
Chapter 8

Mandatory Access Control

With discretionary access control (DAC) policies, authorization to perform op-
erations on an object is controlled by the object’s owner or by principals whose
authority can be traced back to that owner. The goals of an institution, how-
ever, might not align with those of any individual. So rules set by the institution
(rather than rules set by individuals) are the more natural basis for authoriza-
tion. Such rules are known as mandatory access control (MAC) policies.1

Some MAC policies serve specific kinds of institutions by codifying best
practices that long preceded computerization. Examples include:

• Multi-level security policies, which supports a need-to-know principle for
accessing confidential information. Developed for use by the military,
diplomatic, and intelligence communities, multi-level security policies have
found application in other settings, as well as for protecting integrity
(rather than confidentiality) of information.

• Commercial security policies, which embody accounting practices to pro-
tect against financial fraud by employees, customers, and/or partners.
Such policies enforce separation of duty and prevent incorrectly or incom-
pletely performed business processes.

This chapter discusses these MAC policies. It also discusses two popular general-
purpose frameworks for specifying MAC policies: domain and type enforcement
is reminiscent of a DAC access matrix (page 130); role-based access control
supports access restrictions that derive from responsibilities an organization
assigns to roles. A third framework, credentials-based authorization, is discussed
in Chapter 9.

8.1 Multi-level Security

In the days when classified information was stored only on paper documents,
confidentiality was enforced by restricting access to those documents and trust-

1Some authors instead use the term non-discretionary access control.

195

March 2014 Copyright Fred B Schneider All rights reserved

196 Chapter 8. Mandatory Access Control

ing people to keep secret what they read. A person could see a document D
only if (i) there was reason to trust that person would not divulge the secrets
in D and (ii) the contents of D was considered relevant to that person’s job.

These need-to-know conditions can be formalized in terms of labels that
both characterize content and define a level of trust for keeping secrets. A
classification L(D) is assigned to each documentD, a clearance L(U) is assigned
to each person U , and a relation L(D) ⪯ L(U) is defined to hold if and only if
conditions (i) and (ii) above are satisfied:

Multi-level Document Confidentiality Policy. A person U is per-
mitted to see a document D only if L(D) ⪯ L(U) holds.

Note that if the set of labels is too small (as often will be the case) then relation
L(D) ⪯ L(U) can only approximate “need-to-know”. With a small set of labels
but a large set of documents, two documents D1 and D2 might exist that must
be given the same label even though a person might have a “need-to-know” for
the contents ofD1 but not for D2. Thus, L(D2) ⪯ L(U) would hold and, because
L(D1) = L(D2) holds, so would L(D1) ⪯ L(U) (even though it shouldn’t).

At the U.S. Department of Defense (DoD), a classification L is formalized2

as a pair ⟨SL,CL⟩:

• SL is a sensitivity. It categorizes worst-case potential damage to national
security from disclosure of the document contents:

sensitivity worst-case potential damage
to national security

TS (Top Secret) exceptionally grave
S (Secret) serious
C (Confidential) some
U (Unclassified) none

This definition induces a total ordering U < C < S < TS, and we write X ≤ Y
to denote X = Y ∨ X < Y.

• CL is a set of compartments.3 Each compartment is identified by the
name of some specific topic area. Names might be self-explanatory (e.g.,
chem/bio, crypto, or nuclear) or obscure (e.g., Ultra or Umbra).4 With an

2DoD classifications are actually more complicated than what we formalize here. They
include an additional sensitivity level FOUO (For Official Use Only) between C and U. Also,
they allow markings to impose caveats on information handling. For example, the ORCON
(originator controlled) caveat prevents forwarding information without consent of the owner—
a form of digital rights management.

3DoD does not associate a set of compartments with the lower-sensitivities C and S. So
an individual having a C or S clearance is authorized to see all documents classified at or
below that sensitivity. However, to simplify the exposition that follows and obtain a uniform
structure, we will associate compartments with C and S.

4In DoD, names whose meanings are classified are known as codewords. For example,
Ultra is a codeword used during World War II to label information the Allies obtained by
decrypting intercepts of German communications, and Umbra is a more recent (but also now-
retired) codeword for the most-sensitive kinds communications intercepts.

March 2014 Copyright Fred B Schneider All rights reserved

8.1. Multi-level Security 197

obscure compartment name, people who see the name but do not have a
“need to know” are kept in the dark about what the name describes.

Example labels for classifications in this DoD scheme include: ⟨C,{chem/bio}⟩,
⟨TS,{Umbra}⟩, and ⟨S,{crypto,nuclear}⟩.

Each document D receives its classification L(D) = ⟨SD,CD⟩ from a classi-
fication authority, an agency that reads and analyzes the contents of D. SD is
the assessment of damage that could result from revealing the contents of D;
CD is the set of topic areas D covers.

Every person U who might require access to classified documents is granted
a clearance L(U) = ⟨SU ,CU ⟩ after submitting to a background investigation
that seeks to identify character flaws or exploitable personal circumstances.
This background investigation might range from a short interview (for access
to Unclassified and Confidential information) to a polygraph test (for access
to Top Secret information). Higher values for SU are assigned when fewer
opportunities exist for adversaries to coerce traitorous acts by U ; CU is the set
of topics relevant to U ’s job.

By defining ⟨S,C⟩ ⪯ ⟨S′,C ′⟩ to be

S ≤ S′ ∧ C ⊆ C ′ (8.1)

we have that L(D) ⪯ L(U) is equivalent to SD ≤ SU and CD ⊆ CU . Condition
L(D) ⪯ L(U) in Multi-level Document Confidentiality Policy now implies that
U satisfies the desired need-to-know conditions for seeing D: SD ≤ SU implies
that a background investigation of U gave reason to believe that U is sufficiently
trustworthy not to leak the contents of D, and CD ⊆ CU implies that all of the
topics covered in document D are relevant to U ’s job.

Nothing requires that documents be the content unit being assigned classi-
fication labels. We might instead elect to have each paragraph or each sentence
within a document be considered a separate content unit with its own label. A
multi-level document comprises multiple content units with potentially different
classifications. The above Multi-level Document Confidentiality Policy still ap-
plies, provided label L(D) on multi-level document D satisfies L(di) ⪯ L(D) for
all content units di comprising D. Multi-level Document Confidentiality Policy
also could be used for controlling access to an individual content unit di by
considering individual content units each to be a separate document.

8.1.1 Multi-level Confidentiality

Documents in a computer system are stored in files, which can be accessed only
by programs. So files correspond to the documents and programs correspond to
the users in Mult-level Document Confidentiality Policy, above. But because a
program might copy from one file to another, enforcement no longer is simply
a matter of blocking certain reads—some writes have to be blocked.

To simplify the account that follows, assume fixed sets of users, files, and
programs. We also assume that the label assigned to each file and to each user

March 2014 Copyright Fred B Schneider All rights reserved

198 Chapter 8. Mandatory Access Control

does not change:5

Tranquility Assumption. Each file F is assigned a fixed classification
L(F) and each user U is assigned a fixed clearance L(U).

A file label L(F) is considered sound if L(F) = ⟨SF ,CF ⟩ implies that the con-
tents of F is not more sensitive than SF and that all topics F spans are included
in CF . Provided labels assigned to files remain sound despite updates to those
files, data processed by a program that user U invokes is guaranteed to be data
that U is authorized to read, if the following policy is enforced.

Multi-level File Confidentiality Policy. Programs invoked by a user
U do not process data derived from any file F where L(U) ⪯ L(F) holds.

In order to enforce this policy, let Pgm be a program that U can invoke. We
associate with Pgm a fixed label L(Pgm) = ⟨SPgm ,CPgm⟩, and we define sound-
ness of L(Pgm) to mean that information read and written during execution of
Pgm is not more sensitive than SPgm and concerns only those topics listed in
CPgm . L(Pgm) is selected by some classification authority that determines Pgm
is sufficiently trustworthy to handle information classified at or below L(Pgm).
That determination might be made by an expert who has been approved by
the classification authority or by an automated analysis regime that has been
prescribed by the classification authority. But the label cannot simply be L(U)
assigned to the user U who invokes Pgm.

Notice that Multi-level File Confidentiality Policy will be satisfied if (i)
L(Pgm) ⪯ L(U) holds and (ii) L(Pgm) is sound. Requirement (i) is equiva-
lent to:

MLFC Program Invocation. L(Pgm) ⪯ L(U) must hold for a program
Pgm executing on behalf of a user U .

Sometimes satisfying this requires creating a new instance of the program but
with a reduced label.

For requirement (ii), it seems plausible to assume that L(Pgm) would be
sound if Pgm reads no information that is classified as too sensitive or concerns
inappropriate compartments relative to L(Pgm). So an attempt to read F by
Pgm should be allowed to proceed only if L(F) ⪯ L(Pgm) holds. A reference
monitor that intercepts read operations can enforce such a prohibition on read-
up attempts, and we have:

MLFC Read Restriction.6 L(F) ⪯ L(Pgm) must hold for program
Pgm to read a file F .

5This assumption of fixed labels is traditionally referred to as the strong tranquility prin-
ciple. We here call it an “assumption” (rather than a “principle”) to make clear that it limits
the environment. The term weak tranquility principle is used in the literature to denote the
assumption stipulating that labels may change during execution provided those changes do
not allow violations of the security policy.

6This is sometimes called the simple security condition in the literature.

March 2014 Copyright Fred B Schneider All rights reserved

8.1. Multi-level Security 199

But this construction assumes that labels on files are sound. A write to F
by Pgm changes the contents of F , after which L(F) might no longer be sound.
In particular, if L(Pgm) is sound then writes to files F where L(F) ⪯ L(Pgm)
holds could make L(F) unsound by writing information read from a file that has
a higher classification than L(F). The reference monitor preserves soundness
for file labels by enforcing a prohibition against write-down attempts.

MLFC Write Restriction.7 L(Pgm) ⪯ L(F) must to hold for a pro-
gram Pgm to write into a file F .

This completes the set of rules a reference monitor must enforce to ensure that
Multi-level File Confidentiality Policy remains satisfied.

*Close Look at Computations. The analysis just given ignores the trans-
formation that Pgm performs. A closer look reveals that implicit in the defi-
nition of soundness for L(Pgm) are (often overlooked) limitations about those
transformations. We explore some of those here.

Rather than considering files to be monolithic, we now view each file F as a
multi-level object that comprises a collection of content units. Each content unit
f has a classification L(f) = ⟨Sf ,Cf ⟩ and is accessed separately using a single
read or write operation. For f read from a file F , soundness of L(F) implies
that L(f) ⪯ L(F) holds. Given MLFC Read Restriction L(F) ⪯ L(Pgm), we
conclude by transitivity that L(f) ⪯ L(Pgm) holds for any content unit f that
a program Pgm reads. So if RPgm = {f1, f2, ..., fn} is the set of content units
that Pgm reads during some execution, then we have

(∀f ∈RPgm ∶ L(f) ⪯ L(Pgm)). (8.2)

For any set R of information items, define label L⊔(R) to be the least label
that is equal to or larger than8 the classifications assigned to each content unit
f ∈R:

L⊔(R) = ⟨max
f∈R

(Sf), ⋃
f∈R

Cf ⟩

From the definitions of L⊔(R) and ⪯, we have for any label L:

(∀f ∈R∶ L(f) ⪯ L) ⇒ L⊔(R) ⪯ L (8.3)

By instantiating (8.3) with L(Pgm) for L and with RPgm for R, we can use
(8.2) and infer

L⊔(RPgm) ⪯ L(Pgm). (8.4)

Each value that Pgm writes is some function over the set RPgm of infor-
mation items Pgm has read. Let GF (RPgm) be that function for a content

7This is sometimes called the *-property in the literature, although Bell and La Padula’s
original formulation of it involved restrictions for reads, for writes, and for appends.

8L⊔(R) is thus the least upper bound (lub) of R.

March 2014 Copyright Fred B Schneider All rights reserved

200 Chapter 8. Mandatory Access Control

unit being written to a file F , where L(GF (RPgm)) is a sound classifica-
tion. The write to F does not invalidate the soundness of L(F) provided that
L(GF (RPgm)) ⪯ L(F) holds, which is implied9 by the following restriction.

MLFC Computation Restriction. L(GF (RPgm)) ⪯ L⊔(RPgm) must
hold for any value GF (RPgm) that Pgm computes and writes to a file F
after reading a set RPgm of information items.

MLFC Computation Restriction asserts that, given a set RPgm of inputs, Pgm
does not compute and write a content unit that is more sensitive than the most
sensitive input in RPgm or that includes a compartment not already covered by
some input RPgm . MLFC Write Restriction thus ensures that writing to some
file F cannot make L(F) unsound (whereas writing a value with a label too high
to satisfy MLFC Computation Restriction could make L(F) unsound because
L(F) is a lower clearance than L(Pgm) and L(F) = L(Pgm) holds).

Descriptions of multi-level confidentiality historically have ignored the calcu-
lations that programs undertake. In effect, MLFC Computation Restriction is
assumed to be satisfied by all programs. That is not always a sound assumption.
Potentially problematic cases include:

• Functions whose outputs aggregate inputs. For example, total combined
force size available for deployment might well be more sensitive than the
sizes of individual forces located at various staging areas (since the latter
might be easily observed by the enemy).

• Functions whose outputs are produced by analysis or logical deductions
involving inputs. For example, the output of an automated-trading system
that recommends purchasing an equity might be deemed more sensitive
(because knowledge of that output could affect other investor’s actions)
than the public knowledge about market trends that were inputs.

Note that MLFC Computation Restriction cannot be enforced by a reference
monitor. Nor are there general purpose analysis methods to ascertain the classi-
fication of a function’s outup given the classifications of its inputs. The insights
and experience of a classification authority are needed for determining the sen-
sitivity and the set of topics spanned by some computed value.

Defense Against Trojan Horse Attacks. Multi-level confidentiality resists
Trojan horse attacks that DAC policies do not. A Trojan horse10 is a program
that appears useful but also implements hidden and nefarious functionality. A

9Here is a proof that restriction L(GF (RPgm)) ⪯ L⊔(RPgm) suffices and, therefore,
L(GF (RPgm)) ⪯ L(F) will hold: From (8.4) and MLFC Write Restriction L(Pgm) ⪯ L(F),
we conclude by transitivity that L⊔(RPgm) ⪯ L(F) holds, and transitivity with MLFC Com-
putation Restriction derives L(GF (RPgm)) ⪯ L(F) (as desired).

10Greek mythology recounts how the 10-year Greek siege of Troy was ended by a clever
subterfuge. The Greeks built a huge wooden horse, hid a small force of warriors inside, placed
the horse outside the gates of Troy, and then appeared to abandon the siege by sailing out of
sight. With the Greek force gone, the Trojans opened the city gates and moved the horse—
thought to be a tribute marking the end of the siege—inside. The city residents celebrated.

March 2014 Copyright Fred B Schneider All rights reserved

8.1. Multi-level Security 201

game program, for example, might in the background (i) create a file that gives
read privileges to the attacker and then (ii) copy confidential information to
that file. DAC is useless at blocking this attack because all files being accessed
by the game program are files that the invoker is authorized to access.

In comparison, that same Trojan horse would fail when run in an environ-
ment where Multi-level Document Confidentiality Policy is enforced. The MLFC
Write Restriction, in particular, ensures that if an attacker has the clearance to
read some file to which the Trojan horse has exfiltrated data then that attacker
has sufficient clearance to read the files from which the data was copied.11 So
the attacker does not benefit from the Trojan horse.

Trusted Subjects. MLFC Write Restriction is violated by any program whose
output files have less sensitive classifications than its input files. Yet write-
downs are essential to the operation of many real systems. So the MLFC Write
Restriction must sometimes be relaxed.

The classic example is a program encrypt(k , txt) to encrypt an input txt
using a key k . If a good encryption algorithm is employed then ciphertext
encrypt(k , txt) could be made public without revealing useful information about
secret inputs k and txt . But requirement L(encrypt) ⪯ L(FO) of MLFC Write
Restriction is violated if the output of encrypt is written to a file FO labeled
with a sensitivity lower than the sensitivities labeling the files storing k and
txt . Moreover, MLFC Read Restriction requires the sensitivity of L(encrypt)
to be at least that of the input files storing k and txt . The write-down to FO,
nevertheless, is safe.

Another useful form of safe write-down is exemplified by a service that reads
files containing confidential information and writes status to an activity log file.
The service must execute with a sufficient clearance to access the input files. If
the content and timing of status updates to the activity log file do not reveal
confidential information, then a high clearance should not be needed to read the
activity log file. The service, however, violates MLFC Write Restriction if the
activity log files are given a lower classification than the service has.

So there are compelling reasons for some programs to violate MLFC Write
Restriction. Fortunately, MLFC Write Restriction is not the only way to pre-
vent a given program from leaking information to principals that have lower
clearances. An alternative is to analyze that program’s code and certify that
its logic ensures classified information will never be leaked.12 Such programs

But once the sun had set, the Greek fleet turned around and headed back to Troy. At midnight,
the Greek warriors inside the horse emerged, killed the Trojan guards, and opened the city
gates. The Greek force, which by then had returned, entered the open gates and destroyed
the city, thereby ending the war.

11If a copy F ′ of a file F is made by a Trojan horse TH then L(F) ⪯ L(TH) due to MLFC
Read Restriction and L(TH) ⪯ L(F ′) due to MLFC Write Restriction. So, by transitivity,
L(F) ⪯ L(F ′) holds. A clearance L(A) satisfying L(F ′) ⪯ L(A) is needed by an attacker A
to read copy F ′. But, by transitivity, L(F) ⪯ L(A) holds, so we have proved that clearance
L(A) suffices for A to read F directly in all cases where A can read copy F ′.

12Methods for such analysis are discussed in Chapter ??.

March 2014 Copyright Fred B Schneider All rights reserved

202 Chapter 8. Mandatory Access Control

can be exempted from the MLFC Write Restriction, and they are then called
trusted subjects.

Trusted subjects provide an easy route for developers who must enforce the
MLFC restrictions. However, a system that contains trusted subjects is only
secure if its trusted subjects do not leak information. So prudence dictates that

• the system have few trusted subjects, and

• each trusted subject execute a small and simple piece of code, because
large programs are difficult to analyze for information leaks.

Unfortunately, in practice, trusted subjects are too often designated indiscrim-
inately and without (i) investing in the careful analysis required to rule out
leakage or (ii) revisiting the system design to see if a restructuring might elimi-
nate the need for a trusted subject in the first place.

Trusted subjects also can prove useful when labels are being assigned to
coarse-grained objects but finer-grained access control is sought. For example,
we might have an operating system that enforces Multi-level Document Con-
fidentiality Policy on files, with each file storing a separate document. If we
desire access control for portions of the file (corresponding to individual para-
graphs), then we could employ a trusted subject. It would implement a reference
monitor that controls reads and writes to individual paragraphs, according to
classifications that are stored with each paragraph and clearances associated
with principals that request the access. So, as before, the system is secure
only if the trusted subject works as intended and does not leak the contents of
paragraphs with high classifications to programs with lower clearances.

8.1.2 Multi-level Integrity

We might posit that the integrity of a file can be no better than the integrity
of the inputs used in producing that file.13 Multi-level integrity embodies this
view, enforcing restrictions that prevent file corruption by any program whose
inputs come from files and/or from arguments provided by a user who has been
assigned a low clearance.

To start, assume that each user or file X is assigned a fixed integrity label
LI(X). We will consider LI(X) sound if it gives a lower bound for the integrity
that can be guaranteed for any output produced using information provided
from X. Implicit in this soundness definition (“... gives a lower bound ...”) is
a partial order ⪯I on integrity labels. LI(X) ⪯I LI(X ′) holds if and only if
element X has no better integrity than element X ′, where X might be a user
(who provides arguments when invoking programs that produce outputs) or X
might be a file. A MAC policy that prevents corruption of files is then:

13This view actually is rather conservative. Consider a program that outputs the value
(if one exists) appearing as a majority of its inputs. When that majority of inputs have
high integrity then the output has high integrity, despite the presence of other of inputs with
low integrity from a minority. So the integrity of an output need not be inherited from the
lowest-integrity input.

March 2014 Copyright Fred B Schneider All rights reserved

8.1. Multi-level Security 203

Multi-level File Integrity Policy. A program that is invoked by a user
U and that reads from a file F ′ is authorized to update a file F only if
LI(F) ⪯I LI(U) and LI(F) ⪯I LI(F ′) hold.

That is, information written to a file F does not have lower integrity than what
label LI(F) promises.

Various schemes have been proposed for defining integrity labels. The classic
one employs labels that resemble those used above for confidentiality. Here,
labels are pairs ⟨T,C⟩, and partial order ⟨T,C⟩ ⪯I ⟨T ′,C ′⟩ holds, as before, if
and only if T ≤ T ′ and C ⊆ C ′ hold.14 But components T and C have different
interpretations for integrity labels than they had for confidentiality labels.

• T signifies trustworthiness. It ranges over R (Random), P (Plausible), GR
(Generally Reliable), and A (Authoritative), where R < P < GR < A.15

– For files, T categorizes the extent to which the file contents are ac-
curate and could not have been corrupted directly or indirectly by
actions attackers instigate.

– For users, T categorizes the competence and loyalty of the user,
thereby indicating whether file integrity is likely to be compromised
by user actions, such as invoking a program with the wrong argu-
ments.

• C is a set of compartments. As with multi-level security, each compartment
indicates specific topic areas.

A reference monitor enforcing Multi-level File Integrity Policy might have to
block file writes. In particular, a program invoked with arguments provided by
user U and that has read files F1, . . . , Fn is permitted to update a file F only
if the following holds.16

LI(F) ⪯I min(LI(U), LI(F1), . . . , LI(Fn)) (8.5)

A naive implementation of this restriction would have the reference monitor
record label LI(Fi) whenever a file Fi is read during a program’s execution. But

14As will become clear, integrity labels can be drawn from any set S with a partial order
⪯I , provided (i) labels in S and ⪯I have a plausible interpretation in terms of some definition
of integrity and (ii) if S′ ⊆ S holds then greatest lower bound glb(S′) is also a label in S. In
the classic scheme, glb(S′) is defined as

glb(S′) = ⟨min
i∈S′

(Ti), ⋂
i∈S′

Ci⟩.

for S′ = {⟨T1,C1⟩, . . . ⟨Tn,Cn⟩}.
15Some authors employ labels that reinterpret sensitivities TS, S, C, U in terms of integrity.

Others use the terms C (for Crucial), VI (for Very Important), and I (for Important)) that
were used in Biba’s original description of multi-level integrity, which incorporated a cost of
consequences in each integrity label.

16The reason now becomes clear for requiring (in footnote 14) that glb(S′) ∈ S hold for every
subset S′ of set S of labels. By definition, if S′ ⊆ S holds then so does (∀s ∈ S′∶ glb(S′) ⪯I s).
So from glb(S′) ∈ S, we conclude there must exist a label for LI(F) that satisfies (8.5) no
matter what subset S′ of labels are arguments to min.

March 2014 Copyright Fred B Schneider All rights reserved

204 Chapter 8. Mandatory Access Control

the obligation to store labels for all files read can be (and typically is) eliminated
by selecting a label LI(Pgm) for the executing program Pgm. The following
conditions, which together imply (8.5), are instead enforced by the reference
monitor.

LI(F) ⪯I LI(Pgm) (8.6)

LI(Pgm) ⪯I LI(U) (8.7)

LI(Pgm) ⪯I LI(Fi) for 1 ≤ i ≤ n (8.8)

In particular, (8.6) – (8.8) is each enforced by having the reference monitor (i)
intercept file writes to prevent write-up attempts, (ii) intercept user invocation
of programs, and (iii) intercept file reads to prevent read-down attempts:

MLFI Write Restriction. LI(F) ⪯I LI(Pgm) must hold for a program
Pgm to write a file F .

MLFI Program Invocation Restriction. LI(Pgm) ⪯I LI(U) must
hold for an user U to invoke program Pgm.

MLFI Read Restriction. LI(Pgm) ⪯I LI(F) must hold for a program
Pgm to read a file F .

MLFI Write Restriction implies (8.6); MLFI Program Invocation Restriction
implies (8.7); and MLFI Read Restriction implies (8.8).

Multi-level File Integrity with Dynamic Label Assignment. If in-
tegrity label LI(X) is sound then any label L satisfying L ⪯I LI(X) will be
sound for X, too. Thus, we can adopt the following rule to relax Tranquility
Assumption (page 198) and allow changes to integrity labels during execution.

MLFI Label Reduction Restriction. If L ⪯I LI(X) then label LI(X)
can be lowered to L prior to a write, program invocation, or read.

This label reduction allows a program to proceed when it would have been
blocked under a static label assignment. The following table summarizes the
opportunities.

label reduced MLFI rule potentially enabled
LI(F) MLFI Write Restriction
LI(Pgm) MLFI Program Invocation Restriction
LI(Pgm) MLFI Read Restriction

When reduction of files labels is permitted, it is called an object low-water mark
policy; when reduction in program labels is permitted, it is called a subject
low-water mark policy.

Although reducing an integrity label could allow execution to continue, such
a reduction can have insidious consequences. After integrity label LI(F) on
a file F is reduced, the integrity label of programs that read F might also

March 2014 Copyright Fred B Schneider All rights reserved

8.1. Multi-level Security 205

have to be reduced (to comply with MLFI Read Restriction). MLFI Write
Restriction then necessitates reductions to integrity labels for files subsequently
written by those programs. The process repeats, with integrity labels on files and
programs spiraling ever lower. When execution finally terminates, output files
would have extremely low integrity labels, offering minimal guarantees about
the information stored in those files. Yet the integrity of output file contents
might actually be quite high, with the weak integrity labels on those files merely
artifacts of the MLFI restrictions and label reduction.

Multi-level Confidentiality and Integrity Combined. Multi-level File
Confidentiality Policy (§8.1) offers no guarantees about data integrity. In fact,
MLFC Write Restriction allows principals to write files they cannot read—so-
called blind writes—and, therefore, an untrustworthy user can compromise the
integrity of the most-secret files in the system. Multi-level File Integrity Policy,
on the other hand, completely ignores confidentiality. MLFI Read Restriction
authorizes an untrustworthy user to read files that are highly confidential.

Since confidentiality and integrity are often both important, we might con-
template a combined multi-level security policy. Each user U would receive a
single clearance LCI(U). A single clearance (rather than separate clearances
L(U) and LI(U)) is sensible here, because background investigations give no
basis to distinguish between a user’s proclivity for compromising confidentiality
versus corrupting integrity.

Because confidentiality and integrity of information are independent char-
acteristics and enforced by different rules, it might seem natural in a combined
policy to use two labels on each file F : L(F) for confidentiality and LI(F)
for integrity. In authorizing file reads and writes, we would impose the MLFC
restrictions in connection with L(F) and MLFI restrictions in connection with
LI(F). So, for example, a read F is now permitted by a program Pgm provided
L(F) ⪯ L(Pgm) holds (from MLFC Read Restriction) and LI(Pgm) ⪯I LI(F)
holds (from MLFI Read Restriction).

Yet in practice, little is revealed by leaking low-integrity information because,
by definition, low-integrity information can be inaccurate. So confidentiality is
not independent of integrity, and therefore the expressive power of associating
two labels with each file is unlikely to be helpful. That suggests using confi-
dentiality label L(F) for each file F as the label LCI(F) for a combined policy.
However, this too turns out to be impractical, as we now see.

The authorization rules for the combined policy when each file F has a single
label LCI(F) are derived from the MLFC restrictions and the MLFI restrictions
given above. For any program Pgm, not a trusted subject:

• Pgm is not authorized to read-up (MLFC Read Restriction) or write-down
(MLFC Write Restriction).

• Pgm is not authorized to read-down (MLFI Write Restriction) or write-up
(MLFI Read Restriction).

March 2014 Copyright Fred B Schneider All rights reserved

206 Chapter 8. Mandatory Access Control

• And, because multi-level confidentiality does not support dynamic label
assignment, labels on files cannot be changed.

Pgm is thus not authorized to read-up, read-down, write-up, or write-down!
The combined policy is equivalent to using of a separate, isolated computer
system for each different security label. We shouldn’t be surprised that such a
policy defends against information leaks and corruption, but the policy prohibits
programs that read and write data having different security labels and, thus, is
generally too restrictive to be practical.

8.2 Domain and Type Enforcement

With domain and type enforcement (DTE), an access matrix (rather than a
partial order on labels) characterizes authorization for a MAC policy. Each
entity that issues access requests is associated with a domain, which corresponds
to a row in the access matrix; each object is associated with a type, which
corresponds to a column in the access matrix. Cells of the access matrix give
the set of privileges that members of domains are granted for objects of each
given type. So an access matrix depicts a relation Auth comprising a set of
triples ⟨D,O, p⟩, where ⟨D,O, p⟩ ∈ Auth holds if and only if entities in domain
D have privilege p for objects of type T .

Figure 8.1 depicts an access matrix that grants to elements of domain D the
set {p1, p2} of privileges for objects of type T . Thus,

⟨D,T, p1⟩ ∈ Auth ⟨D,T, p2⟩ ∈ Auth

are implied by this access matrix.
In DTE, domains are also considered types. This enables the access matrix

to specify whether execution in one domain is authorized to transition into
another (an event that likely occurs in conjunction with a control transfer).
With domains considered types, the access matrix also is able to specify whether
execution in one domain is authorized to issue a signal (a form of request) that
interrupts execution of some other domain.

DTE imposes no restrictions on Auth and, therefore, can be used to im-
plement a broad range of MAC policies. For example, to specify multi-level
confidentiality (§8.1.1) using DTE:

• A distinct domain D is defined for all users and programs having the same
label L(D).

• A distinct type T is defined for all files having the same label L(T).

• Auth is defined to include ⟨D,T, p⟩ if and only if the condition in the table
below is satisfied, as prescribed by the applicable MLFC rule from §8.1.1.

⟨D,T, p⟩ condition MLFC rule
⟨D,T,invoke⟩ L(D) ⪯ L(T) Program Invocation
⟨D,T,read⟩ L(T) ⪯ L(D) Read Restriction
⟨D,T,write⟩ L(D) ⪯ L(T) Write Restriction

March 2014 Copyright Fred B Schneider All rights reserved

8.2. Domain and Type Enforcement 207

type
domain . . . T . . .

⋮

D p1, p2

⋮

Figure 8.1: MAC Access Matrix

Multi-level integrity (§8.1.2) and any other policy involving labels and an or-
dering relation would be specified in an analogous way.

DTE can also be used to implement MAC policies that cannot be defined in
terms of partial orders on labels. This makes DTE attractive for situations that
multi-level security does not handle well. We illustrate with a simplified form of
multi-level confidentiality involving labels S (secret) and P (public), with P ⪯ S.
Assume the usual rules for access to data by users and their applications—no
“read-up” and no “write-down”. Suppose, in addition, the system supports (i)
an encryption service that inputs plaintext with label S and outputs ciphertext
with level P and (ii) a decryption service that (given a suitable key) performs
the inverse. A DTE authorization relation for this system can be specified using
the access matrix in Figure 8.2, which employs the following domains and other
types.

type
domain Enc Dec ExecS ExecP FileS FileP

Enc invoke invoke read write

Dec invoke invoke read, write read

ExecS invoke invoke invoke read, write read

ExecP invoke read, write

Figure 8.2: MAC for an Encryption/Decryption Service

March 2014 Copyright Fred B Schneider All rights reserved

208 Chapter 8. Mandatory Access Control

Domains:
Enc programs comprising the encryption service
Dec programs comprising the decryption service
ExecS users and application programs with clearance S
ExecP users and application programs with clearance P

Other Types:
FileS files containing data with classification S
FileP files containing data with classification P

The access matrix of Figure 8.2 constrains execution in domains ExecS and
ExecP—that is, execution of application programs—to comply with “no read-
up” and “no write-down” as required by multi-level confidentiality. The access
matrix also specifies that execution in Enc is authorized to read files of type
FileS and to write files of type FileP17 and thus Enc is being permitted to
violate the mandates of multi-level confidentiality. The only way to allow Enc
such access under the MLFC rules would require Enc to be a trusted subject,
but that (in violation of the Principle of Least Privilege) unnecessarily grants
Enc write for files in FileS and grants read for files in FileP .

DTE also avoids other problems that partial orders on labels cause for MAC
policies. For instance, MLFC Computation Restriction (page 200) can be re-
laxed when DTE is used, so that a selected program is allowed to write content
that is more sensitive than any of its inputs. With DTE, we can create a domain
for that program and then assign privileges that allow writes to objects having
higher-classification levels.

Trusted subjects are never needed with DTE because of the flexibility that
access matrices provide. A domain can be assigned exactly the privileges needed
to accomplish its tasks, compared to the unlimited privilege that a trusted sub-
ject receives. So, using DTE, a logging service could be authorized to write-
down, although presumably this privilege assignment is made only after in-
specting programs in that domain to ensure that they do not leak confidential
information. The logging service domain is thus being trusted, but only in a
limited way compared to a trusted subject. DTE also allows blind writes to be
controlled, whereas multi-level security offers no solution.

The expressive power of DTE does have a cost, though. In order to use DTE,
we must define a mapping from users and system objects to domains and types.
And we must define Auth, either by enumerating its elements or by providing
another means to decide whether ⟨D,T, p⟩ ∈ Auth holds, for every domain D,
type T , and privilege p. The mapping to domains and types is not the problem.
It has size linear in the number of users and system objects, which is comparable
to the mapping to labels required when a partial order ⪯ (say) on labels is used
for specifying authorization. But the enumeration of Auth can be significantly

17There are two cases to consider, depending on the value of L(Enc). If L(Enc) = S holds
then writes by Enc to files in FileP are authorized but would violate “no write-down”, and
if L(Enc) = P holds then reads by Enc to files in FileS are authorized but would violate “no
read-up”. So some MLFC rule would be violated no matter what clearance is assigned to
execution in domain Enc.

March 2014 Copyright Fred B Schneider All rights reserved

8.3. MAC for Commerce 209

larger than the specification of partial order ⪯ that defines the exact same set
of tuples ⟨D,T, p⟩. This is because Auth must explicitly enumerate all elements
in the transitive closure of ⪯, whereas the specification of partial order ⪯ need
not. Moreover, such an explicit enumeration might be the only option; some
Auth relations cannot be specified using a partial order on domains and types
because the relation is not transitive or is not antisymmetric.

8.3 MAC for Commerce

Accurate records about a company’s assets and liabilities is essential for making
short-term operational decisions as well as longer-term strategic ones.18 Dishon-
est individuals left unchecked in this setting can perpetrate fraud by performing
bogus updates to these records. Fraud, however, is as old as commerce itself.
And the accounting profession long ago developed defenses, known as financial
controls. They include:

• Separation of Duty. Tasks are made harder to subvert by requiring several
individuals to participate. Collusion now becomes necessary in order to
perpetrate fraud.

• Prescribed Transformation Procedures. Restrictions are imposed on who
is authorized to update which records, how, and when. Considerably
less damage is possible when only a small set of constrained programs is
available for making updates.

• Mandated Audit. Each update is logged in a way that is immutable and
identifies some individual as being accountable. Reviews are undertaken—
periodically and randomly—to search logs for anomalies and to validate
the accuracy and consistency of updated records. Would-be attackers are
now deterred for fear of detection and because logs provide incriminating
evidence for use in prosecution.

Notice that DAC’s owner-control of authorization is incompatible with Separa-
tion of Duty. The multi-level security MAC policies described in §8.1 are not so
useful here, either—they enforce authorization on individual reads and writes,
whereas Separation of Duty and Transformation Procedures concern groupings
of accesses. So the needs of commerce would seem to involve new kinds of MAC
policies.

8.3.1 Separation of Duty

Fraud occurs when trusted individuals abuse their authority. Separation of duty
defends against this by limiting the authority granted to any one individual.

18Assets and liabilities refer to all aspects of a company’s current financial position: inven-
tories of supplies, unpaid bills, accounts payable (including outstanding purchase orders and
worker time-sheets), accounts receivable (including unpaid customer invoices), the cash dis-
bursements journal (i.e., list of checks issued), the cash receipts journal (i.e., list of deposits),
and so on.

March 2014 Copyright Fred B Schneider All rights reserved

210 Chapter 8. Mandatory Access Control

With limited authority, a dishonest individual working alone only can cause
limited damage; collusion by a set of dishonest individuals is now required to
perpetrate a fraud. Care in hiring reduces the chances that a dishonest employee
would find others who are both inclined to fraud and well positioned to collude.

With a static separation of duty, the authority given to each individual is
fixed and pre-specified. This approach is often adopted by companies where job
titles, which are linked to sets of tasks, bring the authority necessary to perform
certain tasks but not others. For example, individuals in the Billing Department
who generate customer invoices are authorized to update the accounts-receivable
database but not authorized to update the warehouse-inventory database, whereas
the opposite would hold for warehouse workers.

Static separation of duty has two significant shortcomings. First, attackers
are able to identify individuals who, if recruited, could together commit a fraud.
Second, it limits flexibility to reassign workloads when a business must cope with
the unexpected (e.g., unusual demand or employee absences).

In dynamic separation of duty, the authority assigned to an individual is
neither pre-determined nor fixed. The assignment might be random, or it might
depend on state or history. A software development group, for example, might
follow a code check-in regime that requires every module a programmer changes
to be audited by a different programmer—a separation of duty for updates
versus audits. If the auditor is selected based on who is the least overworked,
then we have state-based dynamic separation of duty; if a programmer who has
(or has not) previously contributed to the updated module must be selected,
then we have history-based dynamic separation of duty.

Randomness can be used to good advantage in dynamic separation of duty.
The absence of advance knowledge about who will participate in a given trans-
action frustrates19 attempts by attackers to recruit collaborators. Financial
institutions, for instance, require employees to be away from the office (at train-
ing or on vacation) annually, for an uninterrupted interval (typically one or two
weeks); a randomly-selected peer is assigned the absent employee’s workload.
The required absence is, by design, long enough that the substitute would see
irregularities indicative of fraud. And use of random selection makes it unlikely
that the substitute would be in collusion with the absent employee.

Separation of duty might be tied to objects and/or tied to activities. In either
case, enforcement could require that information about authority assignments
be available and, if history is involved, that it be preserved for future reference.

• When separation of duty is tied to an object, then that object provides
an obvious place for recording authority assignments. The code check-
in example above concerns separation of duty associated with a module.
The file storing the module’s source code or that file’s meta-data would
be a natural place for recording the names of programmers and auditors
involved in each a change.

19A collection of individuals is unlikely to collude unless they have come to trust each other
(e.g., not to incriminate each other). It takes time to establish such trust. So attackers need
long lead times to recruit collaborators.

March 2014 Copyright Fred B Schneider All rights reserved

8.3. MAC for Commerce 211

• Activities, which typically are transient, generally do not offer places for
long-term storage of information about authority assignments. Some ac-
tivities (e.g., a process, thread, or transaction) are associated with system
objects that could record authority assignments, but other activities (e.g.,
office workflows) require that new objects be created for this purpose.
Objects that record authority assignments might have to be stored indefi-
nitely if separation of duty is based on history. Garbage collection of these
records now becomes an issue.

The enforcement of separation of duty for computer system operations that
are initiated by a human user requires the system to authenticate that user. This
works only if different user identifiers actually correspond to different humans.
We are thus making assumptions about the ease with which the authentication
protocol can be spoofed and about the care with which attributes are validated
by the enrollment protocol when new users are registered.

Delegation of authority from one principal to another brings further compli-
cations, since distinct internal identifiers could now speak for the same principal.
One option is to prohibit delegation from/to principals that are constrained by
separation of duty. A second option is for each request to carry the identifier of
the principal making the request as well as the identifiers of all principals that
delegated authority to that requester. And a third option is to monitor delega-
tions and create a central database that records equivalences that delegations
induce among the identifiers being used.

The special case where one user delegates to another can be hard to handle.
Such a delegation is a form of collusion if it is hidden from the enforcement
mechanism. However, it is quite natural and often encouraged. One employee
might lend a hand to another, or a manger might stand-in for a subordinate.
A separation of duty policy can be formulated to support such delegations,
provided these delegations are made known to the enforcement mechanism and,
therefore, appropriate authority assignments still can be made.

Chinese Wall Policies. A conflict of interest occurs between two activities
if an agent, in serving the best interests of one activity, cannot also further the
best interests of the other. For example, a consultant advising one company
about business strategy would have a conflict of interest by also advising a
competitor—the consultant is an agent, the activity is advising, and knowledge
of both competitor’s strategies could enable improvements to one at the expense
of the other.

Accepted business practice sometimes does allow competitors to be clients of
individuals employed by a single enterprise20 provided a Chinese Wall policy21

20However, the practice is by no means universally accepted. In the United States, invest-
ment banks do accept clients that are competitors, but law firms do not.

21This name alludes to the Great Wall of China, which was built to protect the northern
border of China. The Great Wall of China is roughly 5500 miles long, comprising segments
that are above-ground wall (earth, stones, and wood), trenches, and geologic barriers (rivers
and mountains). The earliest segments were built in the 7th century B.C.E. These were later
connected in the 3rd century B.C.E.

March 2014 Copyright Fred B Schneider All rights reserved

212 Chapter 8. Mandatory Access Control

is enforced:

• An employee who is granted access to records provided by a client is not
also granted access to records provided by competitors.

• An employee is barred from sending other employees any client records
that the receiver is not authorized to access directly.

The first condition eliminates the conflict of interest for a single employee viewed
as an agent, and the second condition rules out conflict of interest for the em-
ployer acting as a single agent that has competitors as clients.

The restriction on access to records by each employee is a separation of
duty policy because it limits the authority given to each employee. Initially, an
employee has accessed no records and thus can access records provided by any
company. Thereafter, authorization to access records provided by a company
depends on what other companies’ records that employee has already accessed.
The separation of duty is thus dynamic and based on history.

We formalize this separation of duty requirement by defining fixed22 binary
relation /∼ on companies: c′ /∼ c′′ holds whenever companies c′ and c′′ are not
competitors. We posit that no company competes with itself and that com-
petition is mutual. Therefore, /∼ is reflexive (i.e., c′ /∼ c′ holds for all c′) and
symmetric (i.e., c′ /∼ c′′ holds if and only if c′′ /∼ c′ does). But /∼ is not transitive,
because it would not be sound to conclude that c and c′′ do not compete (i.e.,
c /∼ c′′) from the knowledge that c /∼ c′ and c′ /∼ c′′ hold—an example is manu-
facturers c and c′′ that compete with each other but not with their supplier c′

and, thus, c /∼ c′ and c′ /∼ c′′ hold but c /∼ c′′ does not.

Let CR(e) contain the name of every company that has provided records
an employee e has seen. The restriction that employee e has not seen records
provided by competitors is then implied by:

(∀c′, c′′ ∈ CR(e)∶ c′ /∼ c′′) (8.9)

This security goal—for all employees e—must be enforced throughout execution.

To see records provided by a company c, an employee e invokes a read
operation on a file associated with c. The read is authorized if c ∈ CR(e)
already holds or if enlarging CR(e) to include c (as required so that CR(e) will
satisfy its definition) does not falsify security goal (8.9).

CW Read Restriction. For an employee e to read a file associated with
a company c

(∀c′ ∈ CR(e)∶ c /∼ c′) (8.10)

must hold.23

22Exercise 8.16 explores the case where, over time, competitors might change.
23To see formally that condition (8.10) in CW Read Restriction suffices for enforcing security

March 2014 Copyright Fred B Schneider All rights reserved

8.3. MAC for Commerce 213

Writes allow an employee to transfer records from a file associated with
one company to a file associated with a different company. So a write could
cause some file associated with one company to contain records derived from
information in files associated with another. No immediate harm is done if these
companies are not competitors. The problems that could arise are illustrated
in the following scenario.

1. e1 reads a record from file f1 associated with company c1.
2. e2 reads a record from file f2 associated with company c2.
3. e2 writes to a file f3 associated with company c3.
4. e1 reads a record from file f3.

If companies c1 and c2 are competitors and if step 3 writes information e2 read
in step 2, then the read by e1 in step 4 violates security goal (8.9).

A straightforward, though draconian, way to rule out such scenarios is simply
to disallow writes that could transfer information from a file associated with one
company to a file associated with another.

CW Write Restriction. For an employee e to write a file associated
with a company c then CR(e) ⊆ {c} must hold.24

goal (8.9), first note that the following is valid.

(∀c′, c′′ ∈ CR(e)∶ c′ /∼ c′′) ∧ (∀c′ ∈ CR(e)∶ c /∼ c′)
⇒
(∀c′, c′′ ∈ (CR(e) ∪ {c})∶ c′ /∼ c′′)

Moreover, both conjuncts in the first line are valid if a read were authorized—the first conjunct
is security goal (8.9), which holds by construction, and the second conjunct is requirement
(8.10) in CW Read Restriction. Since its antecedent is valid, the formula appearing as the
conclusion of the implication will also be valid. That formula is security goal (8.9) with
“CR(e)” replaced by “CR(e) ∪ {c}”. So we have demonstrated that security goal (8.9) holds
for the value CR(e) has after e has read from a file associated with company c. Therefore,
the read does not cause security goal (8.9) to be falsified, and we have demonstrated that the
condition in CW Read Restriction is sufficient.

24To show formally that CW Write Restriction suffices to enforce security goal (8.9), let set
CW (c) contain the name of every company providing information that currently might be in
files associated with c.

We are safe in choosing CW (c) = {c} initially because, before any writes occur, information
in files associated with c is, by definition, information that c provided. And after an employee
e′ writes to a file associated with c then CW (c) will continue to satisfy its definition if CW (c)
is changed according to

CW (c) ∶=CW (c) ∪CR(e′)

since CR(e′) includes the set of companies that provided information that employee e′ might
include in its write. In addition, the assignment statement

CR(e) ∶=CR(e) ∪CW (c)

properly updates CR(e) after e has read from a file associated with c, because CW (c) (by
definition) contains names of companies that provided information that might be found in
that file.

In footnote 23 (page 213) justifying CW Read Restriction, we argued that security goal (8.9)
had to hold with “CR(e)” replaced by “CR(e)∪ {c}”. Now that we are using the assignment
CR(e) ∶=CR(e) ∪CW (c) to update CR(e), we conclude that “CR(e)” should be replaced by

March 2014 Copyright Fred B Schneider All rights reserved

214 Chapter 8. Mandatory Access Control

Condition CR(e) ⊆ {c} is not satisfied if e has read files associated with other
companies besides c. So CW Write Restriction is allowing e to update a file
associated with c only if e has read no files associated with other companies.

8.3.2 Transformation Procedures and Consistency

Obligations to maintain accuracy of information being stored by a company’s
computing system can be represented as external consistency constraints. These
Boolean-valued formulas relate the state of a computing system to the state of
its environment. For example, Widgets-R-Us might define the following external
consistency constraint for its inventory database:

NW = wS + ∑
1≤i≤N

wi

This formula asserts that NW is an accurate count of the widgets that Widgets-
R-Us owns—wS denotes the number of widgets actually present in the Widgets-
R-Us warehouse and wi denotes the actual number of widgets being staged at
workbench i of N in the Widgets-R-Us factory.

The environment—bank balances, warehouse contents, and so on—is likely
beyond the control of a company’s computing system which, after all, can only
manipulate values stored in its database. But the environment is under the
direct or indirect control of employees. We link the state of an environment to
a computer system’s database by mandating business processes that implement
the following principle.

External Consistency Preservation. Changes that could invalidate an
external consistency constraint must involve participation by an employee,
who is responsible for invoking a program that performs corresponding
updates to the computing system’s state.

Assurance about the truth of an external consistency constraint can be es-
tablished by people performing audits. The auditors first gather evidence about
the state of the environment: query the bank, inventory the warehouse, check
with creditors to confirm accounts payable, check with customers to confirm
accounts receivable, and so on. Then the auditors compare and reconcile any
differences between the evidence they have and the information being stored by
the computer system.

Trustworthy employees perform their jobs properly, which means they un-
dertake mandated updates but no others. Untrustworthy employees, however,
might initiate bogus updates for reasons ranging from incompetence to malevo-
lence. We help defend against such fraud by instantiating the Principle of Least
Privilege and restricting what updates each employee is authorized to perform.

“CR(e)∪CW (c)” after e reads a file associated with c. If CW (c) = {c} holds then CR(e)∪{c}
and CR(e)∪CW (c) are equal. Moreover, CW (c) = {c} holds initially and subsequent changes
to CW (c) are characterized by CW (c) ∶=CW (c)∪CR(e′). So it suffices to require that CR(e′)
in that assignment statement satisfy CR(e′) ⊆ {c} whenever an employee e′ writes to a file
associated with c. That condition is exactly what CW Write restriction requires.

March 2014 Copyright Fred B Schneider All rights reserved

8.3. MAC for Commerce 215

• A predefined set of transformation procedures is defined. Each transfor-
mation procedure definition

tp∶ pgm(a1, . . . , an)
access F1∶{op1

1, . . . op
m1

1 }, . . . , Fp∶{op1
p, . . . op

mp
p }

specifies a program pgm and argument list a1, . . . , an, where pgm has been
certified to

(i) implement some mandated step of a business process, and

(ii) log all updates it performs.

The transformation procedure definition authorizes pgm to access files F1,
..., Fp, where accesses to each file Fi may use only operations op1

i , ... opmii .

• A reference monitor is deployed in conjunction with an authorization rela-
tion EmpAuth. The reference monitor ensures that employee e can invoke
transformation procedure tp only if ⟨e, tp⟩ ∈ EmpAuth holds.

These restrictions on updates to information stored in the computer system
could be easily circumvented if employees were able to modify EmpAuth or
make changes to the set of transformation procedures. We mitigate against
that by imposing a separation of duty policy.

Independent Certification. No employee who is authorized to execute
transformation procedures is authorized to modify EmpAuth or to partic-
ipate in certifying or installing programs invoked by any transformation
procedure.

Collusion is now necessary before an attacker can get a bogus transformation
procedure installed.

Double-Entry Bookkeeping. The state of a computer system can be checked
to reveal whether stored values are unreasonable in isolation or in comparison
to other stored values.25 An internal consistency constraint is a Boolean-valued
formula that is satisfied if the computer system state does not exhibit certain
pre-specified anomalies. Stronger (i.e., more restrictive) internal consistency
constraints are obviously better, because they are satisfied by fewer anomalous
states. Internal consistency constraints that are too strong might, however, er-
roneously disqualify states. For example, an internal consistency constraint is
not very useful if it can be falsified by executing a transformation procedure
whose invocation is mandated by some business process. The ideal internal
consistency constraint would be falsified only by invocations of transformation
procedures that are not mandated by some business process.26

25But an outside audit is the only way to determine whether external consistency constraints
are satisfied.

26In prohibiting certain invocations, an ideal internal consistency constraint also prohibits
fraudulent acts of omission. Suppose some mandated transformation procedure should be

March 2014 Copyright Fred B Schneider All rights reserved

216 Chapter 8. Mandatory Access Control

Set Class Informal Description

A assets things that add value to the business
E expenses expenditures over some specified period
I income income over that same period
L liabilities things that reduce the value of the business
Q equity overall value of the business

Figure 8.3: Classes of Accounts in Double-entry Bookkeeping

In double-entry bookkeeping, a single internal consistency constraint is de-
fined over the set of accounts that collectively represent the state of a business.
Every account stores an initial balance and a sequence of postings, where each
posting describes an increment or decrement to that account’s balance. The
accounting equation

∑
i∈Q

i = ∑
i∈A∪I

i − ∑
i∈L∪E

i (8.11)

is a consistency constraint, with Figure 8.3 defining categories A, E , I, L, and Q
that accountants traditionally use to group accounts. Notice, any single (non-
zero) posting to a only one account will falsify (8.11). The need to make two or
more postings is what leads to the name double-entry bookkeeping.

Under double-entry bookkeeping, the entire set of postings that result from
executing a transformation procedure must not invalidate (8.11). Moreover,
where needed, a sequence tp1 tp2 . . . tpn can be enforced on the steps mandated
by some business process. To implement such sequencing, each transformation
procedure tpi is defined to fail if some prespecified Boolean condition pre(tpi) is
false when tpi is invoked. Condition pre(tpi) will typically establish that some
value is present in certain specified set of accounts; execution of tpi then posts
decrements and increments to accounts in a way that falsifies pre(tpi) but makes
pre(tpi+1) true, which implies that tpi+1 must be performed next. So value in
designated accounts serves as baton that gets passed from one transformation
procedure in a sequence to the next one in that sequence.

To make this concrete, consider the transformation procedures purchase,
orderRcvd , and invRcvd sketched in Figure 8.4. Each is specified using the
syntax discussed earlier in this section (see page 215), followed by the program
the transformation procedure executes. Those programs use two new statement
types: post and check.

A post statement

post ⟨+cost , id⟩ to AcntPayL

causes element ⟨+cost , id⟩ to be appended to the sequence of postings associated
with account AcntPayL. Identifier id enables this posting to be linked with other

invoked, but isn’t. Sooner of later, some transformation procedure will be invoked. That
invocation, by definition, is premature—so it is not (yet) mandated and thus will falsify an
ideal internal consistency constraint.

March 2014 Copyright Fred B Schneider All rights reserved

8.3. MAC for Commerce 217

-

purchase ∶GenPO(item, supplier , cost , id)
access AcntPayL∶{post},

ShpExpA∶{post}

GenPO ∶program(item, supplier , cost , id)
post ⟨+cost , id⟩ to AcntPayL
post ⟨+cost , id⟩ to ShpExpA
send order number id for item to supplier
end GenPO

orderRcvd ∶XferDeliv(id)
access ShpExpA∶{post, read},

InvtryA∶{post, read}

XferDeliv ∶program(id)
check ⟨ĉ, id⟩ ∈ ShpExpA ∧ ⟨ĉ, id⟩ ∉ InvtryA then

post ⟨−ĉ, id⟩ to ShpExpA
post ⟨+ĉ, id⟩ to InvtryA

else exception(“Unsolicited or duplicate delivery”)
end XferDeliv

invRcvd ∶GenCheck(supplier , cost , id , chkNo)
access InvtryA∶{read},

AcntPayL∶{post, read}
ChkAcntA∶{post}

GenCheck ∶program(supplier , cost , id , chkNo)
check ⟨+cost , id⟩ ∈ AcntPayL

∧ ⟨+cost , id⟩ ∈ InvtryA
∧ ⟨−cost , id⟩ ∉ AcntPayL

then
post ⟨−cost , id⟩ to AcntPayL
post ⟨−cost , chkNo⟩ to ChkAcntA
send check chkNo for cost to supplier re invoice id

else exception(“Not delivered, not ordered, or paid once”)
end GenCheck

Figure 8.4: Inventory Purchase Steps

March 2014 Copyright Fred B Schneider All rights reserved

218 Chapter 8. Mandatory Access Control

postings. We adopt the convention that account names include a subscript to
indicate a class from Figure 8.3, so it becomes easy to see that no transformation
procedure falsifies accounting equation (8.11).

A check statement either executes a then clause or an else clause, de-
pending on whether some given Boolean condition evaluates to true. That
Boolean condition can introduce new identifiers, which subsequently are refer-
enced within the scope of the then and have initial values satisfying the Boolean
condition. For example, in

check ⟨ĉ, id⟩ ∈ ShpExpA ∧ ⟨ĉ, id⟩ ∉ InvtryA then ...

(taken from XferDeliv in Figure 8.4), variables ĉ and id when execution of
the then starts have initial values that correspond to some prior posting to
ShpExpA that has not also been made to InvtryA.

The transformation procedures in Figure 8.4 together implement the stan-
dard business process for inventory acquisition, under the assumption that au-
thorization relation EmpAuth enforces a separation of duty policy that restricts
each employee to invoking at most one of the three transformation procedures.
The sequence of steps for inventory acquisition are:

1. An authorized employee in the front office invokes purchase to issue a
purchase order. This transformation procedure executes program GenPO
with authorization for posting to accounts AcntPayL and ShpExpA (only).
A purchase creates a liability (because the goods will ultimately have to be
paid for), which is reflected by the posting to AcntPayL. The expectation
for the delivery is an asset, reflected in the posting to ShpExpA. Identifier
id is thereafter associated with this purchase order and is expected to ap-
pear in the paperwork that accompanies the delivery and in the supplier’s
invoice.

2. An authorized employee on the loading dock invokes orderRcvd when de-
livered goods are accompanied by a packing slip that references identi-
fier id . This transformation procedure executes program XferDeliv with
authorization for reading and posting to accounts ShpExpA and InvtryA.
Execution checks ShpExpA to ensure the delivery was expected and checks
InvtryA to make sure the delivery is not a duplicate. A decrement is then
posted to ShpExpA because the shipment is no longer expected, and an
increment is posted to InvtryA because inventory has been increased.

3. An authorized employee in the payments department invokes invRcvd to
pay the supplier when an invoice is received for goods with identifier id .
This transformation procedure executes program GenCheck with autho-
rization for reading InvtryA, for posting to and reading AcntPayL, and
for posting to ChkAcntA. The transformation procedure validates that a
purchase order was issued (by checking ⟨+cost , id⟩ ∈ AcntPayL), the deliv-
ery has been added to inventory (by checking ⟨+cost , id⟩ ∈ InvtryA), and
the invoice has not yet been paid (by checking ⟨−cost , id⟩ ∉ AcntPayL).

March 2014 Copyright Fred B Schneider All rights reserved

8.4. Role-based Access Control 219

A posting to AcntPayL then cancels the liability of an unpaid invoice; a
posting to ChkAcntA records an equivalent expense.

Notice how orderRcvd is enabled (due to the check that starts XferDeliv) by a
posting to ShpExpA not also appearing in InvtryA. And invRcvd is enabled (due
to the check that starts GenCheck) by postings to AcntPayL and InvtryA not
also appearing in AcntPayL. So a sequence—purchase, XferDeliv , invRcvd—is
imposed on the execution order for transformation procedures that all concern
the same value of id .

Also note each of the transformation procedures in Figure 8.4 is enabled
(by a posting some other transformation procedure makes) or has its postings
checked by another transformation procedure. Therefore, (at least) two separate
transformation procedures are always involved in any update to an account.
Since we are assuming that no employee is authorized by EmpAuth to invoke
more than one transformation procedure, the design of these transformation
procedures implies that two or more employees must collude in order to embezzle
funds or inventory.

8.4 Role-based Access Control

Long-lived enterprises and institutions tend to be structured around roles—
not around individuals. A role might be identified with a particular job title,
a project, a client, or some combination. Each role grants privileges. The
privileges authorize only those actions expected from a role’s occupants. This
set of actions would be relatively fixed, so the set of privileges associated with
a given role tends to be static. Authorization schemes we have discussed thus
far, which decide access based on user identity, obviously could implement such
a policy. But since a user’s roles tend to change over time, the administration
of privilege-assignments to users based on identity is cumbersome. So identity-
based schemes are not well suited for institutional settings; roles are a more
suitable basis for authorization.

With role-based access control (RBAC), access requests are made during
sessions. Each session S speaks for a set ρ(S) of roles occupied by the user
µ(S) who instigates the session. A system typically provides commands to
instigate or terminate a session and, from within a session, to enter or exit
occupancy in a specified role. For example, a graduate student in Computer
Science, after being authenticated as user EK, might begin a session S (say) and
then enter role studentCS6110 followed by role graderCS5430: µ(S) = EK and
ρ(S) = {studentCS6110, graderCS5430}.

The privileges associated with a session are constrained by two relations.

• UserRoles(U) is the set of roles that a user U is authorized to occupy.

• RolePrivs(R) is the set of privileges granted by a role R.

Throughout every session S, UserRoles restricts ρ(S) based on µ(S):

ρ(S) ⊆ UserRoles(µ(S))

March 2014 Copyright Fred B Schneider All rights reserved

220 Chapter 8. Mandatory Access Control

RolePrivs is used along with ρ(S) to authorize requests made within a session S.
For example, RolePrivs(studentCS6110) might include privileges granting read
access to lecture notes (but not homework solution sets) for course CS6110,
whereas RolePrivs(graderCS5430) might include privileges that grant write ac-
cess to lecture notes and read access to solutions sets for CS5430.

RBAC is agnostic about the kinds of operations that privileges authorize.
Privileges might authorize low-level operations, such as reads or writes to par-
ticular files. Or they might authorize high-level operations that bundle access
by some given program to specific objects, as required by transformation pro-
cedures (§8.3.2).

Role Hierarchy and Privilege Inheritance. Roles in an organization often
inherit privileges from other roles. For example, officers of a club inherit all
privileges the member role grants. Inheritance causes the inferior role to add
its privileges to the privileges that are associated with the superior role. RBAC
provides the role inheritance relation ⊏ to specify that occupants of one role
also are granted all of the privileges associated with some inferior role.

R ⊏ R′ asserts that an occupant U of role R′ also receives all privileges
granted by role R—whether or not U is an occupant of role R. This can be
formalized in terms of a set ρ∗(S) characterizing roles that a user µ(S) in effect
occupies by executing enter commands in session S or through role inheritance:

ρ∗(S) = ρ(S) ∪ {R′ ∣ R ∈ ρ(S) ∧R′ ⊏ R}

Set privs(S) of privileges that a session S grants to µ(S) is:

privs(S) = ⋃
R∈ρ∗(S)

RolePrivs(R) (8.12)

For example, an RBAC scheme at Cornell University might specify role
inheritance relations

cornellian ⊏ CUstudent and cornellian ⊏ CUstaff

to assert that occupants of the CUstaff and CUstudent roles also receive privileges
(e.g., access to the library, parking, and cafeterias) granted to occupants of
the cornellian role (a label for members of the university community), even
though RolePrivs(CUstaff) and RolePrivs(CUstudent) do not explicitly list the
privileges in RolePrivs(cornellian).

Not only might multiple distinct roles inherit privileges from a single role,
but a single role might inherit privileges from multiple roles. Managers are often
empowered to do anything their immediate subordinates can. If emp1, ..., empn

are the roles occupied by individuals supervised by the occupant of role mngr,
then specifying role inheritance relations

emp1 ⊏ mngr, . . . , empn ⊏ mngr

would ensure that mngr occupants are granted the needed privileges.

March 2014 Copyright Fred B Schneider All rights reserved

8.4. Role-based Access Control 221

Term Informal Description

ρ(S) set of roles entered in session S
ρ∗(S) set of roles effectively occupied in session S
µ(S) user who instigated session S
A set of all sessions currently active

privs(S) set of privileges granted in session S
R ⊏ R′ role R′ inherits privileges granted by role R
Roles set of all roles

RolePrivs(R) the set of privileges granted by role R
Users set of all users

UserRoles(U) set of roles user U is authorized to occupy

Figure 8.5: Terms for Formulating RBAC Constraints

Role inheritance relation ⊏ is not strictly necessary for defining the set of
privileges associated with a session. We would obtain the same set privs(S) of
privileges for each session S simply by augmenting RolePrivs based on the role
inheritance relations. The implicit granting of privilege through role inheritance
is valuable for system administration, though. When R ⊏ R′ holds, a change
to RolePrivs(R) not only changes what privileges are granted to occupants of
role R but automatically changes what privileges are granted to occupants of all
roles R′ satisfying R ⊏ R′. The same effect is impossible to achieve by analyz-
ing and updating the RolePrivs(R′) sets. Without the specification of all role
inheritance relations, a system administrator cannot infer from RolePrivs(R′)
whether role R′ satisfies R ⊏ R′. Yes, the administrator could check whether
R′ satisfies RolePrivs(R) ⊆ RolePrivs(R′). But RolePrivs(R) ⊆ RolePrivs(R′)
might hold either because R ⊏ R′ holds or because roles R and R′ coincidentally
authorize overlapping privileges. And without knowing whether a role inheri-
tance relation R ⊏ R′ is intended, a system administrator cannot know whether
to change RolePrivs(R′) when changes to RolePrivs(R) are made.

Constraints. Separation of duty and other policies that restrict mutual oc-
cupancy of roles are specified within RBAC by giving constraints. Each con-
straint is a Boolean expression formulated using the terms given in Figure 8.5.
An RBAC implementation is expected to block any action that, if allowed to
proceed, would invalidate any of the constraints.

The constraint to specify that any user authorized to occupy role R is not
authorized to occupy R′ and vice versa would be:

(∀U ∈ Users ∶ R ∉ UserRoles(U) ∨R′ ∉ UserRoles(U)) (8.13)

A weaker separation of duty policy is defined by constraint

(∀S ∈ A∶ R ∉ ρ(S) ∨R′ ∉ ρ(S)) (8.14)

since it excludes users from occupying roles R and R′ within a single session but
does not prevent a user from occupying roles R and R′ in separate, concurrent

March 2014 Copyright Fred B Schneider All rights reserved

222 Chapter 8. Mandatory Access Control

sessions; the following constraint does.

(∀S,S′ ∈ A∶ µ(S) = µ(S′) ⇒ (R ∉ ρ(S) ∨R′ ∉ ρ(S′))) (8.15)

Notice, however, that (8.15) achieves the desired effect only if µ(S) ≠ µ(S′) im-
plies that sessions S and S′ are instigated by different individuals. The sound-
ness of that assumption depends both on the means by which individuals are
authenticated and on the enrollment protocol employed to register new users
(where each individual’s identify presumably would have been authenticated).

Role inheritance brings an additional complication for separation of duty
policies. Because a user occupying one role now could also be granted privileges
from another role, separation of duty policies for occupancy of roles do not
necessarily impose separation of duty for granting of privileges. Separation of
duty for privileges can be achieved by adding constraints, though. For example,
we specify that a privilege p is granted to only a single user at any time (without
identifying what user or restricting which privileges various roles grant) with the
following constraint.

¬(∃S,S′ ∈ A∶ µ(S) ≠ µ(S′) ∧ R ∈ ρ∗(S) ∧ R′ ∈ ρ∗(S′)
∧ p ∈ RolePrivs(R) ∧ p ∈ RolePrivs(R′))

(8.16)

Besides specifying separation of duty policies, constraints can offer a way to
incorporate user attributes or system state into access control decisions. The
following constraint restricts occupancy in a role R to occur during normal
working hours

(∀S ∈ A∶ R ∈ ρ(S) ⇒ 0900 ≤ time ≤ 1700) (8.17)

if variable time evaluates to the current time. And given a function locate(U)
that evaluates to the current location of a user U , the following constraint
restricts occupancy in R to those users working at the office (versus, say, at
home or at an Internet cafe).

(∀S ∈ A∶ R ∈ ρ(S) ⇒ locate(µ(S)) = office) (8.18)

Easily specified does not mean easily enforced. RBAC constraints are typi-
cally enforced by using a reference monitor. This reference monitor must inter-
cept and block all events that, if allowed to proceed, would falsify any constraint.
Enforcement of a constraint now depends on the feasibility of intercepting rele-
vant events. Certain events are cheap to intercept because they involve execution
within the operating system:

• system administrator commands to change the sets of users or roles, the
roles each user is authorized to occupy, the privileges associated with each
role, and the role inheritance relation;

• system calls that allow a user to instigate/terminate a session or to en-
ter/exit occupancy in a specified role within a session.

March 2014 Copyright Fred B Schneider All rights reserved

Exercises for Chapter 8 223

Moreover, we might reasonably expect that these events are the sole means for
causing the terms in Figure 8.5 to change value at run-time.

So a reference monitor incorporated into the operating system can be used
to support constraints (8.13) – (8.16). Enforcement of a constraint becomes
problematic if it depends on functions (e.g., time and locate(⋅)) that change
value undetectably or too frequently for the the reference monitor to be invoked.
Although (8.17) can be enforced by scheduling timer-interrupts that invoke the
reference monitor at 0900 and 1700, other constraints involving time might
require more frequent checking than would be practical. And enforcement of
constraints involving location might well be completely infeasible.

Exercises for Chapter 8

8.1 Instead of using pairs, we might define a label L to be a set {L1, L2, . . . , Ln}
of pairs, where each Li = ⟨Si,Ci⟩ comprises a sensitivity Si and a (single) com-
partment Ci.

(a) Define an ordering relation on this new kind of label and argue that your
proposal is sensible.

(b) Compare the expressive power of this new kind of label with the labels DoD
uses, assuming that the same sets of sensitivity labels and compartments
are used in both schemes.

8.2 Two kinds of processes access a database that is stored in a file F . A reader
process issues reads; a writer process issues both reads and writes. Let R1, R2,
..., Rn denote the reader processes and let W1, W2, ..., Wn denote the writer
processes. The readers and writers are disjoint, and the MLC restrictions for
Multi-level File Confidentiality are enforced. What properties must be satisfied
by classification labels for F , the reader processes, and the writer processes if
we wish to enforce:

• readers cannot convey content to writers or other readers, and

• writers can convey content to readers and to writers.

Justify the need for these restrictions.

8.3 AppropriateTube is building software to enable creation and dissemination
of videos for children. Two pieces of meta-data characterize who may view
each video: Age, measured as years since birth, defines the minimum age of
an appropriate viewer; content is summarized by a set containing some of the
following content-descriptors:

Alcohol, Bambi, BarbieAndKen, Barney, Disrespect, Evolution, IntelligentDesign,
Sexuality, TeddyBears, VerbalAbuse, Violence.

The system envisaged by AppropriateTube will work as follows.

March 2014 Copyright Fred B Schneider All rights reserved

224 Chapter 8. Mandatory Access Control

– A web site (www.NoOffense.com) will store videos that users con-
tribute. Meta-data that is stored for each video gives an age and
content-descriptors. The age is the minimum recommended age for
viewers; the content-descriptors summarize what the video contains.

– A browser app will enable parents to upload new videos. The app
queries the user for age- and content-descriptor meta-data. Parents
are assumed to be truthful when answering these queries.

– A combine-videos browser app will enable users to create a mash-up
of videos already stored by www.NoOffense.com; that mash-up is then
stored at www.NoOffense.com. The app automatically generates age
and content-descriptor meta-data for the mash-up and stores that
information along with this new video.

– A video-viewer browser app will allow users to watch videos stored
by www.NoOffense.com. The app reads a configuration file stored in
the home directory of the user (presumed to be a child or adult) who
is running the app. This configuration file gives the birth year of
the user and gives a list of content-descriptors for videos the user
is allowed to see. The app displays only those videos that are age-
appropriate and belief-appropriate for the use.

(a) Give rules for how the meta-data for a mash-up should be produced by
the combine-videos app.

(b) Give rules for how the meta-data for each video should be used by the
video-viewer app.

8.4 Sometimes individual data are less sensitive than their aggregations. Sup-
pose that a database comprises a number of datasets. Further, suppose that
each dataset and database D has a label L(D) that ranges over traditional sen-
sitivity labels U, C, S, or TS. So we might have L(A) = U and L(B) = U for
datasets A and B but L(R) = S for an aggregation R derived from A and B.
We write R = {A,B} to specify that an aggregation R is derived from A and B,
where we expect:

L({A}) = L(A) for every dataset A

L(R) ⊆ L(R′) if R ⊆ R′

(a) Give a real-world example of a fixed collection of datasets and aggregations
in which some aggregation is more sensitive than any of its constituents.

(b) Suppose a program performs (i) reads on datasets and aggregations, and
(ii) reads and writes on a fixed set of objects, where L(Obj) denotes the
fixed label assigned to object Obj . Exhibit a sequence of reads and writes
involving some set of objects along with the datasets and aggregates you
give in (a). The sequence should violate the policy

March 2014 Copyright Fred B Schneider All rights reserved

Exercises for Chapter 8 225

Label L(Obj) on each object Obj is not less sensitive than the infor-
mation Obj

even though all reads and writes satisfy MLFC Read Restriction and
MLFC Write Restriction.

(c) Suppose labels are sets of names for datasets and objects instead of being
distinguished names U, C, S, or TS. Give restrictions on reads and writes
(analogous to MLFC Read Restriction and MLFC Write Restriction) that
enforce the following policy.

Information written into an object Obj must be derived from datasets
and objects having names that appear in L(Obj).

8.5 Multi-level Confidentiality for Computers (§8.1.1) assumes that a read or
write operation will be blocked if it violates MLFC Read Restriction or MLFC
Write Restriction. Suppose, instead, that such an access attempt returns an
error message, and assume that an attempt to access a file that does not exist
returns the same message. We wish to support an additional operation

createFile(FName,Lab)

whose execution creates a new empty file that is named FName and has label
Lab.

(a) What, if any, rules about labels should be imposed on execution of reads,
writes, and createFile to ensure that classified information cannot be
leaked?

(b) Suggest error messages to be returned by createFile for the following two
cases: (i) the rule suggested in (a) is not satisfied, (ii) the rule suggested
in (a) is satisfied but a file named FName already exists. Give a rationale
for the wordings you propose.

8.6 A new scheme has been proposed for implementing Multi-level Confiden-
tiality. In this scheme, labels on files and programs may be changed at any time
according to the following rules.

File Label Change. Label L(F) on a file F (i) can be increased or (ii)
can be decreased to the largest label on any item that has been written
so far to that file.

Program Label Change. Label L(Pgm) on a program Pgm (i) can be
increased or (ii) can be decreased to the largest label on any item that has
been read so far by that program.

Instead of MLFC Read Restriction and MLFC Write Restriction, reads and
writes are governed by:

March 2014 Copyright Fred B Schneider All rights reserved

226 Chapter 8. Mandatory Access Control

• If L(F) ⪯ L(Pgm) holds then a write to file F by Pgm is a no-op rather
than causing execution of Pgm to be blocked or terminated; otherwise the
write is allowed to proceed.

• If L(Pgm) ⪯ L(F) holds then a read to file F by Pgm returns the error
message “file unavailable” instead of returning the contents of F ; otherwise
the read is allowed to proceed.

Is it possible for Pgm to learn whether the contents of a file F satisfy some given
predicate, even though L(Pgm) ⪯ L(F) holds? If so, give a scenario—the files,
their labels, and the sequence of reads and writes that constitutes the attack; if
not, give an argument that explains why the information cannot be learned by
Pgm.

8.7 Suppose the MLFC Write Restriction were replaced by:

Revised MLFC Write Restriction. L(Pgm) = L(F) must hold for a
program Pgm to write into a file F information that Pgm has read.

A program now can read anything it writes, so the program can confirm that its
writes are successful. However, some writes that would be permitted by MLFC
Write Restriction—namely, writes to files that have higher classifications—are
no longer be permitted. Can a program that satisfies MLFC Write Restriction
be compiled mechanically to a program or set programs that together (i) satisfy
Revised MLFC Write Restriction and (ii) exhibits no loss of security?

8.8 Let GF be a function whose output to file F is inherently more sensitive
than the classification label assigned to any file it reads. Comment on the
likely rationale for satisfying MLFC Computation Restriction by using each of
the following strategies. Also comment on the long-term practicality of the
proposed approach.

(a) Require that files read by GF have classification labels that are higher
than their content warrants.

(b) Require that GF read and ignore input from an additional file that has
a classification at the same level as the output that will be produced by
GF .

8.9 The restrictions in §8.1.1 for confidentiality and §8.1.2 for integrity are
formulated for a single monolithic program. Systems typically comprise multiple
programs, where one program might call another and await the results. We wish
to allow the label on a calling program Pgm to be different from the label on the
program Pgm′ it calls. Assume Pgm is executing for some user U having clearance
L(U).

(a) What restrictions must L(U), L(Pgm), and L(Pgm′) satisfy to ensure that
a user U can learn the contents of only those flies F where L(F) ⪯ L(U)
holds. Give evidence that your restrictions are necessary.

March 2014 Copyright Fred B Schneider All rights reserved

Exercises for Chapter 8 227

(b) What restrictions must L(U), L(Pgm), and L(Pgm′) satisfy to ensure that
a user U can update the contents of only those files F where L(F) ⪯ L(U)
holds. Give evidence that your restrictions are necessary.

8.10 One proposal for ensuring that MLFC Computation Restriction always
holds is to make conservative choices for classifications assigned to files that
provide inputs to GF . Suppose that L(F) = ⟨SF ,CF ⟩ holds and the inputs
to GF are from files F1, F2, ..., FN . Under this proposal, the classifications
L(Fi) = ⟨Si,Ci⟩ assigned to each input files Fi would satisfy

SF ≤ max(S1, S2, ...SN)
CF ⊆ (∪1≤i≤N Ci)

and therefore L(F) ⪯ L(Fi) for 1 ≤ i ≤ N . Discuss the utility of the proposed
scheme.

8.11 Discuss which of the following would need to be a trusted subject in a
system that enforces the restrictions of §8.1.1 for supporting Multi-level File
Confidentiality Policy under some suitable label scheme.

(a) A component that reads from secret files that contain votes cast by indi-
viduals and writes the majority choice to some different output file that
can be read by all.

(b) A component that copies files having differing labels from one directory
to another.

(c) A printer daemon that routes file contents to printers in different locations,
where the location selected depends on the file’s label.

(d) A database system that reads a table containing all student grades and
produces a file containing only those grades that a specific student has
received on assignments and exams.

8.12 Consider a system that enforces multi-level integrity. Suppose an attacker
that can login to that system will be assigned a clearance that has a low trust-
worthiness (e.g., R or P). The attacker wishes to block bona fide users from
accessing files.

(a) How would an object low-water mark policy help or hinder the attacker?
Explain the attack if you believe one is possible.

(b) How would a subject low-water mark policy help or hinder the attacker?
Explain the attack if you believe one is possible.

8.13 Give a DTE specification for the following policies by defining domains,
types, and an access matrix for Auth. Assume a simplified form of multi-level
confidentiality with labels S (secret) and P (public), where P ⪯ S. Also assume
the usual rules for access to data by users and their applications—“no read-up”
and “no write-down”.

March 2014 Copyright Fred B Schneider All rights reserved

228 Chapter 8. Mandatory Access Control

(a) A logging service with clearance S that reads files with classification S and
writes sanitized information to a log file with classification P.

(b) A labeling service that reads files having any clearance and writes that
input back, except every paragraph in the output is prefixed by the clas-
sification label of the input file.

(c) A printer service that receives files having any clearance, sends them to
an appropriate printer-driver based on the file’s clearance (so files with
classification S are printed in a room that is only open to users with
clearance S), and replies with an acknowledgment.

8.14 An implementation of DTE is being contemplated. The designer has
decided to implement Auth by using capabilities. Various implementations of
capabilities are given in §7.3. Discuss the suitability of each.

8.15 Consider a DTE access matrix that assigns read and write privileges.

(a) Give an example matrix that cannot be simulated by using a set of rules
that govern domains performing read and write operations on objects,
where these rules depend only on the clearance of a domain, the classifi-
cations of the object, and labels that are partially-ordered.

(b) Given a general characterization of matrices that cannot be simulated.

8.16 CW Read Restriction and CW Write Restriction depend on relation /∼
being static, which is equivalent to assuming that no company’s competitors
ever changes.

(a) What business events cause this assumption to be violated?

(b) Under what conditions could two companies c and c′ become competitors
without violating the Chinese Wall for any employee? Justify your answer.

(c) Under what conditions could two companies c and c′ cease being competi-
tors without violating the Chinese Wall policy for any employee? Justify
your answer.

8.17 Suppose all of the employees of a consultancy are replaced by programs
that are autonomously and spontaneously executed. These programs read and
write files associated with various client companies but do not generate other
outputs. We remain concerned that information in records from one company is
not reflected in updates to files associated with competitors. Assume, however,
that an executing program can perform a forget(c) operation, which deletes all
information about company c from that program’s memory.

(a) Exhibit a sequence of program operations that ought to be permitted
because forget(c) operations are performed but would not be permitted if
forget(c) operations were not available.

March 2014 Copyright Fred B Schneider All rights reserved

Exercises for Chapter 8 229

(b) Discuss how to weaken CW Read Restriction and CW Write Restriction
to accommodate execution of forget(c) operations.

8.18 CW Read Restriction and CW Write Restriction together assume that
a set (viz. CR(e)) is stored per employee, but no metadata is stored for each
file. We now explore more permissive restrictions on execution that depend on
maintaining a set per file.

(a) Give weaker restrictions for read and write operations assuming that per-
employee and per-file sets are being maintained. Explain what information
the per-file set contains and how that information might be kept current
in an implementation.

(b) Prove that the restrictions proposed in (a) ensure security goal (8.9) holds
throughout execution.

(c) Is there a sequence of reads and writes that are permitted by the new re-
strictions proposed in (a) but are not permitted by CW Write Restriction?
If so, give it.

(d) Is there a sequence of reads and writes that are permitted by the new re-
strictions proposed in (a) but are not permitted by CW Read Restriction?
If so, give it.

8.19 CW Write Restriction rules out executions that do not violate security
goal (8.9). An obvious question is whether general schemes exist that are less
restrictive. At a minimum, we might expect an improved scheme to satisfy the
following properties.

• An employee e is not blocked from reading a file unless that access causes
security goal (8.9) to become false.

• Some employee can write to at least two files, each associated with a
different company.

• Future read or write actions an employee undertakes depend only on in-
formation the employee read at some point in the past.

Prove that such an improved scheme cannot exist by showing that for any
scheme satisfying the above properties:

An employee e1 satisfying c1 ∈ R(e1) necessarily can receive information
owned by company c2 from an employee e2 satisfying c2 ∈ R(e2) where c1
and c2 are competitors.

8.20 CW Read Restriction and CW Write Restriction require that a set CR(e)
be maintained at run-time for each employee e. An alternative is to predefine
fixed sets CR(e) and CW (e) of companies that are initially and permanently
assigned to each employee e, authorizing e to read only those files associated
with the companies in CR(e) and to write only those files associated with the
companies in CW (e).

March 2014 Copyright Fred B Schneider All rights reserved

230 Chapter 8. Mandatory Access Control

(a) What condition(s) must CR(e) and CW (e) satisfy to ensure that employee
e does not violate security goal (8.9)?

(b) Is there a condition involving all of the CR(e) and CW (e) sets that ensures
security goal (8.9) is preserved and that could allow executions ruled out
by the test you proposed in (a)? Give the condition and give a scenario
that is allowed by this global condition but is not allowed by the condition
you proposed in (a).

8.21 For each transformation procedure tp in Figure 8.4:

(a) state what is pre(tp) for implementing the desired sequencing of purchase,
orderRcvd , then invRcvd .

(b) explain what code, if any, in tp falsifies pre(tp), and

(c) explain what code, if any, in tp makes pre(tp′) true, where tp′ is the
transformation procedure that is next in the sequence being imposed.

8.22 Explain how the set of transformation procedures in Figure 8.4 defend
against the following kinds of fraud.

(a) An untrustworthy employee in the front office getting paid by issuing a
purchase order to a fake company, delivering no goods, and later submit-
ting an invoice against that purchase order.

(b) An untrustworthy employee on the loading dock accepting a delivery but
not invoking orderRcvd , thereby allowing the delivered goods to be stolen
instead of transferred into inventory.

(c) A dishonest supplier delivering goods that had not been ordered but are
nevertheless accepted, thereby creating grounds to be paid.

(d) An untrustworthy supplier or an accomplice in the billing department sub-
mitting a second invoice against a given purchase order, thereby creating
grounds to be paid double.

8.23 Compare and contrast each of the following with the role construct that
RBAC offers.

(a) Groups, often available for assigning privileges to named sets of users in
connection with access control lists.

(b) Compartments, part of the DoD labels used in supporting authorization
based on need-to-know.

8.24 For each of the following, either give a scenario where the formula does
not hold or give a proof that the formula always holds. Recall that ⊏ signifies
role inheritance.

(a) R ⊏ R

March 2014 Copyright Fred B Schneider All rights reserved

Exercises for Chapter 8 231

(b) (R ⊏ R′ ∧R′ ⊏ R′′) ⇒ R ⊏ R′′

(c) R ⊏ R′ ⇒ RolePrivs(R) ⊆ RolePrivs(R′)

(d) (µ(S) = µ(S′) ∧ ρ(S) ⊆ ρ(S′)) ⇒ ρ∗(S) ⊆ ρ∗(S′)

(e) (µ(S) = µ(S′) ∧ ρ(S) ⊆ ρ(S′)) ⇒ privs(S) ⊆ privs(S′)

8.25 The following constraint has been suggested for specifying that privilege
p is available only to occupants of one role (without stipulating which role).

(∀R,R′ ∈ Roles ∶ p ∉ RolePrivs(R) ∨ p ∉ RolePrivs(R′))

Does it achieve the desired effect? If not, explain the problem and give a con-
straint that does achieve the desired effect.

8.26 Give RBAC constraints to enforce the following separation of duty poli-
cies.

(a) At most one user is occupying role R at any time.

(b) At most n users are occupying role R at any time.

(c) EK is the only user that ever occupies role R.

(d) Only one user ever occupies role R.

(e) Roles R and R′ are never both occupied at the same time, even by different
users.

8.27 Describe the users, roles, permissions, role inheritance, and constraints
for each of the following systems.

(a) A course web site that serves notes, problem sets, solution sets, and grades
on assignments and exams.

(b) A bank information system that serves information about customer ac-
counts as well as directory and payroll information about the staff.

(c) A hospital information system that serves patient health records, patient
billing information, directory and payroll information about the staff, pur-
chase orders and inventory of drugs and other supplies.

8.28 Is it possible to enforce Multi-level Document Confidentiality Policy
(page 196) using role-based access control? Explain why not or describe the
implementation.

8.29 What events must be detected and possibly blocked by a reference monitor
in order to ensure that each of the following constraints is enforced. For each,
describe the minimal set of checks that the reference monitor must make.

(a) (∀U ∈ Users ∶ R ∉ UserRoles(U) ∨R′ ∉ UserRoles(U))

March 2014 Copyright Fred B Schneider All rights reserved

232 Chapter 8. Mandatory Access Control

(b) (∀S ∈ A∶ R ∉ ρ(S) ∨R′ ∉ ρ(S))

(c) (∀S,S′ ∈ A∶ µ(S) = µ(S′) ⇒ (R ∉ ρ(S) ∨ R′ ∉ ρ(S′)))

(d) (∀S,S′ ∈ A∶ locate(µ(S)) = locate(µ(S′)) ⇒ (R ∈ ρ(S) ∨ R ∈ ρ(S′)))

Notes and Reading

Security policies that are institutionally imposed—our sine qua non for a manda-
tory access control policy—have a long history. Double-entry bookkeeping (an
integrity policy) was being used in Venice when Pacioli [14] described this prac-
tice in 1494. Secrecy, however, has been the bigger concern, both for pre-
serving technological superiority and for creating surprise. During the Bronze
age, Greek city states kept secret the recipe for a napalm-like burning mixture
(“Greek Fire”) their ships in combat would catapult onto an adversary’s to
wreak havoc. And Sun Tzu’s The Art of War [36], written in 300 BC, advo-
cates a secrecy policy when it opines that “the formation and procedure used
by the military should not be divulged beforehand”. Outside of the military, we
find medieval guilds imposing secrecy policies that prevent nonmembers from
learning skills needed to enter certain occupations. We also find enterprises
throughout history maintaining trade secrets either to protect a competitive
advantage or to secure a first-mover advantage through surprise.

The term “mandatory access control” is used in the Orange Book [15,
§3.1.1.3] to name authorization policies where access to objects by principals
is based on labels assigned by authorized principals. These labels must be
“a combination of hierarchical classification levels and non-hierarchical cate-
gories” [15, §3.1.1.4]. So the scheme codifies the computerization of (paper)
document-classification that was then in use by the U.S. government for pro-
tecting confidential information. Quist [32, chapter 2], drawing heavily from an
unpublished manuscript by Patterson [30], chronicles the precursors and devel-
opment of U.S. document-classification schemes, which were derived from the
British circa 1917.27

Britain in fact had all of the elements for a modern document-classification
scheme in place by late in the 19th century. Prior to the Crimean War (1853–
1856), the British War Office had been marking documents that should be kept
confidential, and by 1894 British Army regulations were distinguishing between
markings “Secret” and “Confidential” each of which imposed specific rules for
handling and disclosure. An early version of “need to know” appears in an 1868
publication of British Army regulations:

Access to official records is only permitted to those who are entrusted
with the duties of the office or department to which they belong...

27The current U.S. document-classification scheme is described in Executive Order
13526 [28] signed by President Barack Obama in December 2009. It is the most recent in
a series of Executive Orders concerned with U.S. document classification, starting with Exec-
utive Order 8381 [33] signed by President Roosevelt in March 1940 [32, chapter 3].

March 2014 Copyright Fred B Schneider All rights reserved

Notes and Reading 233

Peacetime classification of information in Britain commenced with an 1866 re-
port on mines and torpedoes—new technologies that, if known by an adversary,
might disrupt the Royal Navy’s superiority.

Publication of the Orange Book punctuated a process that began once the
U.S. Department of Defense (DoD) started to contemplate moving classified
information onto time-sharing systems. An early and widely-cited articulation
of the issues appears in the 1970 report [38] from a committee chaired by Ware
and convened in Fall 1967 under the auspices of the Defense Science Board.28

Computers back then were expensive and, thus, had to be shared. So for storing
classified documents, DoD required

• a system that could support concurrently logged-in users having different
clearances and accessing objects that had different classifications, and

• an assurance argument to establish that the system’s access controls could
not be circumvented either by bona fide users or by outsiders.

The Adept-50 time-sharing system [39] was an early and notable attempt
to address these DoD needs. That system, which was operational by 1969,
was developed at System Development Corporation (SDC) under an ARPA29

contract. The authorization policy Adept-50 enforced was based on a high-water
mark that the system maintained for each process. This high-water mark was
initialized to a value below both (i) the clearance held by the user that started
the process and (ii) the label assigned to the terminal that was attached to the
process. A read would be permitted by a process if its high-water mark was
greater than the label on the file being read. A write by a process would set
label L(F) on the file F being written to the current value of the high-water
mark for the process. Adept-50 also supported a change command for reducing
the security label associated with an object. By executing change, a program
running in Adept-50 could exfiltrate classified information—read it from one
file, write it to another file (causing the file’s label to be set appropriately), and
then invoke change to decrease the label on that output file so the classified
information now could be read by any process.

Frustrated by a lack of progress in creating secure time-sharing systems,
USAF Major Schell commissioned a study, chaired by Glaser (at Case Western
Reserve University), to propose a research and development plan. That commit-
tee’s final report [1], published in 1972, is today known as the Anderson Report,
named after the committee member who managed the study and did a lot of the
writing. The report advocates (among other things) that a small security kernel
be the only software involved in enforcing a system’s authorization policies—an
architecture that Schell had been advocating to replace the prevailing view that

28Much has been written about this early history. Mackenzie and Pottinger [25] is an
excellent reference.

29The Advanced Research Projects Agency (ARPA) was created in 1958 to fund research in
support of DoD and, thereby, help to avoid technological surprise. ARPA is the predecessor of
today’s Defense Advanced Research Projects Agency (DARPA), which remains a significant
source of funds for U.S. computer science research.

March 2014 Copyright Fred B Schneider All rights reserved

234 Chapter 8. Mandatory Access Control

extant time-sharing systems could simply be augmented with further checks.
Only with a small security kernel would thorough analysis and testing be possi-
ble, thereby providing an assurance argument for the enforcement mechanism.
An assurance argument for the entire time-sharing system then would be ob-
tained by combining the assurance for the enforcement mechanism with a proof
that the authorization policy30 implies the intended security properties. The
Anderson Report also popularized the term Trojan horse, which its appendix I
“Security threats and penetration techniques” attributes to Dan Edwards, who
has NSA’s representative to committee.

Two research groups were subsequently funded to develop formal models,
define security policies, and prove these polices ensured that information labeled
as classified could not be read by users lacking suitable clearances. Bell and La
Padula, working at MITRE, published their proposal in 1973 [6, 5]; it became the
basis for virtually all DoD computer security work for the next decade. Walter
et al., working at Case Western University, independently developed essentially
the same restrictions (couched in terms of repositories and agents rather than
files and processes) and published their work [37] a few months later. The rules
we give in §8.1.1 for enforcing multi-level confidentiality are based on Feiertag
et al. [16], which gives a succinct reformulation of Bell and La Padula [6, 5].
Our MLFC Computation Restriction and the analysis that supports it are new,
although Landweher’s 1981 survey [22] notes that aggregations could warrant
a higher classifications than their components. Landwehr [22] is also worth
studying to position Bell and La Padula’s work relative to other (early) formal
models for computer security.

Trusted subjects were proposed in Bell and La Padula [7], which extends
[6, 5] for a secure Multics [29]. (Walter et al. [37] is credited with developing
the access policy given there for Multics tree-structured directories. These files
have a specific semantics and thus warranted special treatment.) Bell and La
Padula [7, section IV] also identified some limitations with the definition of
security in [6, 5], which ignored covert timing channels, information corruption,
and denial of service.

An attempt by Landwehr, Heitmeyer, and McLean [23] at the Naval Re-
search Laboratory to establish security of a military-message system exposed
other problems with the Bell and La Padula [7] model. They found that ex-
tensive use of trusted subjects was required for this application. But that
meant the “Basic Security Theorem” proved in Bell and La Padula [7] said
little about whether the intended security policy was actually being enforced—
message security depended on what the trusted subjects did, yet trusted subjects
could do anything in the Bell and La Padula [7] model. From this experience,
Landwehr et al. [23] concludes that security policies must be formulated for spe-
cific applications rather than being formulated in terms of a pre-determined set
of application-independent abstractions supported by a general-purpose secure
computing system.

30The authorization policy here is presumed to be specified in terms of some formal model
of the security kernel.

March 2014 Copyright Fred B Schneider All rights reserved

Notes and Reading 235

McLean’s further criticisms [26] of the “Basic Security Theorem” and his
infamous system Z, which automatically declassified objects to make all read
and write access requests appear legal [27], led to heated debate [4]. The same
“Basic Security Theorem” proved in Bell and La Padula [7] for Multics could be
proved for system Z. That observation raised questions about assurance that
the “Basic Security Theorem” actually provided, and it called attention to the
necessity of a Tranquility Assumption.

Biba [8] proposed the rules in §8.1.2 for integrity of labeled data, remarking
that these rules are the “compliment” or “dual” of the Bell and La Padula
rules [6, 5] for protecting confidentiality of labeled data: MLFI Write Restriction
and MLFI Read Restriction are just MLFC Write Restriction and MLFC Read
Restriction with “read” and “write” interchanged. Although Biba [8] does not
explore the mathematics of this connection between integrity and confidentiality,
it does have a mathematical basis. The confidentiality labels used by Bell and
La Padula [6, 5] form a lattice, and this lattice is the dual of the lattice of
integrity labels employed by Biba [8], because relation ⪯I for integrity is the
inverse of relation ⪯ for confidentiality.

Use of an access matrix for specifying MAC policies was originally proposed
by Boebert and Kain [9, 10] for implementing authorization in Sidewinder, a
system purportedly being developed to execute Ada31 programs securely.32 The
scheme, called type enforcement, was a radical (and politically perilous, given
their source of research funding) break with the Orange Book’s dogma, although
it was entirely consistent with lessons reported by Landwehr, Heitmeyer, and
McLean [23] from the military-message system. No longer would trusted sub-
jects be needed to sidestep the restrictions on read-up and write-down, which
meant type enforcement supported assurance by mechanism rather than by fiat.
Moreover, (i) type enforcement provided means to arrest the tendency for la-
bels on data to drift ever higher, (ii) the Principle of Least Privilege could be
enforced for programs that required the ability to read-up or write-down, and
(iii) information could be forced to traverse prescribed pipelines of programs.
Domain and type enforcement [2] was obtained by augmenting type enforcement
with a level of abstraction to facilitate a UNIX implementation that would be
backward compatible and would be easy to administer; SELinux [31] today
continues to support the approach.

As noted earlier, the Orange Book was developed under the auspices of DoD.
Lipner [24] in 1982 gives the first indications that its approach to authorization
might not be a panacea, because commercial institutions have different computer
security needs than military institutions. But a 1987 paper [12] by Clark (a

31Ada was a programming language developed under the auspices of DoD. Standardizing
on a well designed language was expected to reduce costs and increase reliability of embedded
and real-time software.

32Sidewinder actually was intended to defend against supply-chain attacks hosted in a per-
sonal computer that would be executing high-grade cryptographic routines and serve as a
frontend to a Multics system. With such a frontend, the Multics system no longer had to
be trusted to ensure that messages it sent could not be intercepted and read by attackers.
McAfee Firewall Enterprise is Secure Computing’s Sidewinder product. (Secure Computing
was acquired by McAfee in 2008.)

March 2014 Copyright Fred B Schneider All rights reserved

236 Chapter 8. Mandatory Access Control

computer scientist) and Wilson (an accountant) is where that discrepancy is first
forcefully argued. Completely different forms of malfeasance (e.g., fraud and
error, rather than disclosure) are the primary concern outside of the military;
the Orange Book’s partially ordered labels are not a useful basis for access
control, here.

Clark and Wilson [12] puts the research community on notice—multi-level se-
curity is not the only kind of MAC but just one kind, and a new (or significantly
revised) Orange Book would be needed to support commerce. Further corrobo-
ration for this thesis comes with the publication of Brewer and Nash [11], which
introduces computer security researchers to yet another useful class of MAC
policies for commercial institutions. These Chinese Wall policies are not only
orthogonal to the multi-level security described in the Orange book but they
differ from the commercial policies of Clark and Wilson [12].

Chinese Wall33 policies were originated by U.S. investment-industry regula-
tors following the 1929 stock market crash that began the Great Depression. A
so-called Chinese Wall gave the public assurance that a brokerage was being pre-
vented from profiting at the expense of its customers. Separation of duty, in fact,
had already enjoyed a long history in governance, where it is called “separation
of powers”. The U.S. Constitution (drafted in 1789), for example, stipulates a
tripartite structure comprising a legislative branch (to make laws), an executive
branch (to enforce laws), and a judiciary branch (to interpret laws). Tripartite
governing structures, which is attributed to the Age of Enlightenment political
philosopher Baron de Montesquieu [13], had earlier been adopted by the Dutch
and English. Still further back, we see governments of the Roman Republic
and Greek city-states in antiquity employing separation of powers. Among the
earliest discussions of separation of duty in connection with computer security
is the “separation of privilege” principle discussed in Saltzer and Schroeder [34],
which credits a 1973 conversation with Roger Needham.

The other defenses Clark and Wilson [12] suggests—audit and the use of
well-formed transactions—derive from classic accounting controls, which date
back to the beginnings of commerce and taxation. The Egyptians and Baby-
lonians employed audit schemes to keep track of warehouse contents so they
could reconcile inventory with deposits and withdrawals. And by the 1400’s,
various methods were in use for keeping records in banking houses. Double-entry
bookkeeping was among these; it implements an append-only log by stipulating
(i) that entries be in ink, hence permanent, and (ii) that erroneous entries be
corrected not by removing or changing them but by making further compensat-
ing entries. Double-entry bookkeeping also implements a general framework for
defining well-formed transactions in support of virtually all of today’s business
activities.

Early operating systems did not support roles per se. However, early systems
did support groups, and groups (like individuals) were principals that could be
assigned privileges. Some systems only supported a predefined set of groups;

33The term is attributed to U.S. President Franklin D. Roosevelt who, shortly after he was
elected in 1933, used the phrase “Chinese wall of silence” to describe the isolation being sought
for different principals within a single institution. [21, page 81].

March 2014 Copyright Fred B Schneider All rights reserved

BIBLIOGRAPHY 237

other systems allowed groups to be created and populated as needed, either by
system administrators or by users. By the mid 1980’s, Landwehr et al. [23],
for their military-message system, proposed a security model that foreshadows
modern role-based access control:

Role—the job a user is performing, such as downgrader, releaser,
distributor, and so on. A user is always associated with at least one
role at any instant, and the user can change roles during a session.
To act in a given role, the user must be authorized for it. Some roles
may be assumed by only one user at a time (e.g., distributor). With
each role comes the ability to perform certain operations.

The conclusion of Landwehr et al. [23], however, was only that different applica-
tions required different authorization policies—it did not opine about whether
roles, sessions, and constraints served well as a general-purpose model for au-
thorization.

Ferraiolo and Kuhn were the first to argue that role-based access control
would be broadly applicable. Concerns being voiced (e.g., [23, 9, 10, 12]) about
the applicability of the security model prescribed by the Orange Book, had
let Ferraiolo et al. to survey34 [18] the security needs of civilian government
agencies and commercial enterprises. The responses indicated that these non-
military institutions required means to associate privileges with roles (rather
than with individuals) and that such functionality was not easily implemented
using existing systems. A form of role-based access control thus seemed like it
would better serve those surveyed than the Orange book’s label-based rules or
than Clark and Wilson’s transformation procedures.

An initial proposal by Ferraiolo and Kuhn [19] focused on roles and inheri-
tance [19]; it generalized named protection domains, which had been described
in Baldwin [3] as a basis for authorization in ANSI SQL databases. Constraints
were added later [17], once roles proved inadequate for formalizing certain sepa-
ration of duty policies. Our treatment in §8.4 is derived from Sandhu et al. [35],
an early and influential effort to structure role-based access control in terms of
simpler models: RBAC 0 supports roles, sessions, and privileges; RBAC 1 adds
role inheritance to RBAC 0; RBAC 2 adds constraints to RBAC 0; and RBAC 3

combines RBAC 1 and RBAC 2. ANSI standard (INCITS 359-2004, approved
Feb 2004) evolved from RBAC 3 (see [20]). The ANSI standard is supported by
operating systems (e.g., SELinux, Microsoft’s active directory, FreeBSD) and
by database management systems (Microsoft SQL server, Oracle DBMS, SAP
R/3).

Bibliography

[1] James P. Anderson. Computer security technology planning study. Techni-
cal Report ESD-TR-73-51, Electronic Systems Division (AFSC), Hanscom

34The study covered 28 organizations, including 17 federal agencies, 10 corporations, and 1
state agency.

March 2014 Copyright Fred B Schneider All rights reserved

238 BIBLIOGRAPHY

Field, Bedford, MA, October 1972.

[2] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and
Sheila A. Haghighat. Practical domain and type enforcement for Unix.
In Proceedings of 1995 IEEE Symposium on Security and Privacy, pages
66–77. IEEE Computer Society Press, 1995.

[3] Robert W. Baldwin. Naming and grouping privileges to simplify security
management in large databases. In Proceedings of 1990 IEEE Symposium
on Security and Privacy, pages 116–132. IEEE Computer Society Press,
May 1990.

[4] D. Elliott Bell. Concerning modeling of computer security. In Proceed-
ings of 1988 IEEE Symposium on Security and Privacy, pages 8–13. IEEE
Computer Society Press, 1988.

[5] D. Elliott Bell and Leonard J. La Padula. Secure computer systems: A
mathematical model. Technical Report ESD-TR-73-278, Volume II, Elec-
tronic Systems Division (AFSC), Hanscom Field, Bedford, MA, November
1973.

[6] D. Elliott Bell and Leonard J. La Padula. Secure computer systems: Math-
ematical foundations. Technical Report ESD-TR-73-278, Volume I, Elec-
tronic Systems Division (AFSC), Hanscom Field, Bedford, MA, November
1973.

[7] D. Elliott Bell and Leonard J. La Padula. Secure computer systems: Unified
exposition and MULTICS interpretation. Technical Report EDS-TR-75-
306, Electronic Systems Division (AFSC), March 1976.

[8] K. J. Biba. Integrity consideration for secure computer systems. Technical
Report MTR-3153, MITRE Corporation, Bedford, MA, June 1975.

[9] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical
integrity policies. In Proceedings of the 8th National Computer Security
Conference, pages 18–27. U.S. Government Printing Office, October 1985.

[10] William E. Boebert and Richard Y. Kain. A further note on the confine-
ment problem. In 1996 International Carnahan Conference on Security
Technology, pages 198–202, 1996.

[11] David F. C. Brewer and Michael J. Nash. The Chinese Wall security policy.
In Proceedings of the 1989 IEEE Symposium on Security and Privacy, pages
206–214. IEEE Computer Society Press, May 1989.

[12] David D. Clark and David R. Wilson. A comparison of commercial and
military computer security policies. In Proceedings of 1987 IEEE Sym-
posium on Security and Privacy, pages 184–194. IEEE Computer Society
Press, 1987.

March 2014 Copyright Fred B Schneider All rights reserved

BIBLIOGRAPHY 239

[13] Baron de Montesquieu. De l’esprit des lois. Republished as Montesquieu:
The Spirit of Laws, Cambridge Texts in the History of Political Thought,
Cambridge University Press, 1989, 1748.

[14] Luca Bartolomeo de Pacioli. Summa de arithmetica, geometria, proportioni
et proportionalità. Venice, 1494.

[15] Department of Defense. Department of Defense Trusted Computer Sys-
tem Evaluation Criteria. DoD 5200.28-STD, Supercedes CSC-STD-001-83
dated 15 August 1984, Library Number S225,711.

[16] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of
a system design. In Proceedings of the Sixth ACM Symposium on Operating
Systems Principles, SOSP ’77, pages 57–65, New York, NY, USA, 1977.
ACM.

[17] David F. Ferraiolo, Janet A. Cugini, and D. Richard Kuhn. Role-based
access control (RBAC): Features and motivations. In Proceedings of 11th
Annual Computer Security Applications Conference, pages 241–248. IEEE
Computer Society Press, December 1995.

[18] David F. Ferraiolo, Dennis M. Gilbert, and Nickilyn Lynch. Assessing fed-
eral and commercial information security needs. Technical Report NISTIR
4976, National Institute of Standards and Technology, Computer Systems
Laboratory, Gaithersburg, Maryland, November 1992.

[19] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls. In
Proceedings of 15th National Computer Security Conference, pages 554–
593. National Institute of Standards and Technology, National Computer
Security Center, October 1992.

[20] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based access
control. ACM Transactions on Information System Security, 4(3):224–274,
August 2001.

[21] Anthony Hilton. City within a State: A Portrait of Britain’s Financial
World. I. B. Tauris & Company Limited, 1987.

[22] Carl E. Landwehr. Formal models for computer security. ACM Computing
Surveys, 13(3):247–278, September 1981.

[23] Carl E. Landwehr, Constance L. Heitmeyer, and John D. Mclean. A secu-
rity model for military message systems. ACM Transactions on Computer
Systems, 2(3):198–222, August 1984.

[24] Steven B. Lipner. Non-discretionary controls for commercial applications.
In Proceedings of 1982 IEEE Symposium on Security and Privacy, pages
2–10. IEEE Computer Society Press, 1982.

March 2014 Copyright Fred B Schneider All rights reserved

240 BIBLIOGRAPHY

[25] Donald Mackenzie and Garrel Pottinger. Mathematics, technology, and
trust: Formal verification, computer security, and the U.S. military. IEEE
Annals of the History of Computing, 19(3):41–59, July 1997.

[26] John McLean. A comment on the ‘Basic Security Theorem’ of Bell and La
Padula. Information Processing Letters, 20(2):67–70, February 1985.

[27] John McLean. Reasoning about security models. In Proceedings of the 1987
IEEE Symposium on Security and Privacy, pages 123–133. IEEE Computer
Society Press, May 1987.

[28] Barack Obama. Classfied national security information. Ex-
ecutive Order EO 13526, The White House, December 2009.
https://www.fas.org/irp/offdocs/eo/eo-13526.htm.

[29] Elliott I. Organick. The Multics System: An Examination of its Structure.
MIT Press, 1972.

[30] Andrew Patterson, Jr. “CONFIDENTIAL” – The beginning of defense-
information marking. Unpublished manuscript. Sterling Chemistry Labo-
ratory, Yale University, April 1980.

[31] SELinx Project. http://selinuxproject/page/Main Page.

[32] Arvin S. Quist. Security Classification of Information, Volume
1. Introduction, History, and Adverse Impacts. Technical Report
ORCA–12, Oak Ridge Classification Associates, LLC, September 2002.
http://www.fas.org/sgp/library/quist/index.html.

[33] Franklin D. Roosevelt. Defining certain vital military and naval installa-
tions and equipment. Executive Order EO 8381, The White House, March
1940. https://www.fas.org/irp/offdocs/eo/eo-8381.htm.

[34] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308, March
1975.

[35] Ravis S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E
Youman. Role-based access control models. Computer, 29(2):38–47, Feb
1996.

[36] Sun Tzu. The Art of War. Courier Dover Publications, 2013.

[37] K. G. Walter, W. F. Ogden, W. C. Rounds, F. T. Bradshaw, S. R. Ames,
and D. G. Shumway. Primitive models for computer security. Interim
Technical Report ESD-TR-4-117, Case Western Reserve University, 1974.
NTIS AD-778 467.

[38] Willis H. Ware. Security control for computer systems: Defense Science
Board Task Force on Computer Security. Technical Report R-609-1, Rand
Corporation, Santa Monica, CA, February 1970.

March 2014 Copyright Fred B Schneider All rights reserved

BIBLIOGRAPHY 241

[39] C. Weissman. Security controls in the ADEPT-50 time-sharing system. In
Proceedings of the 1969 Fall Joint Computer Conference, AFIPS Confer-
ence Proceedings, pages 119–133. AFIPS Press, 1969.

March 2014 Copyright Fred B Schneider All rights reserved

