cornell.edu

Abstract

In recent years, we have witnessed tremendous progress in deep reinforcement
learning (RL) for tasks such as Go, Chess, video games, and robot control. Never-
theless, other combinatorial domains, such as AI planning, still pose considerable
challenges for RL approaches. The key difficulty in those domains is that a positive
reward signal becomes exponentially rare as the minimal solution length increases.
So, an RL approach loses its training signal. There has been promising recent
progress by using a curriculum-driven learning approach that is designed to solve
a single hard instance. We present a novel automated curriculum approach that
dynamically selects from a pool of unlabeled training instances of varying task
complexity guided by our difficulty quantum momentum strategy. We show how
the smoothness of the task hardness impacts the final learning results. In particular,
as the size of the instance pool increases, the “hardness gap” decreases, which
facilitates a smoother automated curriculum based learning process. Our automated
curriculum approach dramatically improves upon the previous approaches. We
show our results on Sokoban, which is a traditional PSPACE-complete planning
problem and presents a great challenge even for specialized solvers. Our RL agent
can solve hard instances that are far out of reach for any previous state-of-the-art
Sokoban solver. In particular, our approach can uncover plans that require hundreds
of steps, while the best previous search methods would take many years of comput-
ing time to solve such instances. In addition, we show that we can further boost the
RL performance with an intricate coupling of our automated curriculum approach
with a curiosity-driven search strategy and a graph neural net representation.

1 Introduction

Planning is an area in core artificial intelligence (AI), which emerged in the early days of AI as part
of research on robotics. An AI planning problem consists of a specification of an initial state, a goal
state, and a set of operators that specifies how one can move from one state to the next. In robotics,
a planner can be used to synthesize a plan, i.e., a sequence of robot actions from an initial state to
a desired goal state. The generality of the planning formalism captures a surprisingly wide range
of tasks, including task scheduling, program synthesis, and general theorem proving (actions are

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



inference steps). The computational complexity of general AI planning is at least PSPACE-complete
[4, 6]. There are now dozens of AI planners, many of these compete in the regular ICAPS Planning
competition [19]. In this paper, we consider how deep reinforcement learning (RL) can boost the
performance of plan search by automatically uncovering domain structure to guide the search process.

A core difficulty for RL for AI planning is the extreme sparsity of the reward function. For instances
whose shortest plans consist of hundreds of steps, the learning agent either gets a positive reward
by correctly finding the whole chain of steps, or no reward otherwise. A random strategy cannot
“accidentally” encounter a valid chain. In [11], we proposed an approach to addressing this issue
by introducing a curriculum-based training strategy [2] for AI planning. The curriculum starts with
training on a set of quite basic planning sub-tasks and proceeds with training on increasingly complex
set of sub-tasks until enough domain knowledge is acquired by the RL framework to solve the original
planning task. We showed how this strategy can solve several surprisingly challenging instances from
the Sokoban planning domain.

Herein we introduce a novel automated dynamic curriculum strategy, which is more general and
significantly extends the curriculum approach of [11] and allows for solving a broad set of previously
unsolved planning problem instances. Our approach starts with a broad pool of sub-tasks of the
target problem to be solved. In contrast to [11], our approach does require the manual identification
of groups of increasingly hard sub-tasks. All sub-tasks are “unlabeled,” i.e., no solution plans are
provided and many may even be unsolvable. We introduce a novel multi-armed bandit strategy that
automatically selects batches of sub-tasks to feed to our planning system or RL agent, which we refer
to as difficulty quantum momentum strategy, using the current deep net policy function and a Monte
Carlo Tree Search based search strategy. The system selects tasks that can be solved and uses those
instances to subsequently update the policy network. By repeating these steps, the policy network
becomes increasingly effective and starts solving increasingly hard sub-tasks until enough domain
knowledge is captured and the original planning task can be solved. As we will demonstrate, the
difficulty quantum momentum multi-armed bandit strategy allows the system to focus on sub-tasks
that lie on the boundary of being solvable by the planning agent. In effect, the system dynamically
uncovers the most useful sub-tasks to train on. Intuitively, these instances fill the “complexity gap”
between the current knowledge in the policy network and the next level of problem difficulty. The
whole framework proceeds in an unsupervised manner — little domain knowledge of the background
task is needed and the bandit is being guided by a simple but surprisingly effective rule.

As in [11], we use Sokoban as our background domain due to its extreme difficulty for AI planners
[16]. See Figure 1 for an example Sokoban problem. We have a 2-D grid setup, in which, given
equal number of boxes and goal squares, the player needs to push all boxes to goal squares without
crossing walls or pushing boxes into walls. The player can only move upward, downward, leftward
and rightward. Sokoban is a challenging combinatorial problem for AI planning despite its simple
conceptual rules. The problem was proven to be PSPACE-complete [7] and a regular size board
(around 15×15) can require hundreds of pushes. Another reason for its difficulty is that many pushes
are irreversible. That is, with a few wrong pushes, the board can become a dead-end state, from
which no valid plan leading to a goal state exits. Modern specialized Sokoban solvers are all based
on combinatorial search augmented with highly sophisticated handcrafted pruning rules and various
dead-end detection criteria to avoid spending time in search space with no solution.

Preview of Main Results We evaluate our approach using a large Sokoban repository [23]. This
repository contains 3362 Sokoban problems, including 225 instances that have not been solved with
any state-of-the-art search based methods. [11] focused on solving single hard instances and showed
how several such instances could be solved using a handcrafted portfolio strategy. Our focus here is
on the full subset of unsolved instances and our automated dynamic curriculum strategy.

Table 3 provides a summary of our overall results. Our baseline strategy (BL) uses a convolutional
network to capture the policy and samples uniformly from the sub-tasks. Our baseline can solve 30
of the 225 unsolved instances (13%), using 12 hours per instance, including training time. Adding
curiosity rewards (CR) to the search component and using a graph neural net (GN), we can solve 72
instances (32%). Then, adding the multi-armed bandit dynamic portfolio strategy, enables us to solve
115 cases (51%), and, training on a pool of all open problem instances and their (unsolved) sub-cases
together, lets us solve 146 instances (65%). Finally, we also added the remaining 3137 instances
from the repository to our training pool. These are solvable by existing search-based solvers but we
do not use those solutions. With these extra “practice problems,” our automated curriculum deep

2



Figure 1: Sokoban. Left panel: An example of a Sokoban instance [11]. The blue circle represents
the player, red circles represent boxes and dark cells are goal squares. Walls are represented by light
colored cells. The player has to push all boxes to goal squares without going through walls. The
player can only move upward, downward, leftward and rightward and push a box into a neighbor
empty square and when placed in an empty square next to a box. Right panel: a subcase with 2
boxes and goal squares. To build a subcase, we first randomly pick the number of box/goal cells of
the subcases, and then randomly select box/goal locations as a subset of initial box/goal locations.

RL planning approach can solve 179 out of 225 unsolved problems (80%). Many of the solutions
require plans with several hundreds of steps. Moreover, these instances are now solved with a single
deep policy network augmented with Monte Carlo tree search (MCTS). This suggests that the deep
network successfully captures a significant amount of domain knowledge about the planning domain.
This knowledge, augmented with a limited amount of combinatorial search (UCT mechanism), can
solve a rich set of very hard Sokoban planning problems.

2 Related Work

As noted above, AI planning is a hard combinatorial task, at least PSPACE-complete. The recent
remarkable success of deep RL on Go and Chess [22], which are also discrete combinatorial tasks,
raises the prospect of using deep RL for AI planning. Key to the success of deep RL in multi-player
combinatorial games is the use of self-play through which the RL agent obtains a useful learning
signal and can gradually improve. In fact, the self-play strategy in a game setting, where each side is
playing at the same strength, provides a natural training curriculum with a continually useful training
signal (both wins and losses), enabling the learning system to improve incrementally. It is not clear
how to obtain such a learning signal in a single-player setting such as AI planning. Starting directly
on the unsolved hard planning task does not lead to any positive reinforcement signal because that
would require MCTS to solve the instance (note that the initial deep policy network is random).
However, as we will see, a training curriculum build up from simpler (unsolved) subcases of the
initial planning problem can be used to bootstrap the RL process. We first introduced this idea in [11],
using a handcrafted curriculum strategy. Our automated dynamic curriculum strategy, combined with
several enhancements, substantially expands and outperforms the approach of [11].

Elman [10] first proposed that using a curriculum could improve the training speed of neural networks.
The idea of curriculum prevailed in the deep learning community [2] due to the increasing complexity
of tasks being considered. Graves et al. [12] used an automated strategy to select labeled training
data points to accelerate training of neural networks in supervised learning. However, in the planning
domain, ground truth plans usually are not available; moreover, the main focus of AI planning is
on solving previously unsolved problems in reasonable time limit instead of accelerating solving
easier problems. The curriculum strategy used in this paper is to push forward the border of feasible
planning instances. Indeed, we will show that we can solve a large set of Sokoban instances whose
combinatorial complexity exceeds the capability of state-of-the-art specialized Sokoban solvers.

Reward shaping is another approach to overcome the sparse reward issue. Instead of assigning
positive reward only if the agent achieves the goal and non-positive reward otherwise, Ng et al. [17]
used the idea of reward shaping to manually design extra positive rewards along the plan when the
agent achieves some sub-goals. The strategy however requires domain-specific knowledge to provide

3



Figure 2: The workflow of our automated curriculum framework. In each iteration, the sam-
pler/bandit picks a batch of task instances from the pool and the RL agent, which is based on
Monte-Carlo tree search augmented with policy/value predictions, attempts to solve these instances.
The success/failure status of each instance is sent back to the sampler/bandit to adjust its weights.
Each successful attempt not only generates a valid solution but also improves policy/value data for
the trainer to train the deep network of the agent.

Algorithm 1: Automated Curriculum Learning framework overview
Input: A Sokoban instance I, solution length limit L, number of iterations T ;
Create sub-instances from I to form a task pool;
for t = 1, ..., T do

Use uniform sampling or difficulty quantum momentum bandit to select a batch B from the
task pool;

for s ∈ B do
for i = 1, ..., L do

Use MCTS to select the best move a for s;
s = next_state(s, a);
if s is a goal state then

Generate data for training the policy deep network of the RL agent;
Send "success" feedback to the sampler/bandit;
Break;

end
end
if Solution not found then

Send "failure" feedback to the sampler/bandit;
end

end
Train the policy deep neural network of the RL agent;

end

fruitful rewards to make hard learning tasks feasible. In contrast to extrinsic rewards, intrinsic rewards
such as curiosity [18, 9] can also help in exploring the search space more efficiently. The intrinsic
rewards usually do not require domain specific knowledge, and the agent can achieve high scores on
some Atari games purely guided by curiosity. However, the combinatorics of general AI planning is
much more complex.

As our test domain, we use Sokoban, which is an notoriously hard AI planning domain. Deep neural
networks have been used to tackle Sokoban, besides [11] mentioned above. Weber et al. [24] used
an imagination component to help the reinforcement learning agent, and Groshev et al. [13] learned
from Sokoban solutions and apply imitation learning to generalize to new instances. However, none
of these approaches can perform close to modern specialized Sokoban solvers, such as Sokolution [8],
which is based on backtrack search and incorporates a large variety of sophisticated domain specific
heuristics.

3 Formal Framework

An overview of the workflow of our automated curriculum framework is depicted in Figure 2. We
are interested in solving hard Sokoban instances, without labeled (solved) instance training data.
Figure 1 shows an example of a Sokoban instance. To solve a hard Sokoban instance, our method
first creates a pool of sub-instances, from the input instance(s) (as described in subsection 3.1), which
is followed by multiple iterations of interactions between the multi-armed bandit and the RL agent
as well as interactions between the RL agent and its policy deep neural network. In subsection
3.2, we describe how the multi-armed bandit generates batches of instances for the RL agent and

4



updates the sampling weight according to the feedback from the RL agent. In subsection 3.3 we
provide further details on the RL model and the way we train it. In subsection 3.4, we describe
curiosity-driven rewards and a graph neural network — two components that further improve our
automated curriculum framework. A formal algorithm description can be found in Algorithm 1.

3.1 Sub-instance Creation

To set up a curriculum to solve a hard instance, extra (unlabeled) data with smoothly increasing
difficulty is required. Unfortunately, in general, planning tasks do not have auxiliary data to support
solving hard instances. To build a pool of extra training data we generate sub-instances from the
original instance. Figure 1 shows a Sokoban instance (left panel) and one of its sub-instances (right
panel). A sub-instance is generated by selecting a subset (of size k) of the initial boxes on their
starting squares and selecting k goal locations for those boxes.

This strategy has several advantages: (1) the number of data points we can sample grows exponentially
as the number of boxes increases, which significantly facilitates learning; (2) The created subcases
share common structure information with the original instance so the knowledge learned from the
subcases generalizes better to the original one; (3) subcases with different number of boxes/goals
naturally build a curriculum of instances of increasing difficulty. This enables a curriculum setup that
trains on subcases with fewer boxes first and gradually moves to subcases with more boxes.

3.2 Curriculum Learning Setup

A key contribution of our work is to provide an automated strategy for the tuning of the difficulty
and the selection of sub-instances for the training, which contrasts to the static, manually driven
order used by [11]. In our automated curriculum framework, given a pool of Sokoban instances, a
sampler/multi-armed bandit generates batches for the RL agent to solve. Ideally, we want to develop
a curriculum of increasing difficulty by generating easier batches first and harder ones later. As shown
in [11], the number of boxes of subcases is a good difficulty indicator and the static curriculum based
on the increasing number of boxes shows good results. However, such a natural difficulty ordering
won’t exist in many other planning domains. Moreover, we can do better than a handcrafted approach.
To build a more generalizable curriculum strategy, we sample training batches for the RL agent using
a new multi-armed bandit strategy that we refer to as difficulty quantum momentum. This strategy
selects instances at the edge of solvability. Other selection strategies often select instances that are
too hard or too easy for the agent to solve. Neither provides a useful learning signal. Intuitively, our
difficulty quantum momentum strategy prefers to select a batch whose difficulty just lies on the edge
of the agent’s capability, thus providing a significant learning signal to the RL agent. Our experiments
will show the effectiveness of this approach.

Difficulty quantum momentum strategy: Unlike uniform sampling, the bandit attempts to learn
the weight of each instance from the feedback of the RL agent. Assume the size of pool is N , for each
task Ti we maintain a scalar hi indicating the failure/success (0/1) history of the task and initialize hi
to 0 for i = 1, ..., N before learning. Once the agent tries Ti, we define the reward of selecting the
ith arm to be ri = (1succeed − hi)

2 and update hi to new value α · hi + (1− α) · 1succeed where
α is the momentum of updating the history. Intuitively, this strategy assigns high rewards to tasks
whose current outcome differs much from its history, and will assign zero reward to tasks which the
RL agent always succeeds or fails on. We incorporate this momentum strategy in a bandit scenario
algorithm [1]. Details in Supplementary.

3.3 Model

Our reinforcement learning framework is an modification of the AlphaZero setup. Specifically, a
deep neural network (p, v) = fθ(s) with parameters θ takes a board state s as input and predicts a
vector of action probability p with components pa = Pr(a|s) for each valid action a from the state s,
and a scalar value v indicating the estimated remaining steps to a goal state. In AlphaZero, v is the
winrate of the input game board. We adapt v to represent the remaining steps to the goal. We take the
set of all valid pushes as the action set A in our Sokoban experiments.

Given any board state s, a Monte Carlo tree search (MCTS) is performed to find the best action a
and move to the next board state. This procedure is repeated multiple times until either the goal state

5



is found or the length of current solution exceeds a preset limit. We set the length limit to 2000 to
prevent infinite loops. At each board state s0, we perform 1600 simulations to find the child node
with maximum visit count. Each simulation starts from s0 and chooses successive child nodes which

maximize a utility function, U(s, a) = Q(s, a) + cput ·
√

1+
∑

bN(s,b)

1+N(s,a) · pa, where N(s, a) is the
visit count of the action a on the state s, Q(s, a) is the mean action value averaged from previous
simulations, and cput is a constant that controls the exploration/exploitation ratio. When a leaf node
l is encountered, we expand the node by computing all valid pushes from l and creating new child
nodes accordingly. Unlike traditional MCTS which uses multiple random rollouts to evaluate the
expanded node, we use the (p, v) = fθ(l) from the neural network to be the estimated evaluation
for the backpropagation phase of MCTS. The backpropagation phase updates the mean action value
Q(s, a) on the path from l to s0. Specifically, the Q function value of nodes from l to s0 are updated
with v, v + 1, v + 2, ... accordingly.

After the RL agent successfully finds a solution for a instance, [22] suggested the information
produced by MCTS on the solution path can provide new training data to further improve the
policy/value network of the RL agent. Specifically, assume the found solution of length n is
s0, s1, ..., sn where s0 is the input instance and sn is the goal state, the new action probability label
p̂ for si is the normalized visit count N(si, a) for each a in the action set A, and the new value label
v̂ for si is set to n− i which reflects the remaining steps to the goal state.

In each iteration, the RL agent receives a batch of instances from the sample/bandit and attempt
to solve them. For each successful attempt new training data is generated for the trainer to further
update the parameters of the neural network fθ. Though we can generate training data from failed
tries, we found it not impactful on the final performance. So that data is not used for training, which
significantly reduces overall training time. The trainer keeps a pool of the latest 100000 improved
policy/value data and trains 1000 minibatchs of size 64 in each iteration.

3.4 Curiosity-driven Reward and Graph Network

To further enhance the model, we augment MCTS with curiosity-driven reward and change the
original convolutional architecture to the graph network. Though MCTS has a good exploration
strategy, the curiosity reward can further help it avoid exploring similar states. We use random
network distillation (RND) [3] as the intrinsic reward. When MCTS expands a new node, instead of
setting the mean action value Q to 0, we now set Q to the intrinsic reward to encourage the model
to explore nodes with high curiosity. The curiosity reward is especially helpful in multi-room cases
without which the agent tends to push boxes around only in the initial room.

We use graph structure [5, 26, 25, 14] to extract features. Each board cell of the input cell is labeled
by one-hot vector of seven categories: walls, empty squares, empty goal squares, boxes, boxes on
goal square, player-reachable squares, player-reachable squares on goal square. Edges connect all
adjacent nodes with linear mappings. See also Supplementary Materials.

3.5 Mixture of extra instances

We also test the benefit of adding extra Sokoban instances to the task pool of a hard instance.
Specifically, after adding to the task pool sub-instances based on the input instance, we add extra
unrelated Sokoban instances to the pool. Adding more data can make the “difficulty distribution” of
all tasks smoother and the learning framework can solve harder instances with the knowledge learned
from extra instances. In the experimental section we show how this strategy (with the "MIX" label)
further boosts the performance of our automated curriculum approach.

4 Experiments

For our experiments, we collect all instances from the XSokoban test suite as well as large tests
suited on [23] to form a dataset containing a total of 3,362 different instances, among which 225
instances are labeled with "Solved by none", meaning that they cannot be solved by any of four
modern specialized Sokoban solvers. The solver time limit on the benchmark site is set to 10 minutes.
However, because of the exponential nature of the search space, these instances generally remain
unsolvable in any reasonable timeframe. We illustrate this further in subsection 4.2. Also, [11]

6



Table 1: The number of solved hard Sokoban instances (out of 225 unsolved hard instances) for
different curriculum-driven RL strategies. The baseline (BL) model uses uniform subcase sampling
with a convolutional network (CNN) to extract features. We add curiosity rewards (CR), a graph NN
representation (GN), which replaces the default CNN in the BL, the Bandit (BD) subcase selection
strategy, and, finally, combining all subcases of the 225 hard instances together (MIX) instead of
solving each instance with its subcases separately.

BL BL+CR BL+CR+GN BL+CR+GN+BD BL+CR+GN+BD+MIX
Solved 30 52 72 115 146

BL + CR BL+CR+BD BL+CR+DB+MIX
Solved 30 52 103 105

Table 2: We first randomly shuffle the extra 3137 instances and fix the order. Starting with the best
strategy in Table 1, we gradually add more of these instances to the curriculum pool.

Added extra instances 0 500 1000 1500 2000 2500 3137
Solved hard instances 146 148 156 160 165 173 179

considered the state-of-the-art Sokolution solver with a 12 hours time out on 6 of these problem
instances, and was able to solve only 1.

4.1 Curriculum Learning

Curriculum pool: unlabeled subcases As was shown in [11], RL training using (un-
solved/unlabeled) subcases with subsets of boxes can solve previously unsolved instances. They
showed how their setup can solve 4 out of the 6 instances they considered after training on the
subcases for up to 24 hrs per instance. In our experiments, we consider all 225 unsolved cases. For
each instance, we generate 10,000 subcases by randomly selecting a number of boxes k ≤ N (where
N is the number of boxes in the original instance), and then randomly picking a subset of k initial
locations and k goal locations. So, the instance to solve as well as its 10,000 subcases form the initial
task pool for the curriculum strategy. The time limit for each instance is set to 12 hours on a 5-GPU
machine and the whole learning procedure terminates once the original instance has been solved.

Our baseline (BL) setup is analogous to the [11] approach. In this setup, each batch of subcases in
each training cycle is selected uniformly at random from the curriculum pool. This setting allows us
to solve 30 out of the 225 hard cases (13%). Table 1 summarizes the results of our enhancements.
We see how each enhancement, curiosity (CR), graph nets (GN), bandit (BD), and ensemble (MIX)
boosts the performance of our approach, reaching 146 out of 225 hard cases (65%).

The bottom row of Table 3 considers the effect of the graph neural net representation. In particular,
we see that using a mixture of training subcases (MIX) has little benefit when using the convolutional
structure. In the single instance setting, all subcases share the same board layout (wall locations are
unchanged). However, in the MIX setting, boards with different sizes and structures come in. Graph
networks appear better suited to handle variable sizes and layouts and can therefore benefit from the
MIX training pool, in contrast to the convolutional representation.

Curriculum pool: adding unlabeled example instances We further tested the benefit of adding the
remaining extra 3,137 instances that can be solved by at least one modern solver. Unlike subcases,
these instances do not necessarily share common board structure of the hard instances we are
interested in. In a sense, these are “unrelated” practice problems or “exercises”. (We don’t use the
instance solutions.) Table 2 shows the new added instances can yet further enhance the curriculum
strategy, enabling the agent to solve 179 out of 225 hard instances (80%). As more extra instances
are added, the percentage of solved instances increases which demonstrates the benefit of a large
training dataset of “exercises,” provided our bandit driven training task selection approach is used.

In summary, our series of enhancements, including the bandit-driven curriculum strategy, led us
from 13% of hard instances solved to 80% solved. Moreover, instead of an instance-specific policy
network, we obtain a single policy network that combined with MCTS can solve a diverse set of hard
instances, which suggests the network encodes valuable general Sokoban knowledge.

7



Table 3: Running time of FF (general AI planner), Fast Downward Stone Soup (winner of Satisfy-
ing track 2018 International Planning Competition; a top performing general AI planner) and
Sokolution (top Sokoban specialized solver) on the instance Sasquatch7_40 with a 210-step solution.
Instances are built pulling backward from the goal and show increasing difficulty.

FF (AI planner)
steps <40 50 60 70 80
time <10s 3min 21min 2h >12h

Fast Downward 2018 (AI Planner)
steps <60 70 80 90 100 110
time <21s 5min 17min 58min 3h >12h

Sokolution (specialized Sokoban solver)
steps <110 120 130 140 150 160
time <20s 52s 3min 22min 4h >12h

4.2 Complexity of Search Space Analysis

0 20 40 60 80 100 120
Iterations

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Pi
ck

in
g 

pr
ob

ab
ilit

y 2
4
6
8
10
12
14
15

Figure 3: The probability of selecting m-box subcases by the bandit for m ∈ [2, 15] on instance
XSokoban_29 with 16 boxes. The bandit initially picks subcases with fewer boxes more frequently
and gradually shifts to subcases with more boxes. Nevertheless, even at later stages, the bandit still
mixes up subcases with different number of boxes, which is quite different from static strategies.

To get a better sense of the difficulty of the hard planning instances, we consider the scaling of other
solvers. We randomly selected one of our solved instances, Sasquatch7_40, for which we found a
solution with 210 steps. Since the problem is out of reach of other solvers, we considered the 210-step
plan we found, and moved backwards from the goal state. Starting 10 steps back, we gradually
increase the number of steps from the goal state until it takes more than 12 hours for search-based
solvers to find any solution. Table 3 reveals the exponential scaling of FF [15], Fast Downward 2018
[21] and Sokolution. Uncovering the full 210 steps is out reach for both solvers and we estimate that
Sokolution would take over 2 years (682 days) and FF would take over 5.7× 1010 years to solve the
original instance. The truly exponential nature of the Sokoban plan search tasks is also clear from
the scaling of the AI planners: roughly 20 years of AI planner development, from FF to Downward
Stone Soup, gives us fewer than 30 extra steps in the plan length (2 hour time limit).

4.3 Evolution of Bandit Selection

Our experiments show that the bandit (BD) selection strategy solves more hard instances than uniform
random selection. To further demonstrate the benefit of bandit, we visualize how the probability of
picking each task evolves. We consider instance XSokoban_29 which contains 16 boxes, and for each
m ∈ [2, 15] we build 800 m-box subcases to form a task pool of 11200 instances in total. Figure 3
plots the percentage of several m-box subcases in each batch picked by the bandit. At the start, all
subcases are sampled equally likely but then the probabiliy of selecting smaller box subcases (2-box,
etc.) rises, because some of these are solvable early on and can provide good training signal and

8



the difficulty quantum momentum bandit strategy focuses in on those. The probability of sampling
larger subcases (e.g., 14- and 15-box) goes down. In the later learning stages, the 14-box and 15-box
selection probability rises, because some of those become solvable using what has been learned so
far. Interestingly, small box subcases stay involved even at later training stages. This subcase mixture
is an important factor for a smooth and fast learning process.

5 Conclusions

We provide a novel automated curriculum approach for training a deep RL model for solving hard AI
planning instances. We use Sokoban, one of the hardest AI planning domains as our example domain.
In our framework, the system learns solely from a large number of unlabeled (unsolved) subcases
of hard instances. The system starts learning from sufficiently easy subcases and slowly increases
the subcase difficulty over time. This is achieved with an automated curriculum that is driven by
our proposed difficulty quantum momentum multi-armed bandit strategy that smoothly increases the
hardness of the instances for the training of the policy deep neural network. We show how we can
further boost performance by adding a mixture of other unsolved instances (and their subcases) to the
training pool. We also showed the power of using a graph neural net representation coupled with
a curiosity-driven search strategy. As a result, our approach solves 179 out of 225 hard instances
(80%), while the baseline, which captures the previous state of the art, solves 31 instances (13%).
Overall this work demonstrates that curriculum-driven deep RL — working without any labeled data
— holds clear promise for solving hard combinatorial AI planning tasks that are far beyond the reach
of other methods.

9



6 Broader Impact

We introduced a new framework for AI planning, which concerns generating (potentially long) action
sequences that lead from an initial state to a goal state. In terms of real-world applications, AI
planning has the potential for use as a component of autonomous systems that use planning as part of
their decision making framework. Therefore we feel this work can broaden the scope of AI, beyond
the more standard machine learning applications, for areas of sequential decision making. Our
study here was done on a purely formal domain, Sokoban. In terms of ethical considerations, while
this domain in itself does not raise issues of human bias or fairness, future real-world applications
of AI planning (e.g., in self-driving cars and program synthesis) need to pay careful attention to
the value-alignment problem [20]. To obtain human value alignment, AI system designers need to
ensure that the specified goals of the system and the potential action sequences leading to those goals
align with human values, including considerations of potential fairness and bias issues. In terms
of interpretability, our approach falls within the realm of interpretable AI. Since although we use
deep RL in the system’s search for plans, the final outcomes are concrete action sequences that can
be inspected and simulated. So, the synthesized plans, in principle, can be evaluated for human
value alignment and AI safety risks. One final important broader societal impact component of our
work is an interesting connection to human learning and education. We showed how our dynamic
curriculum learning strategy, leads to faster learning for our deep RL AI planning agent. We showed
how the curriculum balances a mix of tasks of varying difficulty and drives the learning process by
staying on the “edge of solvability.” It would be interesting to see whether such a type of curriculum
can also enhance human education and tutoring systems. Our difficulty quantum momentum bandit
driven strategy considers feedback from the planning ability of the system; similar feedback could
be obtained from a human learner during the learning process. Finally, we were excited to see the
benefit to the learning process of adding unsolved planning problems as “exercises.” A further study
of what starting pool of exercises is most effective may provide useful new insights for designing
learning curricula for human education.

Acknowledgements

We thank the reviewers for valuable feedback. This research was supported by NSF awards CCF-
1522054 (Expeditions in computing), AFOSR Multidisciplinary University Research Initiatives
(MURI) Program FA9550-18-1-0136, AFOSR FA9550-17-1-0292, AFOSR 87727, ARO award
W911NF-17-1-0187 for our compute cluster, and an Open Philanthropy award to the Center for
Human-Compatible AI.

10



References
[1] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic

multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[3] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[4] Tom Bylander. Complexity results for planning. In Proc. IJCAI, 1991.

[5] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of
graph embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge
and Data Engineering, 30(9):1616–1637, 2018.

[6] David Chapman. Planning for conjunctive goals. Artificial Intelligence, 1987.

[7] Joseph Culberson. Sokoban is pspace-complete. University of Alberta, Technical Report,
TRID-ID TR97-02, 1997.

[8] Florent Diedler. Sokolution solver. http://codeanalysis.fr/sokoba, 2020.

[9] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[10] Jeffrey L Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48(1):71–99, 1993.

[11] Dieqiao Feng, Carla Gomes, and Bart Selman. Solving hard AI planning instances using
curriculum-driven deep reinforcement learning. In Proc. 29th International Joint Conference
on Artificial Intelligence, IJCAI. (arxiv preprint arXiv:2006.02689), 2020.

[12] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Au-
tomated curriculum learning for neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1311–1320. JMLR. org, 2017.

[13] Edward Groshev, Aviv Tamar, Maxwell Goldstein, Siddharth Srivastava, and Pieter Abbeel.
Learning generalized reactive policies using deep neural networks. In 2018 AAAI Spring
Symposium Series, 2018.

[14] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017.

[15] Jörg Hoffmann. Ff: The fast-forward planning system. AI magazine, 22(3):57–57, 2001.

[16] Nir Lipovetzky. Structure and inference in classical planning. PhD thesis, Universitat Pompeu
Fabra, 2013.

[17] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In ICML, volume 99, pages 278–287,
1999.

[18] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 16–17, 2017.

[19] Planning. Planning competion. http://www.icaps-conference.org/index.php/Main/
Competitions, 2020.

[20] Stuart Russell. Human compatible: Artificial intelligence and the problem of control. Penguin,
2019.

11

http://codeanalysis.fr/sokoba
http://www.icaps-conference.org/index.php/Main/Competitions
http://www.icaps-conference.org/index.php/Main/Competitions


[21] Jendrik Seipp and Gabriele Röger. Fast downward stone soup 2018. IPC2018–Classical Tracks,
pages 72–74, 2018.

[22] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[23] Sokoban. Sokoban repository. http://sokobano.de/wiki/index.php?title=Solver_
Statistics, 2020.

[24] Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yu-
jia Li, et al. Imagination-augmented agents for deep reinforcement learning. arXiv preprint
arXiv:1707.06203, 2017.

[25] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network representation learning:
A survey. IEEE transactions on Big Data, 2018.

[26] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv
preprint arXiv:1812.08434, 2018.

12

http://sokobano.de/wiki/index.php?title=Solver_Statistics
http://sokobano.de/wiki/index.php?title=Solver_Statistics

	Introduction
	Related Work
	Formal Framework
	Sub-instance Creation
	Curriculum Learning Setup
	Model
	Curiosity-driven Reward and Graph Network
	Mixture of extra instances

	Experiments
	Curriculum Learning
	Complexity of Search Space Analysis
	Evolution of Bandit Selection

	Conclusions
	Broader Impact

