
Connections in Networks: A Hybrid Approach

Carla P. Gomes1, Willem-Jan van Hoeve2, and Ashish Sabharwal1

1 Department of Computer Science, Cornell University, Ithaca NY 14853, U.S.A.
{gomes,sabhar}@cs.cornell.edu

2 Tepper School of Business, Carnegie Mellon Univ., Pittsburgh PA 15213, U.S.A.
vanhoeve@andrew.cmu.edu

Abstract. This paper extends our previous work by exploring the use of
a hybrid solution method for solving the connection subgraph problem.
We employ a two phase solution method, which drastically reduces the
cost of testing for infeasibility and also helps prune the search space
for MIP-based optimization. Overall, this provides a much more scalable
solution than simply optimizing a MIP model of the problem with Cplex.
We report results for semi-structured lattice instances as well as on real
data used for the construction of a wildlife corridor for grizzly bears in
the Northern Rockies region.

In recent work [2], we investigated the connection subgraph problem, which seeks
to identify a cost bounded connected subgraph of a given undirected graph
connecting certain pre-specified terminal nodes, while maximizing the overall
utility. Here costs and utilities are non-negative numbers assigned to each node
of the graph, and the cost (or utility) of a subgraph is the sum of the costs
(utilities, resp.) of the nodes in it. This problem is a variant and generalization of
the familiar Steiner tree problem, and occurs in natural settings such as wildlife
conservation and social networks.1 Our experimental results [2] identified an
interesting easy-hard-easy pattern in a pure optimization version of the problem.
They also brought out some surprising issues with respect to the hardness of
proving infeasibility versus the hardness of proving optimality. Specifically, using
a mixed integer programming (MIP) model for the problem and solving it to
optimality using Cplex 10.1 [3] revealed that in median terms, Cplex took orders
of magnitude longer to prove infeasibility of infeasible instances than it took to
find optimal solutions to the feasible instances. This naturally raises the question,
can one do better on infeasible instances?

This paper reports our results obtained using a hybrid technique for solv-
ing the connection subgraph problem, beginning with results on certain semi-
structured grid graphs also considered previously. We use a two phase solution
method. The first phase employs a minimum Steiner tree based algorithm to
test for infeasibility and to produce a greedy (and often sub-optimal) solution
for feasible instances. This phase runs in polynomial time for a constant number
of terminal nodes. The second phase refines this greedy solution to produce an
optimal solution with Cplex, also using shortest path information generated by
1 Due to lack of space, we refer the reader to our previous paper [2] for a formal

definition and detailed discussion of the problem.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 303–307, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

304 C.P. Gomes, W.-J. van Hoeve, and A. Sabharwal

the first phase to prune the search space significantly (often by 40-60%). With
this hybrid approach, the time to test for infeasibility is drastically reduced, and
in fact becomes negligible compared to the cost of running Cplex on feasible
instances (the runtime for which is also significantly reduced due to the starting
solution and pruning). The hardness profiles still show a clear easy-hard-easy
pattern in the feasible region.

We also apply this technique to the original resource economics problem that
motivated this work—designing a “wildlife conservation corridor” in the North-
ern Rockies for preserving grizzly bears. The scale of this real-world problem
precludes computing optimal solutions in well over a month of CPU time, even
with our hybrid approach. We therefore introduce a streamlined model, where
we seek to compute the optimal (i.e., highest utility) solution which is restricted
to include all nodes that form part of a minimum cost solution, which is also
computed in the first phase. We are able to solve this “extended-mincost so-
lution” problem significantly faster, and to near optimality within a month of
CPU time on the real wildlife corridor data.

The extended-mincost solution is interesting to compute only if it does not
dramatically limit the utility one might achieve in the end. To obtain further in-
sights into this, we study how the extended-mincost solution compares in quality
(i.e., attained utility) against the true optimal solution for a given budget, for
both grid graphs and coarse granularity (and thus easier) versions of the actual
corridor construction problem. We show that the utility gap between the optimal
and extended-mincost solutions itself follows a fairly narrow low-high-low pat-
tern as the budget increases, indicating that for a large range of budgets, solving
the streamlined extended-mincost problem yields a fairly good approximation
to the true optimal solution.

TheTwoPhaseApproach. InPhase I,we compute aminimumcost Steiner tree
for the terminal nodes of the graph, ignoring all utilities. While there are fixedpara-
meter tractable (FPT) algorithms for computing a minimum cost Steiner tree, we
used a simpler “enumeration” method (see, e.g., [4]) based on computing all-pairs-
shortest-paths with respect to vertex costs. The idea behind this algorithm, which
runs in polynomial time for a constant number of terminal nodes, is to compute a
minimumSteiner tree for the “complete shortestdistance graph”using the fact that
in such a graph, there exists a minimum Steiner tree all whose non-terminal nodes
have degree at least three, thereby limiting the total number of nodes in the tree.
A minimum Steiner tree of the complete shortest distance graph yields a minimum
Steiner tree for the original graph as well, by replacing edges by shortest paths.

The computation of the Steiner tree either classifies the problem instance as
infeasible for the given budget or provides a feasible (but often sub-optimal)
“mincost” solution. In the latter case, we use a very efficient greedy method to
improve the quality of the solution by using any residual budget as follows. We
consider those nodes that are adjacent to the current solution and have cost
lower than the residual budget, and identify one whose gain, defined as the
utility-to-cost ratio, is the highest. If there is such a vertex, we add it to the
current solution, appropriately reduce the residual budget, and repeat until no

Connections in Networks: A Hybrid Approach 305

more nodes can be added. This process often significantly increases the solution
quality. We call the resulting solution an extended-mincost solution. We will also
be interested in computing the optimal extended-mincost solution, by “freezing”
the vertices in the mincost solution to be part of all solutions of Phase II.

After Phase I, which always took almost negligible time compared to Phase
II on our problem instances, we either know that the instance is infeasible or
already have a greedily extended feasible solution. In the latter case, Phase II of
the computation translates the problem into a MIP instance (see [2] for details
of the encoding), and solves it using Cplex. Solving using Cplex is the most
computationally-intensive part of the whole process. The greedy solution ob-
tained from Phase I is passed on to Cplex as a starting solution, providing a
major boost to its efficiency. Further, the all-pairs-shortest-paths matrix com-
puted in Phase I is also passed on to Phase II. It is used to statically (i.e., at
the beginning) prune away all nodes that are easily deduced to be too far to
be part of a solution (e.g., if the minimum Steiner tree containing that node
and all of the terminal vertices already exceeds the budget). This significantly
reduces the search space size, often in the range of 40-60%. Overall, Phase II
computes an optimal solution (or the optimal extended-mincost solution) to the
utility-maximization version of the connection subgraph problem.

Experimental Results. For a varying budget, we investigate the computa-
tional hardness of the problem with respect to computing the optimal solution
or the optimal extended-mincost solution. Our experiments were conducted on a
3.8 GHz Intel Xeon machine with 2 GB memory running Linux 2.6.9-22.ELsmp.
We used Cplex 10.1 [3] to solve the MIP problems in Phase II.

For the first set of experiments, we make use of semi-structured lattice graphs
of order m, with 3 terminal vertices, and with uniform random costs and utilities
(see [2] for details). In Figure 1, each data point is based on 500 random instances
for m = 10; similar results, peaking at identical x-axis values, were obtained for
m = 6 and 8 as well, and are available from the authors. The hardness curves are
represented by median running times over all instances per data point. In order
to normalize for the small but non-negligible variation in the characteristics of
various randomly generated instances with the same parameters, we use for the
x-axis of most of our plots the ‘budget slack percentage’, rather than simply
the budget, computed as follows. For every instance, we consider its mincost,
the cost of the cheapest solution. The budget slack % with respect to mincost
is defined as: 100 × (budget − mincost)/mincost. In other words, we consider
computational hardness and other measured quantities as a function of the extra
budget available for the problem beyond the minimum required.

In the left half of Figure 1, we show the hardness profiles for the lattices, which
exhibit an easy-hard-easy pattern, the peak of which is to the right of the mincost
point (shown as 0 on the relative x-scale). As one might expect, computing
the optimal extended-mincost solution (lower curve) is significantly easier than
computing the true optimal solution (upper curve). How much “better” are the
true optimal solutions compared to the easy-to-find extended solutions? The
right half of the figure shows the relative utility gap % between the solution

306 C.P. Gomes, W.-J. van Hoeve, and A. Sabharwal

0 200 400 600 800 1000

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

10x10 lattices with 3 reserves, median over 500 runs

budget slack % (w.r.t. mincost)

R
un

tim
e

(lo
gs

ca
le

) optimal solution
optimal extended soln

0 200 400 600 800 1000

0
1

2
3

4
5

6
7

10x10 lattices with 3 reserves, median over 500 runs

budget slack % (w.r.t. mincost)

U
til

ity
 G

ap
 %

Fig. 1. Left: Hardness profile (runtime, log-scale) for lattices of order 10 with 3 terminal
nodes; upper curve: optimal solution; lower curve: optimal extended-mincost solution.
Right: Percentage gap in the utility of optimal and extended-mincost solutions.

qualities (i.e., attained utilities) in the two cases, defined as 100 × (optimal −
extended)/optimal. We see that when budget equals mincost, both optimal and
extended solutions have similar quality. The gap between the qualities reaches
its maximum shortly thereafter, and then starts to decrease rapidly, so that the
extended solution at 100% budget slack is roughly 3.2% worse than the optimal
solution for order 10 grids, and at 500% budget slack, only around 0.4% worse.

For the second set of experiments, we used real data for the design of a wildlife
conservation corridor for grizzly bears in the Northern Rockies, connecting the
Yellowstone, Salmon-Selway, and Northern Continental Divide Ecosystems in
Idaho, Wyoming, and Montana. To measure the utility of each parcel, we use
grizzly bear habitat suitability data [1]. The cost is taken to be the land value
estimate provided by the U.S. Department of Agriculture. We experimented with
various granularities for the problem, going from County level regions down to 5
km × 5 km square grid regions. Going to finer granularities reduces the cost of the
cheapest corridor from $1.9 B for the County level, to $1 B for a 40 km square
grid, to as low as $11.8 M for the 5 km grid. Using a 25 square km hexagonal
grid allows for better connectivity than the 5 km × 5 km square grid, since each
hexagonal parcel is connected to 6 other parcels rather than 4, and results in
a further decrease in cost to only $7.3 M. A hexagonal grid also yields a wider
corridor on average. As the granularity of the parcels is increased, the problem
size grows rapidly. For example, while the County level abstraction has only 67
parcels, the 40 km square grid already has 242 parcels, and the 25 square km
hexagonal grid has 12,889 parcels. As a result, solving the connection subgraph
model in a näıve manner (as in [2]) using the Cplex solver quickly becomes
infeasible: in fact, Cplex even had difficulty finding any feasible solution at all
for a 40 km square grid or finer.

The left half of Figure 2 shows the relative gap between the optimal and
extended solution utilities for the 40 km square abstraction (both were solved

Connections in Networks: A Hybrid Approach 307

0 100 200 300 400 500

0
1

2
3

4
40km corridor grid, median over 600 runs

budget slack % (w.r.t. mincost)

ut
ili

ty
 g

ap
 %

, b
et

w
ee

n
op

tim
al

 a
nd

 e
xt

en
de

d
so

lu
tio

ns

8 9 10 11 12

2
4

6
8

10
12

25hex optimal + extended; best found (30 days), upper bound

budget (unit = 1M)

ut
ili

ty
 (

un
it

=
 1

M
)

optimal, best found
optimal, upper bound
extended, best found
extended, upper bound

Fig. 2. Left: Utility gap % of optimal and extended-mincost solutions for 40 km grid.
Right: Best found optimal and extended-mincost solutions for the 25 sq. km hexagonal
grid, 30 day cutoff. Upper bound computed from the optimality gap reported by Cplex.

optimally). The relative gap is under under 5% when it is at its peak, and is
usually within 2% of the optimal. This suggests that for this problem, one does
not lose too much by solving only for the extended-mincost solution.

The right plot in Figure 2 depicts results on our best grid: the 25 square
km hexagonal grid. This grid is significantly harder to solve. While the County
level and the 50 km square grid were solved to optimality within seconds, even
the extended-mincost solution for the hexagonal grid could not be solved op-
timally in over 10 days. Fortunately, the eventual optimality gap for the best
extended-mincost solutions found after 30 days was only 0-0.07% (the “best
found” curve for extended solutions is visually right on top of the correspond-
ing “upper bound” curve). The best true optimal solutions, on the other hand,
had an optimality gap of up to 27% (in one case 59%), as seen from the top
curve. Interestingly, the best extended solutions found in this case were in fact
of better quality than the best optimal solutions found (the green line is slightly
lower than the blue line). This is in line with the concept of streamlining, where
restricting the problem to only extended-mincost corridors allowed Cplex to
compute better quality solutions within a limited amount of computation time.

References

[1] CERI. Grizzly bear habitat sustainability data, Craighead Environmental
Research Institute, Bozeman, MT (2007)

[2] Conrad, J., Gomes, C.P., van Hoeve, W.-J., Sabharwal, A., Suter, J.: Con-
nections in networks: Hardness of feasibility versus optimality. In: Van Hen-
tenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 16–28.
Springer, Heidelberg (2007)

[3] ILOG, SA. CPLEX 10.1 reference manual (2006)
[4] Prömel, H.J., Steger, A.: The Steiner Tree Problem: A Tour Through Graphs,

Algorithms, and Complexity. Vieweg (2002)

	Connections in Networks: A Hybrid Approach
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

