
Chapter 9

Information Flow Control:
Basics

This chapter and the next discuss the specification and enforcement of infor-
mation flow policies. Such policies concern whether the initial values of certain
variables may directly or indirectly affect the values of certain other variables
and/or may affect program termination. The variables in an information flow
policy might correspond to regions of memory, files, input channels, or output
channels. For enforcing confidentiality, an information flow policy would specify
that values not be affected by secrets; for enforcing integrity, it would specify
that values not be affected by values derived from untrusted sources. Because
they restrict what an initial value (or input) may affect and, therefore, limit
the uses of derived values, information flow policies are said to be end-to-end.
In contrast, the authorization policies discussed elsewhere in this book restrict
access to containers, independent of contents.

9.1 Labels Specifying Information Flow Policies

An information flow policy for a program (i) gives a label assignment Γ(⋅) to
associate a label Γ(v) with each program variable v and (ii) gives a partial
order1 ⊑ (with complement /⊑) on a set Λ of possible labels, where Λ contains a
minimal element �Λ satisfying �Λ ⊑ λ for all λ ∈ Λ.

1A relation ρ on a set Vals is a subset of {⟨a, b⟩ ∣ a, b ∈ Vals}. Its complement /ρ is the
set {⟨a, b⟩ ∣ a, b ∈ Vals} − ρ. A partial order ρ on Vals is a relation on Vals that satisfies the
following properties, where (as is conventional) infix notation aρ b is used for ⟨a, b⟩ ∈ ρ.

Reflexive: a ρ a for all a ∈ Vals.
Transitive: a ρ b and b ρ c implies a ρ c for all a, b, c ∈ Vals.
Antisymmetric: a ρ b and b ρ a implies a = b for all a, b ∈ Vals.

A partial order ρ does not have to relate all pairs of elements a, b ∈ Vals, so if a /ρ b holds it
is possible that neither a ρ b nor b ρ a holds.
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244 Chapter 9. Information Flow Control: Basics

• Γ(v) ⊑ Γ(w) specifies that the initial value of variable v is allowed to affect
the value of variable w at designated points during executions.

• Γ(v) /⊑ Γ(w) specifies that the initial value of variable v is not allowed to
affect the value of variable w at designated points during executions.

What is considered a “designated point” during an execution depends on the
information flow policy. With some information flow policies, the designated
points are the final states of terminating executions; with others, the designated
points are all intermediate states produced during all executions.

For each label λ ∈ Λ, partial order ⊑ partitions the set Vars(S) of variables
in a program S into subsets

V⊑λ∶ {v ∈ Vars(S) ∣ Γ(v) ⊑ λ} V/⊑λ∶ {v ∈ Vars(S) ∣ Γ(v) /⊑ λ}

where the initial value of no variable from V/⊑λ is allowed to affect the value of
any variable from V⊑λ at designated points during an execution. Letting R(λ)
denote the restrictions imposed on access to variables that have a label λ and
letting R(λ) ⪯ R(λ′) assert that compliance with R(λ′) implies compliance with
R(λ), we have:

(∀λ,λ′ ∈ Λ∶ λ ⊑ λ′ ⇒ R(λ) ⪯ R(λ′)) (9.1)

So the restrictions being imposed on access to each variable v also apply to all
variables storing values affected by v.

An obvious question is whether enforcing (9.1) is useful. Shouldn’t ordinary
access control suffice? It doesn’t if our concern is the propagation of information.
For example, ordinary access control cannot prevent a program that is autho-
rized to read a secret variable x and to write a public variable y from copying x
to y. But an information flow policy satisfying (9.1) could prohibit such leaks.
Because Γ(x) ⊑ Γ(y) must hold for a principal to write y after reading x, from
(9.1) we conclude that restrictions on x and y must satisfy R(Γ(x)) ⪯ R(Γ(y)).
Therefore, accesses to y also must comply with R(Γ(x)). If R(Γ(x)) specifies
that only a select set of principals are allowed to read secrets and, thus, are
allowed to read x, then R(Γ(y)) cannot allow additional principals to read y,
which implies that y cannot be public.

9.1.1 Labels for Expressions

Γ(⋅) gives labels to variables, but not to expressions. The label ΓE(E) that
we associate with an expression E (i) will specify the variables and expressions
that E is allowed to affect and (ii) will specify the variables and expressions that
are allowed to affect E. Since uniary operators and infix binary operators can
be viewed as syntactic sugar for function applications, no generality is lost if
we limit consideration here to expressions constructed from constants, variables,
and function applications f(E1,E2, . . . ,En) having arguments Ei that are them-
selves expressions. For simplicity, assume that evaluating an expression always
produces some value.
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9.1. Labels Specifying Information Flow Policies 245

Constants. The label ΓE(c) that we associate with a constant c ought not
preclude an assignment statement from storing c into any variable. Therefore,
we require that ΓE(c) ⊑ Γ(v) hold for any constant c and any variable v. That
requirement leads to the definition:

ΓE(c)∶ �Λ for any constant c (9.2)

Variables. The label ΓE(v) we associate with an expression that is a variable
v should have the same restrictions as Γ(v):

ΓE(v)∶ Γ(v) for any variable v. (9.3)

Function Applications. Whether the value of f(E1,E2, . . . ,En) is affected
by the value of its argument Ei depends on f . The conservative choice for label
ΓE(f(E1,E2, . . .En)) would be a label that works for any function f . Such a
label would allow (but not require) each argument Ei to affect the value of
f(E1,E2, . . .En):

ΓE(Ei) ⊑ ΓE(f(E1,E2, . . .En)) for 1 ≤ i ≤ n. (9.4)

So satisfying (9.4) is the goal.
A value that is at least as large as any member of a set is called an upper

bound for that set; a least upper bound is an upper bound that is not larger
than any other upper bound. One way to satisfy (9.4) is by defining label
ΓE(f(E1,E2, . . .En)) to be an upper bound of set {ΓE(E1),Γ(E2), . . . ,ΓE(En)}.
Among the upper bounds, the least upper bound is the best choice for label
ΓE(f(E1,E2, . . .En)), because it allows the value of f(E1,E2, . . .En) to affect
more variables.

Least upper bounds for finite subsets {λ1, λ2, . . . , λn} ⊆ Λ having partial
orders ⊑ typically are specified by using an idempotent, commutative, and as-
sociative join operator ⊔ that satisfies the following axioms.

λi ⊑ (λ1 ⊔ λ2 ⊔⋯ ⊔ λn) for 1 ≤ i ≤ n (9.5)

(λ1 ⊑ λ ∧ λ2 ⊑ λ ∧ ⋯ ∧ λn ⊑ λ) ⇒ (λ1 ⊔ λ2 ⊔⋯ ⊔ λn) ⊑ λ (9.6)

Axiom (9.5) requires λ1 ⊔λ2 ⊔⋯⊔λn to be an upper bound for {λ1, λ2, . . . , λn},
and axiom (9.6) requires λ1⊔λ2⊔⋯⊔λn to be a least upper bound. We can ensure
that Λ contains least upper bound λ1⊔λ2⊔⋯⊔λn for any subset {λ1, λ2, . . . , λn}
of Λ simply (i) by adding to Λ an element ⊺Λ that satisfies λ ⊑ ⊺Λ for all λ ∈ Λ,
and (ii) by defining λ ⊔ λ′ to equal ⊺Λ for every pair of labels λ and λ′ where
previously λ⊔λ′ was not a member of Λ. Figure 9.1 depicts a set Λ of labels and
some least upper bounds. Notice that not all labels in Λ are related by ⊑—for
example, λ1 /⊑ λ6 holds.

Axiom (9.5) suggests that a definition for ΓE(f(E1,E2, . . .En)) satisfying
(9.4) can be constructed with ⊔. It is

ΓE(f(E1,E2, . . .En))∶ ⊔
1≤i≤n

ΓE(Ei) (9.7)
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�Λ

λ1 λ2 λ3

λ4 λ5 λ6

⊺Λ

λ4 = λ1 ⊔ λ2

λ5 = λ1 ⊔ λ3

λ6 = λ2 ⊔ λ3

⊺Λ = λ1 ⊔ λ2 ⊔ λ3

λ λ′ denotes λ ⊏ λ′

Figure 9.1: Examples of ⊔ for Λ = {�Λ, λ1, . . . , λ6,⊺Λ}

where we define

⊔
i∈I

λi∶ {
�Λ if I = ∅

λi1 ⊔ λi2 ⊔⋯ ⊔ λin if I = {i1, i2, . . . , in}
(9.8)

By combining (9.2), (9.3), and (9.7), we then get the following definition for the
label ΓE(E) given to an expression E.

ΓE(E)∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�Λ if E is a constant c

Γ(v) if E is a variable v

⊔
1≤i≤n

ΓE(Ei) if E is f(E1,E2, . . . ,En)
(9.9)

Useful corollaries of (9.9) include the following, where Vars(expr) is the set of
variables referenced in expr .

ΓE(E) = ⊔
v∈Vars(expr)

Γ(v) (9.10)

(ΓE(E) /⊑ Γ(w)) ⇒ (∃v ∈ Vars(E)∶ Γ(v) /⊑ Γ(w)) (9.11)

9.2 ΛLH : A Simple Label Scheme

The set ΛLH = {L,H} of labels, along with the partial order ⊑ and join ⊔ defined
in Figure 9.2, are often used as examples when discussing information flow
policies.

• For specifying confidentiality, variables storing public information are given
label L, and variables storing secret information are given label H. Because
H /⊑ L holds, secret values are then prohibited from affecting public values.

• For specifying integrity, variables storing trusted information are given
label L and variables storing untrusted information are given label H.
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⊑ L H

L ⊑ ⊑
H /⊑ ⊑

(a) Definition of ⊑

⊔ L H

L L H
H H H

(b) Definition of ⊔

Figure 9.2: Definitions of ⊑ and ⊔ for ΛLH = {L,H}, where �ΛLH
is L

Because H /⊑ L holds, untrusted values are prohibited from affecting trusted
values.

You may find it counterintuitive to be using the same label (H) both for
untrusted values and for secret values. Here is a way to reconcile these interpre-
tations. According to (9.1), uses of variables with label H are more restricted
than uses of variables with label L. For confidentiality, the added restrictions
limit the propagation of secrets; for integrity, the added restrictions limit the
propagation of untrusted information.

Some find it helpful to think of an information flow from a variable with label
L (Low) to a variable with label H (High) as information flowing “up”, and they
think of an information flow from a variable with label H to a variable with label
L as information flowing “down”. According to that view, two consequences of
the information flows that are prohibited by ⊑ as defined in Figure 9.2(a) are:

No read up. A value derived from a variable with label H cannot be written
to a variable with label L.

No write down. A value written to a variable with label L cannot be
derived from a variable with label H.

So the prohibitions that ΛLH in Figure 9.2 specifies might be succinctly described
by “no read up; no write down”.

9.3 Multilevel Security Labels

When enterprises ran using paper documents, an employee was allowed access
to a document only if (i) the document’s contents were considered relevant to
that person’s job and (ii) there was reason to believe that the person would not
cause significant harm by divulging or corrupting the contents of the document.
If each document instead is stored in a separate file then we can achieve this
need-to-know by using an information flow policy and assigning suitable labels
to files and to users. Access authorizations and prohibitions are then achieved
through the definition of partial order ⊑ for users U assigned labels Γ(U) and
files F assigned labels Γ(F ):

• Γ(F ) ⊑ Γ(U) must hold for a file F to affect user U and, therefore, it
specifies that U is allowed to learn whether file F exists and to learn the
contents of F .

September 2025 Copyright    Fred B. Schneider All rights reserved.



248 Chapter 9. Information Flow Control: Basics

• Γ(U) ⊑ Γ(F ) must hold for a user U to affect file F and, therefore, it
specifies that U is allowed to create, delete, and/or update the contents
of file F .

9.3.1 Confidentiality

For enforcing the confidentiality requirements of need-to-know, we use labels
that authorize a user to access a file based on (i) the file’s content, (ii) whether
the access would facilitate the content being leaked, and (iii) the damage such
a leak might cause. Each of these multilevel security (MLS) labels comprises a
pair ⟨T ,C⟩, where T and C have different interpretations for files than for users.

File Labels. MLS labels for files are assigned by classification authorities—
individuals who are both knowledgeable about the subjects covered in the
file and understand the broader context necessary for predicting possible
damage from leaking the contents of the file.

– T is a set of topic names describing the information that the file
contains. Topic names come from a catalog that has been adopted
by the community using these labels.2

– C is the file’s sensitivity and categorizes the potential damage if the
file contents are leaked. Figure 9.3 gives the sensitivities that the
U.S. Department of Defense uses and their definitions.

User Labels. These MLS labels might be assigned by the user’s employer
or by some external agency that performs assessments on behalf of a com-
munity.

– T is a set of topics that describe content already known to this user
as well as topics relevant to the user’s current position or task as-
signments.

– C is the user’s clearance and categorizes the extent to which this
individual is believed to be trustworthy.3 The clearance is presumed
to predict whether an individual will leak information. Figure 9.3
gives the categories that the U.S. Department of Defense uses for
clearances and how each is interpreted.

We assume that MLS labels initially assigned to files and users are accurate.
We preserve this accuracy by allowing an information flow only if the MLS

2Topic names might be self-explanatory (e.g., chem/bio, crypto, or nuclear) or obscure (e.g.,
Ultra or Umbra). Obscure names are used so that people who see a label but do not have a
need to know are kept in the dark about what the name describes. With the labels used by
the U.S. Department of Defense, names whose meanings are secret are called codewords. For
example, the codeword Ultra was used during World War II to label information that the Allies
obtained by decrypting intercepts of German communications, and Umbra is a more recent
(but also now-retired) codeword for the most-sensitive kinds communications intercepts.

3Either an employer or an external agency would make this assessment. Clearances are
typically granted after a person has submitted to a background investigation that seeks to
identify character flaws or exploitable personal circumstances. A background investigation
might range from a short interview to a polygraph test conducted over multiple days.
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C file’s sensitivity: individual’s clearance:
potential damage belief of trustworthiness

TS (Top Secret) exceptionally grave strong
S (Secret) serious moderate
C (Confidential) some somewhat
U (Unclassified) none unknown

where U < C < S < TS and X ≤ Y denotes X = Y ∨ X < Y.

Figure 9.3: Interpretations for C in an MLS label ⟨T ,C⟩

labels involved will remain accurate. Since an information flow from P to P ′

is allowed only if Γ(P ) ⊑ Γ(P ′) holds, preserving the accuracy of MLS labels is
the basis for the definition of partial order ⊑.

⟨T ,C⟩ ⊑ ⟨T ′,C′⟩∶ T ⊆ T ′ ∧ C ≤ C′ (9.12)

To show that this definition preserves the accuracy of all MLS labels for any
information flow that ⟨T ,C⟩ ⊑ ⟨T ′,C′⟩ allows, we establish that an information
flow allowed by ⟨T ,C⟩ ⊑ ⟨T ′,C′⟩

(i) never transfers information about topics not covered by T ′ and

(ii) never increases the information known to a user deemed less trustworthy
than C and never increases the information that has affected a file that
such a user is allowed to read.4

An information flow allowed by ⟨T ,C⟩ ⊑ ⟨T ′,C′⟩ occurs because a user U
reads a file F or because a user U updates a file F . Assume ⟨TF ,CF ⟩ is the label
on a file F and ⟨TU ,CU ⟩ is the label for a user U

U reads F . Since Γ(F ) ⊑ Γ(U) must hold if U is authorized to read F ,
we conclude that TF ⊆ TU and CF ≤ CU hold due to definition (9.12) for
⊑. All information in F is covered by TF . From TF ⊆ TU , we conclude
that information also is covered by topic list TU , satisfying requirement
(i). From CF ≤ CU , we conclude that U is believed to be at least as
trustworthy as the least trustworthy user that is authorized to read F . So
the information known to a user deemed less trustworthy is not increased,
satisfying requirement (ii).

U updates F . Since Γ(U) ⊑ Γ(F ) must hold for U to be authorized to
update F , we conclude that TU ⊆ TF and CU ≤ CF hold due to definition
(9.12) for ⊑. From TU ⊆ TF we have that any information U writes is

4This presumes that increasing the number of people who know a secret does not bring
an increased risk of leaks. That is an unsound assumption about the general population. As
Benjamin Franklin is reported to have written: “Three can keep a secret if two of them are
dead”. However, the assumption could be true enough for the population of individuals who
have been vetted by background investigations.
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I file’s credibility: individual’s risk level:
integrity of content amount of knowledge

0 high expert
1 moderate somewhat
2 none clueless

Figure 9.4: Interpretations for I in an MLS integrity label ⟨T ,I⟩

covered by topic list TF because it is covered by TU , so requirement (i)
is satisfied. To discharge (ii), observe that a reader UR of F must have
a clearance CR satisfying CF ≤ CR. Thus, by transitivity with CU ≤ CF
from Γ(U) ⊑ Γ(F ), we conclude that CU ≤ CR must hold. So the informa-
tion known to a user deemed less trustworthy is not increased, satisfying
requirement (ii).

9.3.2 Integrity

Need-to-know is not only concerned with leaks. It also is concerned with limiting
access in order to prevent users from corrupting file contents. Multilevel integrity
(MLI) labels address this need by providing a way to specify that low-integrity
information and ignorant users not be allowed to contaminate high-integrity
information. Each MLI label comprises a pair ⟨T ,I⟩, where T and I are given
different interpretations for files than for users.

File Labels.

– T is a set of topic names describing the information that the file
contains.

– I is the file’s credibility and categorizes the integrity of the file’s
content. Figure 9.4 gives a list of possible categories along with their
definitions.

User Labels.

– T gives the set of topic names where this user is knowledgeable to
some degree.

– I is a risk level and categorizes the credibility for content produced
when this user makes an update. Figure 9.4 gives a list of possible
risk levels.

The definition of partial order ⊑ on MLI labels is based on preserving the accu-
racy of these labels after there has been an information flow that was allowed
because ⟨T ,I⟩ ⊑ ⟨T ′,I ′⟩ holds. Such an information flow must

(i) never transfer information about topics not covered by T ′, and

(ii) never reduce a file’s credibility because an update is made using less cred-
ible data or is made by a less knowledgeable individual.
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Requirement (i) is equivalent to T ⊆ T ′, and requirement (ii) is equivalent to
I ≤ I ′. So we obtain the following definition for partial order ⊑ on MLI labels.

⟨T ,C⟩ ⊑ ⟨T ′,C′⟩∶ T ⊆ T ′ ∧ I ≤ I ′ (9.13)

9.3.3 Case Study: File System Authorization

A file system typically provides operations for reading, writing, creating, and
deleting files. If invocations of file system operations can be attributed to users,
then we can use an information flow policy to specify permitted and prohibited
information flows between users and files. For files F having label Γ(F ) and
users U having label Γ(U):

• Γ(F ) ⊑ Γ(U) holds if U is allowed to learn whether file F exists and learn
about its contents.

• Γ(U) ⊑ Γ(F ) holds if user U is allowed to create file F , delete it, and/or
update its contents.

The labels could be MLS labels, MLI labels, or any other set of labels accom-
panied by a partial order ⊑ and join ⊔ operator.

The above interpretations of Γ(F ) ⊑ Γ(U) and Γ(U) ⊑ Γ(F ) define rules for
when a file system operation should be allowed to proceed. The rules concerning
read and write operations are straightforward:

No Read Up. Γ(F ) ⊑ Γ(U) must hold for a user U to read a file F .

No Write Down. Γ(U) ⊑ Γ(F ) must hold for a user U to write a file F .

Together, these rules prevent a user U from copying information in a file F that
another user U ′ cannot read to some file F ′ that U ′ can read.5 As such, the rules
prevent Trojan horse attacks, where a program is invoked because it appears
useful but the program also implements hidden and nefarious functionality.6 An
example of a Trojan horse attack that the rules block would be a game program
that copies information from a file that an attacker cannot read to a file that
the attacker could read.

5We show, by contradiction, that Γ(F ′) /⊑ Γ(U ′) necessarily holds and, therefore, No Read
Up prevents U ′ from reading F ′. For U to read F requires Γ(F ) ⊑ Γ(U), for U to write F ′

requires Γ(U) ⊑ Γ(F ′) and presumes Γ(F ′) ⊑ Γ(U ′) so that U ′ could read F ′. By transitivity
we conclude Γ(F ) ⊑ Γ(U ′) holds. However, Γ(F ) ⊑ Γ(U ′) contradicts the initial assumption
that Γ(F ) /⊑ Γ(U ′) holds.

6Greek mythology recounts how the 10-year Greek siege of Troy was ended by a clever
subterfuge. The Greeks built a huge wooden horse, hid a small force of warriors inside, placed
the horse outside the gates of Troy, and then appeared to abandon the siege by sailing out of
sight. With the Greek force gone, the Trojans opened the city gates and moved the horse—
thought to be a tribute marking the end of the siege—inside. The city residents celebrated.
But once the sun had set, the Greek fleet turned around and headed back to Troy. At midnight,
the Greek warriors inside the horse emerged, killed the Trojan guards, and opened the city
gates. The Greek force, which by then had returned, entered the open gates and destroyed
the city, thereby ending the war.
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The rules for read and write, however, do allow a user U to update a file
that U cannot read. Such an update is known as a blind write. There is no
way to check that a blind write has been correctly performed, so allowing blind
writes is a bad idea. To prohibit blind writes, it suffices to require that both
Γ(F ) ⊑ Γ(U) (to allow the read) and Γ(U) ⊑ Γ(F ) (to allow the write) hold in
order for a user U to update a file F .

No Blind Writes. Γ(U) = Γ(F ) must hold for a user U to write a file F
without creating blind writes.

Rules for authorizing file creation and deletion must prevent users from using
the existence of a file as a means for communicating a bit of information. A
user that creates or deletes a file is affecting that file, so our interpretation of ⊑
leads to the following rules, where the first is a variant of No Blind Writes and
the second is a variant of No Write Down.

File Creation. Γ(F ) is initialized to Γ(U) for any file F user U creates.

File Deletion. Γ(U) ⊑ Γ(F ) must hold for a user U to delete a file F .

If only these rules are followed, though, file creation or deletion could be
abused to create a channel from user a US to a user UR having labels that
satisfy Γ(US) /⊑ Γ(UR). The channel implementation we show uses file creation;
an implementation using file deletion is similar. Assume that files named F1 and
F2 do not exist, US and UR agree on those file names, and an attempt to read
or write a non-existent file returns a different error message than an attempt to
violate any of the rules given above.

• Sending a bit. By using a convention that UR also knows, US chooses
between creating file F1 and creating file F2 based on the value of bit b.
Thus, one of F1 and F2 remains non-existent and the other file F (say)
satisfies Γ(F ) /⊑ Γ(UR) due to the File Creation Rule and Γ(US) /⊑ Γ(UR).

• Receiving a bit. User UR repeatedly attempts to read both F1 and F2.
These operation attempts eventually will return a non-existant file error
message for only one of the files. UR then infers the value of b based on the
convention that US used to decide between creating file F1 and creating
file F2.

To prevent such channel implementations, it suffices to have error messages
for attempts to access non-existent files be indistinguishable from other error
messages (i.e., a attempt to create a file that already exists or an attempt to
delete a file that does not exist) . One possible scheme is to terminate execution
when any error occurs; another possible scheme is to return a single value.

9.4 Termination Insensitive Noninterference

Noninterference policies prevent a so-called λ-observer (for any λ ∈ Λ) from
learning about the initial values of variables in V/⊑λ by reading variables in V⊑λ.
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The capabilities of different threats are modeled by making different assump-
tions about when λ-observers can access the variables in V⊑λ. Some noninter-
ference policies assume that λ-observers only have access to the initial and final
states of a terminating execution; other noninterference policies assume that
λ-observers can access intermediate states of terminating and non-terminating
executions. And some noninterference policies assume that λ-observers are also
capable of detecting that an execution is non-terminating or that an execution
have been blocked by an enforcement mechanism.

Termination insensitive noninterference (TINI) policies prohibit the values
of variables from V/⊑λ in initial states from affecting the values of variables from
V⊑λ in final states of terminating executions, for all labels λ ∈ Λ. So if TINI is
being enforced then the initial and final values of variables from V⊑λ in termi-
nating executions reveal nothing about the initial values of variables from V/⊑λ.

7

TINI policies are intended for settings that satisfy the following.

Batch. For a program S with variables V , a λ-observer can read variables
in V⊑λ before and after, but not during, terminating executions.

Asynchronous. A λ-observer cannot distinguish a non-terminating execu-
tion from a terminating execution that has not yet terminated.

TINI policies can be formally defined by using a predicate V
S

/Ð→ti W that
holds if, for terminating executions by S, the initial values of variables in the
set V do not affect the final values of variables in the set W.

Termination Insensitive Noninterference (TINI). For a determin-
istic program S where the variables have labels from a set Λ with partial
order ⊑:

(∀λ ∈ Λ∶ V/⊑λ
S

/Ð→ti V⊑λ)

The formal definition for V
S

/Ð→ti W uses a function [[S]](s) that characterizes
the effects of executing program S from a state s.

[[S]](s)∶ { s
′ if execution of S in state s terminates in state s′

⇑ if execution of S in state s is non-terminating
(9.14)

The formal definition of V
S

/Ð→ti W also uses a predicate that is satisfied when
two states give the same values to variables in some set V. For a state s, we

7TINI policies thus ignore leaks that occur because an observer can reliably ascertain that
some execution is non-terminating. For example, deducing that an execution of

while x = 0 do skip end

is non-terminating implies that x = 0 was true in the initial state. Termination sensitive
noninteference (TSNI) strengthens TINI to account for observers that can detect that an
execution is non-terminating.
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write s.v to denote the value of a variable v in a state s, and we define the value
of a variable v in state projection s∣V as follows, where ? represents an unknown
value.

s∣V .v∶ {
s.v if v ∈ V
? otherwise

(9.15)

State projections provide a straightforward way to define relations for asserting
that two states give the same values to the variables in V or to the variables in
complement V comprising the variables in Vars(S) − V.

s =V s′∶ s∣V = s′∣V

We then have the following formal definition for predicate V
S

/Ð→ti W, where
InitS is the set of initial states of a program S.

V
S

/Ð→ti W∶ (∀s, s′ ∈ InitS ∶ s =V s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑

⇒ [[S]](s) =W [[S]](s′))
(9.16)

Predicate V
S

/Ð→ti W thus specifies a requirement on the states produced by ter-
minating executions of S, started in initial states s and s′, where s and s′ can
give different values to one or more variables in V but give the same values to
variables not in V. That requirement is that final states [[S]](s) and [[S]](s′)
must satisfy [[S]](s) =W [[S]](s′) and, therefore, the final values of variables in
W have not been affected by any differences in starting states s and s′. Since
initial states s and s′ differ only in the values for variables in V, a counterfactual
argument8 has established that the different values for variables in V did not
affect the values of variables in W.

9.4.1 TINI in Action

Consider the TINI policy specified by set ΛLH of labels given in Figure 9.2.
For a deterministic program S with variables V , this information flow policy
specifies the following, obtained by replacing λ with the possible values: L and

H in V/⊑λ
S

/Ð→ti V⊑λ from the above formal definition of TINI:

V/⊑L
S

/Ð→ti V⊑L ∧ V/⊑H
S

/Ð→ti V⊑H (9.17)

8With a counterfactual argument, multiple hypothetical starting points or sets of assump-
tions are the basis for justiying the conclusion.
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By expanding
S

/Ð→ti according to definition (9.16), we obtain the following re-
strictions on the initial and final states of the terminating executions by S:

(∀s, s′ ∈ InitS ∶ s =V /⊑L s
′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑

⇒ [[S]](s) =V⊑L [[S]](s
′))

∧ (∀s, s′ ∈ InitS ∶ s =V /⊑H s′ ∧ [[S]](s) ≠⇑ ∧ ; [[S]](s′) ≠⇑

⇒ [[S]](s) =V⊑H [[S]](s
′))

(9.18)

Because the following hold

V/⊑L = VL V⊑L = VL V/⊑H = V⊑H V⊑H = VL ∪ VH

where Vλ is the set of variables having label λ, (9.18) is equivalent to:

(∀s, s′ ∈ InitS ∶ s =VL
s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑

⇒ [[S]](s) =VL
[[S]](s′))

∧ (∀s, s′ ∈ InitS ∶ s =VL∪VH
s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑

⇒ [[S]](s) =VL∪VH
[[S]](s′))

(9.19)

We have that VL ∪ VH = V holds, since every variable is assigned a label from
ΛLH. Therefore, predicate s =VL∪VH

s′ in (9.19) is equivalent to predicate s = s′.
So the second quantified formula of (9.19) is satisfied due to the assumption that
S is deterministic—terminating executions of deterministic program that start
from the same states produce the same final states. Consequently, the second
quantified formula of (9.19) is equivalent to true, and we conclude that (9.19)
simplifies to:

(∀s, s′ ∈ InitS ∶ (s =VL
s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑ )

⇒ [[S]](s) =VL
[[S]](s′))

States satisfying s =VL
s′ may differ in the values of variables in VH but must

agree on the values of variables in VL. That means (9.19) implies that the values
of variables in VH in initial states may not affect on the values of variables in
VL in final states or, equivalently, that the values of variables with label H are
prohibited from affecting the values of variables with label L. So if this TINI
policy is enforced, then variables with label H can store information that we do
not want leaked to variables with label L.

We illustrate with the simple program: out ∶= in. This program is determin-
istic, it always terminates, and the value of in in initial states affects the value
of out in final states. Each entry in the final column of Figure 9.5 summarizes
whether program out ∶= in satisfies the TINI policy defined by the labels that
row gives for variables in and out . There is a

√
in the final column if the TINI

policy defined by the row is satisfied by execution of out ∶= in. The third row
has an × in the final column. This violation should not be surprising—TINI
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Γ(in) Γ(out) V⊑L V/⊑L V⊑H V/⊑H out ∶= in?
L L {in,out} ∅ {in,out} ∅ √

L H {in} {out} {in,out} ∅ √

H L {out} {in} {in,out} ∅ ×
H H ∅ {in,out} {in,out} ∅ √

Figure 9.5: Possible information flow policies for out ∶= in

prohibits executions where a variable having label H affects a variable having
label L, and here in has label H but out has label L.

Some implications of various specific TINI policies might be surprising. Con-
sider variables xL and xH, with Γ(xL) = L and Γ(xH) = H. The following program
shows that a TINI policy can be violated by assignment statements where the
expressions are constants, even though constants have label L.

if xH = 0 then xL ∶=1 else xL ∶=2 fi (9.20)

The next program slightly changes the else alternative.

if xH = 0 then xL ∶=1 else xL ∶=1 fi (9.21)

The TINI policy is not violated, because the same assignment to xL is executed
for any value of xH.

Two final programs illustrate that TINI policies are not necessarily violated
if assignment statements store values into variables labeled L from variables
labeled H. In this program

xL ∶=xH; xL ∶=63; (9.22)

TINI is satisfied, since the final value of xL is not affected by the initial value of
xH.

This last program satisfies TINI if B does not mention xL or xH, even though
a variable with label H affects a variable with label L in the body of the while.

while B do xL ∶=xH end (9.23)

If B is initially true then B will remain true (because the only variable changed
in the loop body is not mentioned in B), so the while never terminates. TINI
is then satisfied because TINI impose no restrictions on non-terminating exe-
cutions. If B is initially false, then TINI is satisfied because the loop body is
never executed, so problematic assignment statement xL ∶=xH is never executed.

9.4.2 TINI Enforcement

To be concrete in our discussions about how to enforce TINI and other nonin-
terference policies, Figure 9.6 gives the grammer for IMP, a simple imperative
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stmt ∶∶= skip

∣ var ∶= expr
∣ if expr then stmt else stmt fi
∣ while expr do stmt end
∣ stmt ; stmt

Figure 9.6: Syntax for IMP programs

programming language. Instead of including variable declarations, an IMP pro-
gram will be accompanied by a function Γ(⋅) giving a fixed label Γ(v) for each
variable v. Expressions expr in IMP programs are constructed from constants,
variables, operators, and functions, as discussed in §9.1.1. Finally, we write
“ℓi: S” to indicate that a statement label ℓi names the control point associated
with the start of statement S. Statement labels will also be used to refer to the
statement at a control point. No statement label will appear more than once in
a program, and statement labels are disjoint from the labels in Λ.

Assignment statements var ∶= expr are the way an IMP program changes
the value of a variable; var is called the target, and expr is called the source.
IMP provides two kinds of control-flow statements: if statements and while

statements. Each control-flow statement has a guard and a body. The guard
is a Boolean expression; the body comprises one or more statements. With an
if statement, the body comprises a then alternative and an else alternative;
the value of the guard determines which alternative is executed. With a while

statement, the value of the guard determines whether the body is executed for
another iteration or, instead, execution of the while statement terminates.

For each statement label ℓ in a program S, there is a set ΘS(ℓ) that contains
the guard for those control-flow statements having a body that includes state-
ment ℓ. So each guard in ΘS(ℓ) affects whether statement ℓ will be reached
during some terminating execution of S. Figure 9.7 gives ΘS(⋅) for an exam-
ple program. Notice, ΘS(ℓ) contains multiple guards when ℓ is nested within
multiple control-flow statements. Guards in ΘS(ℓ), however, are not the only
guards that can affect whether statement ℓ will be reached during executions
of a program S. In Figure 9.7, for example, G4 ∉ ΘS(ℓ7) holds even though G4

could affect whether ℓ7 will be reached—G4 affects whether while statement ℓ4
terminates, and if that while statement does not terminate then ℓ7 will not be
reached.

An execution of a program S that violates TINI must, by definition, be
terminating and it must execute some assignment statement. There are two
ways that executing an assignment statement ℓ∶ w ∶= expr could violate TINI
because ℓ causes an illicit flow. With an illicit explicit flow, the illicit flow is
caused by some variable in expr . An illicit explicit flow cannot occur during
execution of ℓ∶ w ∶= expr if the following holds.

ΓE(expr) ⊑ Γ(w) (9.24)
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ℓ1∶ S1

ℓ2∶ ifG2 then ℓ3∶ S3

else ℓ4∶ while G4 do

ℓ5∶ S5

end;
ℓ6∶ S6

fi;
ℓ7∶ S7

ℓi ΘS(ℓi)
ℓ1 ∅
ℓ2 ∅
ℓ3 {G2}
ℓ4 {G2}
ℓ5 {G2,G4}
ℓ6 {G2}
ℓ7 ∅

Figure 9.7: ΘS(ℓi) for a program S

With an illicit implicit flow, the illicit flow is caused by some guardG that affects
whether ℓ∶ w ∶= expr is executed and that does not satisfy ΓE(G) ⊑ Γ(w). An
illicit explicit flow cannot if none of those guards exists, because the following
holds.

⎛
⎝ ⊔
G∈ΘS(ℓ)

ΓE(G)
⎞
⎠
⊑ Γ(w). (9.25)

Therefore, the following condition ensures that executing an assignment state-
ment ℓ∶ w ∶= expr does not cause an illicit explicit flow or an illicit implicit flow.

ΘS-Safe Assignment Statements. Ensure that

⎛
⎝
ΓE(expr) ⊔

⎛
⎝ ⊔
G∈ΘS(ℓ)

ΓE(G)
⎞
⎠
⎞
⎠
⊑ Γ(w) (9.26)

holds for each assignment statement ℓ∶ w ∶= expr that S executes.

ΘS-Safe Assignment Statements is conservative—programs that comply will
satisfy TINI, but programs that do not comply might also satisfy TINI. One
reason for a program to be speciously rejected is that definition (9.9) for ΓE(⋅)
ignores the semantics of expressions. For example, if variables v and w satisfy
Γ(v) /⊑ Γ(w) then the program w ∶= v − v does not satisfy ΘS-Safe Assignment
Statements because ΓE(v − v) = Γ(v) and, therefore, ΓE(v − v) ⊑ Γ(w) does not
hold. However, program w ∶= v − v does satisfy TINI, since the final value of w
is the same for all initial values of v.

A second reason for programs to be speciously rejected is that ΘS-Safe As-
signment Statements ignores context. Program (9.21) is rejected due to if

statement guard xH = 0. Yet this program satisfies TINI, because the then and
the else alternatives each store the same value into xL for any initial value of
xH. A different effect of context is seen in program (9.22), where an assign-
ment statement xL ∶=xH that does not satisfy ΘS-Safe Assignment Statements is
followed by an assignment statement xL ∶=63 that overwrites the illicit update.
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skip:
Γ, γ ⊢ti skip

assign:
γ ⊔ ΓE(expr) ⊑ Γ(v)

Γ, γ ⊢ti v ∶= expr

if:
ΓE(expr) = λ, Γ, γ ⊔ λ ⊢ti S, Γ, γ ⊔ λ ⊢ti S′

Γ, γ ⊢ti if expr then S else S′ fi

while:
ΓE(expr) = λ, Γ, γ ⊔ λ ⊢ti S
Γ, γ ⊢ti while expr do S end

seq:
Γ, γ ⊢ti S, Γ, γ ⊢ti S′

Γ, γ ⊢ti S; S′

Figure 9.8: Typing rules for TINI compliance

9.4.3 Enforcing TINI with Typing Rules

A type-safe programming language will have some typing rules that derive the
set of type-correct programs. The typing rules ensure that all executions of
type-correct programs are guaranteed to satisfy certain properties. You are
doubtless familiar with typing rules to ensure that only the right kinds of values
are stored into specific program variables or appear as arguments to certain
operations. Such typing rules, for example, reject programs that perform arith-
metic operations on variables storing character strings. In this section, we give
typing rules that ensure type-correct programs satisfy TINI.

To assert that a program or statement S is type-correct, we use judgements

Γ, γ ⊢ti S (9.27)

where typing context Γ is a label assignment, and control context γ is a label
from Λ.9 Judgements that satisfy certain constraints are defined to be valid.

Valid Judgements for TINI. Judgement Γ, γ ⊢ti S for a deterministic
program S with variables Vars(S) is valid if and only if

(i) (∀λ ∈ Λ∶ V/⊑λ
S

/Ð→ti V⊑λ).

(ii) γ ⊑ Γ(w) holds for target w of every assignment statement in S.

Requirement (i) supports our goal of having type-safe programs comply with
TINI. Requirement (ii) makes γ an upper bound for the labels on guards of
control-flow statements having bodies that could include S without violating
ΘS-Safe Assignment Statements. So requirement (ii) allows valid judgements
for a compound statement to be derived from valid judgements for its component
statements. The derivation given below for judgement (9.28) will illustrate.

9Consistent with the IMP syntax given in Figure 9.6, “statement” and “program” are used
interchangeably in the following discussions.
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Typing Rules. Each typing rule r is specified as a schema

r:
H1, H2, . . . , Hn

Γ, γ ⊢ti S

that gives a procedure for deriving the rule’s conclusion Γ, γ ⊢ti S by mechan-
ically transforming some or all of the rule’s hypotheses H1, H2, . . . , Hn. By
design, the conclusion of a typing rule will be a valid judgement if each of the
rule’s hypotheses is valid.

Figure 9.8 is a set of typing rules for enforcing TINI in IMP programs.
An IMP program S is considered type-correct if judgement Γ,�Λ ⊢ S can be
derived using these typing rules, because having Γ,�Λ ⊢ S be valid implies that
S satisfies TINI. So, TINI is enforced if IMP programs that are type-correct are
allowed to execute but other programs are not allowed to execute.

By design, the typing rules ensure that, in a type-correct program, no as-
signment statement violates ΘS-Safe Assignment Statements condition (9.26).
Analyzing an example is a good way to see how the rules check for such viola-
tions. Consider the following possible conclusion of rule if, where S′ denotes
an IMP statement.

Γ,�Λ ⊢ti S∶ ifB then ℓ∶ w ∶= expr else S′ fi (9.28)

To derive this judgement requires having a derivation for each hypothesis of rule
if. The second hypothesis requires a derivation of the following.

Γ, �Λ ⊔ ΓE(B) ⊢ti ℓ∶ w ∶= expr

Rule assign must be used to derive this judgement, and the required hypothesis
for that derivation is satisfied provided the following holds

�Λ ⊔ ΓE(B) ⊔ ΓE(expr) ⊑ Γ(w),

which is equivalent to ΓE(B) ⊔ ΓE(expr) ⊑ Γ(w). For program S, we have that
ΘS(ℓ) is {B} and, therefore, the following holds.

ΓE(B) = ⊔
G∈ΘS(ℓ)

ΓE(G)

So we have showed that the derivation of (9.28) requires:

⎛
⎝ ⊔
G∈ΘS(ℓ)

ΓE(G)
⎞
⎠
⊔ ΓE(expr) ⊑ Γ(w)

This is exactly what ΘS-Safe Assignment Statements condition (9.26) requires
for assignment statement ℓ∶ w ∶= expr , since whether ℓ executes is affected by
guard B of the if statement (and by no other guards).
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1. ΓE(0) = L ... defn (9.9) of ΓE(⋅), since �Λ{L,H} = L .

2. Γ(m) = H ... assumption.
3. ((L ⊔H) ⊔ L) ⊑ H ... defns of ⊔ and ⊑ in Figure 9.2.
4. Γ,L ⊔H ⊢ti m ∶=0 ... assign with 1, 2, 3.
5. ΓE(y) = H ... defn (9.9) of ΓE(⋅), given assumption Γ(y) = H.
6. ((L ⊔H) ⊔H) ⊑ H ... defns of ⊔ and ⊑ in Figure 9.2.
7. Γ,L ⊔H ⊢ti m ∶= y ... assign with 5, 2, 6.
8. ΓE(x ≤ y) = H ... defn (9.9) of ΓE(⋅), since

ΓE(x ≤ y) = (Γ(x) ⊔ Γ(y)) = (L ⊔H) = H.
9. Γ,L ⊢ti if x ≤ y then m ∶=0 else m ∶= y fi ... if with 8, 4, 7.

Figure 9.9: Example of Hilbert-style proof format

Proof Formats. Various formats can be used for presenting the derivation of
a judgement to establish that some IMP program is type-correct. Each format
has advantages and disadvantages. To illustrate the different formats, we use
each to give the type-correctness derivation for the following judgement

Γ,L ⊢ti if x ≤ y then m ∶=0 else m ∶= y fi (9.29)

assuming Γ(x) = L, Γ(y) = H, and Γ(m) = H hold, Λ is {L,H}, and the rules for
evaluating expressions involving ⊑ and ⊔ are those given in Figure 9.2.

Hilbert-Style Proof Format. Figure 9.9 gives a type-correctness derivation
as a list of sequentially numbered steps. Each step comprises a formula F (often,
a judgement) and a justification J . When F is a judgement, J names a typing
rule r and lists the numbers for earlier steps that discharge hypotheses needed
to derive F by using rule r. Sometimes the validity of a hypothesis is given as
part of the justification rather than by referencing an earlier step. Such inline
justifications are used by steps 1, 2, 3, 5, and 8 of Figure 9.9.

Derivation-Tree Proof Format. Figure 9.10 gives the type-correctness deriva-
tion as a series of derivation trees. A derivation tree vertically stacks instances
of typing rules, positioning the conclusion of one rule to appear as a hypothesis
for another rule. Three derivation trees appear in Figure 9.10. Tags (DT1 and
DT2) on the first two derivation trees allow their conclusions to be used for
discharging hypotheses in the third derivation tree. Many people prefer reading
derivation trees over reading the Hilbert-style proof format, because derivation
trees graphically show dependencies between steps. Derivation trees are a natu-
ral format when working with pen and paper, but few text formatters facilitate
their construction.

Hierarchical Proof Format. A combination of Hilbert-style proofs and deriva-
tion trees is to present a list of judgements, but do so hierarchically. This format
is illustrated in Figure 9.11. Here, justifications for the hypotheses needed to
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assign:
((L ⊔H) ⊔ ΓE(0)) ⊑ H

Γ,L ⊔H ⊢ti m ∶=0
(DT1)

assign:
((L ⊔H) ⊔ ΓE(y)) ⊑ H

Γ,L ⊔H ⊢ti m ∶= y
(DT2)

if:

ΓE(x ≤ y) = H, DT1:
⋯

Γ,L ⊔H ⊢ti m ∶=0
, DT2:

⋯
Γ,L ⊔H ⊢ti m ∶= y

Γ,L ⊢ti if x ≤ y then m ∶=0 else m ∶= y fi

Figure 9.10: Example of derivation tree proof format

1. Γ,L ⊢ti if x ≤ y thenm ∶=x elsem ∶= y fi if with 1.1, 1.2, and 1.3.
1.1. ΓE(x ≤ y) = H ΓE(x ≤ y) = (Γ(x) ⊔ Γ(y)) = (L ⊔H) = H.
1.2. Γ,L ⊔H ⊢ti m ∶=0 assign with 1.2.1 and 1.2.2.
1.2.1. ΓE(0) = L Definition (9.9) of ΓE(⋅), since �{L,H} = L.
1.2.2. Γ(m) = H Assumption.
1.2.3. ((L ⊔H) ⊔ L) ⊑ H Definitions of ⊔ and ⊑ in Figure 9.2.

1.3. Γ,L ⊔H ⊢ti m ∶= y assign with 1.3.1, 1.3.2, and 1.3.3.
1.3.1 ΓE(y) = H Assumption.
1.3.2. Γ(m) = H Assumption.
1.3.3. ((L ⊔H) ⊔H) ⊑ H Definitions of ⊔ and ⊑ in Figure 9.2.

Figure 9.11: Example of hierarchically presented proof format

infer the judgement of step n are listed after that step, indented, and numbered
by appending sequence numbers to n to get n.1, n.2, etc. Arbitrary levels of
nesting are permitted. With this format, indentation helps readers to see the
steps that support a conclusion, but without the distraction of how each of
those steps is being justified. The format also enables the reader to focus on
the reasoning used to support the justification for any given step.

9.4.4 Dynamic Enforcement of TINI

A reference monitor10 is a component that is invoked in response to certain
specified events that occur as some monitored program executes. Once invoked,
the reference monitor may update its state and, based on its state, either block
further execution by the monitored program or allow execution of the monitored
program to continue. So when a reference monitor is present, each execution of
a monitored program is blocked, terminating, or non-terminating. Also, the de-
cision to block further execution of a monitored program must,by definition, be

10Chapter 11 gives a detailed treatment of reference monitors.
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made by the reference monitor without having knowledge of program statements
in the monitored program that have not yet executed.

A reference monitor to enforce TINI blocks further progress and deletes the
program state when a monitored program is about to perform an action that
would violate TINI. Given the Batch and Asynchronous assumptions (page 253),
blocked executions are then indistinguishable from non-terminating executions.
Since TINI imposes no constraints on non-terminating executions, it would seem
sensible for TINI to impose no constraints on these other executions that are
indistinguishable from blocked executions. So the definition of TINI as imposing
constraints only on terminating executions remains unchanged.

The only way for a terminating execution of an IMP program S to violate
TINI is by executing an assignment statement that does not satisfy ΘS-Safe
Assignment Statements condition (9.26). This suggests that a reference mon-
itor for enforcing TINI should check this condition whenever an assignment
statement is about to execute. To perform this check for an assignment state-
ment ℓ∶ w ∶= expr in some monitored program S, the reference monitor needs
labels Γ(w), ΓE(expr), and ⊔G∈ΘS(ℓ) ΓE(G). The values of these labels can be
determined using Γ(⋅), as follows.

• Γ(w) and ΓE(expr) can be determined by the reference monitor if (i)
reaching an assignment statement ℓ∶ w ∶= expr is an event that causes the
reference monitor to be invoked, and (ii) the name of target w and the
names of variables referenced in expr are delivered to the reference monitor
with that event.

• ⊔G∈ΘS(ℓ) ΓE(G) can be calculated by the reference monitor if (i) reaching
or exiting if and while statements are events that cause the reference
monitor to be invoked and (ii) the code for each of these events (if G,
fi, while G, or end) is available to the reference monitor when that event
occurs.

Figure 9.12 gives the actions for such a reference monitorRTI . A require(B)
statement is used there. Execution of require(B) evaluates B. If B evaluates
to false then the reference monitor deletes the state and blocks further progress
of the monitored program that was being executed when the reference monitor
was invoked; if B evaluates to true then the monitored program is allowed to
proceed.

RTI is invoked and checks ΘS-Safe Assignment Statements condition (9.26)
whenever an assignment statement is reached in monitored program S. To
facilitate this checking, RTI also is invoked so that it can update a stack11

sti whenever S reaches or exits a control-flow statement. (Assume that a new
instance of stack sti is allocated and initialized to empty for each monitored

11We use operations push(sti , v) to insert value v onto stack sti ; pop(sti) to remove the
most recently added value from stack sti ; and a function top(sti) that returns the value
currently at the top of stacksti .
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upon S reaching ● action to be performed

● w ∶= expr require( top(sti) ⊔ ΓE(expr) ⊑ Γ(w) )

● if G then . . . push(sti , top(sti) ⊔ ΓE(G))

. . . fi ● pop(sti)

● while G do . . . push(sti , top(sti) ⊔ ΓE(G))

. . . end ● pop(sti)

Figure 9.12: Reference monitor RTI for TINI

program S .) The updates to this stack ensure that

top(sti) = ⊔
G∈ΘS(ℓ)

ΓE(G) (9.30)

holds whenever an assignment statement (say) ℓ∶ w ∶= expr is about to execute in
the monitored program. Therefore, the value of top(sti) along with Γ(w) and
ΓE(expr), can be used by the reference monitor to check ΘS-Safe Assignment
Statements condition (9.26) for that assignment statement.

What RTI Enforces. The result of executing a program S with RTI present
is a combined program, which we represent using notation RTI ▷S. By con-
struction, terminating executions of RTI ▷S are terminating executions of S
where ΘS-Safe Assignment Statements condition (9.26) holds for every assign-
ment statement that was executed.

For RTI▷S to satisfy TINI, the following must hold.

(∀λ ∈ Λ∶ V/⊑λ
RTI▷S
/Ð→ti V⊑λ) (9.31)

If (9.31) did not hold then, according to definition (9.16) of V
S

/Ð→ti W, there
would be initial states s and s′ of terminating executions that agree on the
initial values of all variables in V⊑λ but do not agree on the final values of those
variables. We prove that this scenerio is impossible by assuming that such a
problematic pair of terminating executions exists and deriving a contradiction.

If two executions of RTI▷S do not have the same final values for some vari-
ables in V⊑λ, then there must be an earliest state where the values for one or
more of those variables disagree. The disagreement must be caused by an assign-
ment statement that was affected by some variable outside of V⊑λ, since the two
executions agreed on values for variables from V⊑λ in all previous states. How-
ever, such an assignment statement would have violated ΘS-Safe Assignment
Statements condition (9.26), so execution would be blocked before performing
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that assignment statement, which contradicts the assumption that we started
with terminating executions.

Note, however, that if S does not satisfy TINI then there must be termi-
nating executions of S that become blocked executions of RTI▷S. The initial
states of this smaller set of terminating executions for RTI ▷S exhibits addi-
tional correlations over the initial states of the terminating executions for S
without RTI present. If variables in initial states are correlated then the value
of one can be used to predict the values of the others, potentially compromising
confidentiality.

Here is an example. Assume that Γ(xL) = L and Γ(xH) = H hold.

if even(xH) then xL ∶=1 else skip fi (9.32)

RTI only allows terminating executions of (9.32) that start in states where
even(xH) is false; other initial states result in blocked executions. So an L-
observer of a terminating execution of (9.32) when RTI is present learns some-
thing about the initial value of xH—that initially xH was odd. TINI is being
enforced by RTI , though. This is because (i) differences in the initial values for
xH in terminating executions are not visible to an L-observer reading xL when
execution terminates, and (ii) an L-observer cannot detect that an execution is
blocked and, therefore, cannot determine that the initial value of xH is even.

9.4.5 Comparison of TINI Enforcement Mechanisms

Type-correctness checking entails overhead before a program is executed but
incurs no runtime overhead. With a reference monitor like RTI , there is no
overhead before a program executes but transfers of control to reference mon-
itor actions incur the overhead of a context switch to execute each reference
monitor action. The reference monitor, however, only checks an assignment
statement when that statement is reached during an execution, so potentially
fewer assignment statements need to be checked (although the same assignment
statement would be checked each time it is executed).

The key difference, however, between type-correctness and TINI enforcement
using a reference monitor is permissiveness. Type-checking rejects any program
S in which there is a statement T that would violate TINI if T is executed in
isolation—even if T could never be reached during any terminating execution of
S. RTI can be more permissive, as program (9.32) illustrates. Program (9.32) is
not type-correct, so type-checking would not allow its execution, but RTI does
not block its executions that start in states where even(xH) is false.

Could different typing rules enable substantial improvements in premissive-
ness when we use type-correctness for enforcement? If the typing rules could
identify and ignore unreachable assignment statements then more programs
would be type-correct. However, to determine that a statement is reachable
would require that the typing rules determine whether while statements are
guaranteed to terminate and whether the guards for a collection of if state-
ments all could hold during one execution. The undecidability of the halting
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problem implies no algorithm can make such inferences. Since a set of typing
rules are together defining an algorithm that a type-checker can execute, we
conclude that inferences about statement reachability cannot be incorporated
into typing rules.

9.5 Trusted Code and Weaker Policies

Public outputs from many real systems are affected by secret inputs that, nev-
ertheless, are not revealed. Examples of such public outputs include encryption
of a secret for transmission or storage, redaction12 of a document for widespread
disclosure, and transmission of an acknowledgement message to confirm receipt
of a request involving secret values. Real systems also sometimes can benefit
from having trusted outputs be affected by untrusted inputs. Digital signa-
ture verification and the use of Byzantine agreement algorithms are examples.
We conclude that noninterference policies may need to be relaxed in parts of a
system.

To avoid these problems, many systems incorporate statements or routines
that, by fiat, are allowed to violate noninterference. This is variously known
as trusted code or, for larger components, trusted subjects. During execution of
trusted code, the value of any variable is allowed to affect the value of any other
variable. The system implementors either verify or simply posit that the trusted
code will have the effects that it should, not do things that it shouldn’t, and
cannot be subverted. An alternative, however, is to enforce a security policy
that is not as stringent as noninterference. We would build on (i) the weaker
properties that the trusted code satisfies, and (ii) leverage a noninterference
policy being enforced for all of the other code.

*Example: Uncertainty-Based Confidentiality. An example of such a
weaker security policy is uncertainty-based confidentiality. It asserts that an
observer remains uncertain about the values of some specified variables because
so many values remain plausible—despite the observer’s certainty about the
values of other variables:

Uncertainty-Based Confidentiality. The values of variables with la-
bels λ′ satisfying λ′ ⊑ λ leaves sufficient ambiguity about the initial values
of variables with labels λ′′ satisfying λ /⊑ λ′′.

Uncertainty-Based Confidentiality does not prohibit the values of variables with
labels λ′ satisfying λ′ ⊑ λ from being affected by the values of variables with la-
bels λ′′ satisfying λ /⊑ λ′′. So it is weaker than noninterference. But Uncertainty-
Based Confidentiality does protect against disclosure of the values of variables
with labels λ′′ satisfying λ /⊑ λ′′. Moreover, the confidentiality examples at
the beginning of this subsection—encryption, redaction, and transmission of

12Redaction deletes or obscures parts of a document, producing a version that complies
with a given confidentiality policy.
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acknowledgments—do not violate Uncertainty-Based Confidentiality, whereas
they do violate noninterference.

We illustrate with an implementation of a secret ballot election. Each voter
i stores into a ballot bi the name of some candidate from a set C, and the winner
m of the election is the candidate named in a majority13 of the ballots:

S∶ m ∶=maj (b1, . . . , bn) (9.33)

We assume that only voter i ever has access to ballot bi, but m can be read by
all voters.

The voters in a secret ballot election expect compliance with ballot confi-
dentiality. This security policy stipulates that the value of bi and the value of
winner m does not allow a voter i to rule out any possible value for a ballot bj if
i ≠ j holds. It is an uncertainty-based confidentiality policy where, for an initial
system state s and each candidate c ∈ C, there will be an initial system state s′

satisfying bj = c and indistinguishable to voter i from s.

(∀i, j, i ≠ j∶ (∀c ∈ C ∶
(∀s∶ (∃s′∶ s ={bi} s′ ∧ s′.bj = c ∧ [[S]](s) ={bi,m} [[S]](s′) ))))

(9.34)

To establish compliance with (9.34), it suffices to give an expression SK(i, j, c, s)
for producing a state that substituted for s′ satisfies14

s ={bi} s
′ ∧ s′.bj = c ∧ [[S]](s) ={bi,m} [[S]](s

′). (9.35)

Expression SK(i, j, c, s) generates states that serve as witnesses for demonstrat-
ing that the variables a voter i can access before and after an execution from
initial state s will have the same values as for an execution from an initial state
s′ in which bj = c holds, for any candidate c. Therefore, no possible value of bj
is ruled out by what voter i can read.

Here is a proposed definition for SK(i, j, c, s).

SK(i, j, c, s)∶
⎡⎢⎢⎢⎢⎣

m↦ s.m, bi ↦ s.bi, bj ↦ c,
bk ↦ maj

1≤h≤n
(s.bh) for 1 ≤ k ≤ n ∧ k ≠ i ∧ k ≠ j

⎤⎥⎥⎥⎥⎦
If there are 2 candidates and at least 5 voters, it is straightforward to establish
that (9.35) is satisfied when s′ is replaced by this definition for SK(i, j, c, s).15

13To simplify the discussion, assume that a majority always exists.
14We are proving an existentially-quantified formula (∃x∶ P (x)) by identifying an expression

E that satisfies P (E) and, therefore, generates a witness to the existence of x. This reasoning

is embodied in a standard Predicate Logic inference rule:
P (E)

(∃x∶ P (x)) . Expression E is called

a Skolem function.
15We show that each conjunct of (9.35) holds. The first conjunct is s ={bi}SK(i, j, c, s), and

it is satisfied because SK(i, j, c, s) is constructed using bi ↦ s.bi. The second conjunct, which
is SK(P, j, c, s).bj = c, is satisfied because SK(i, j, c, s) is constructed using bj ↦ c.

The final conjunct is [[S]](s) ={bi,m} [[S]](s
′). State SK(i, j, c, s) gives all but 2 ballots—

bi and bj—a value w (say) equal to maj (s.b1, . . . , s.bn). So at least n − 2 ballots in state
SK(P, j, c, s) have value w. Because n ≥ 5 holds, n − 2 ballots having value w constitues a
majority. Therefore, states s and SK(i, j, c, s) have the same majority, which means executing
S either from initial state s or from initial state SK(i, j, c, s) will assign the same value to m,
as required for the final conjunct to hold.
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But (9.35) is not satisfied for elections with 2 candidates and only 3 voters,
Moreover, there is no definition for SK(i, j, c, s) that produces states satisfying
(9.35) for such elections—with so few voters, knowing the values of bi and m
can reduce a voter i’s uncertainty about bj . Here is a problematic scenerio.
Suppose C is {c1, c2}, and we are concerned about voter 1 learning the value of
b3. Consider an initial state s

s∶ [m↦ ?, b1 ↦ c1, b2 ↦ c2, b3 ↦ c2],

so c2 is the majority. SK(i, j, c, s) would have to produce a state where b3 =
c1 holds and the majority remains c2. However, no values for the bk, where
1 ≤ k ≤ 3, k ≠ 1, k ≠ 3 hold (viz. b2) result in having c2 still be the majority. So
there is no function SK(i, j, c1, s) that produces a state satisfying (9.35). The
requirement for at least 5 voters when there are 2 candidates is often surprising
to people who have used informal reasoning and ignored edge cases. There is a
lesson about the use of informal assurance arguments for trusted code.

Notes and Reading for Chapter 9

Dorothy Denning was the first to suggest that security policies ought to specify
restrictions on information flow rather than specifying restrictions on access to
information containers. The approach was summarized in two papers [7, 10],
which are based on her Ph.D. dissertation [6]; an interview [9] with Denning
explores what motivated and influenced this work. Denning’s dissertation in-
troduces the terms “explicit flow” and “implicit flow” for distinguishing infor-
mation flows caused by control structures.16 Her dissertation also discusses
both fixed and flow-sensitive variables, certification conditions for a static anal-
ysis to enforce security policies, and the undecidability of determining whether
a program satisfies an information flow policy.

Denning’s dissertation characterizes program statements that could cause an
information flow but it does not give a formal definition for information flow per
se. Her later textbook [8, chptr 5] does give a formal definition. That definition
is formulated in terms of entropy as defined by Shannon [28] and, therefore,
involves probabilities that executions will enter given states. The need to have
those probabilities makes Denning’s definition difficult to use in practice.

The formal definitions widely used today for information flow are based on
noninterference.17 Often, Gougen and Messequer [12] will be cited, because
that paper introduced and formalized noninterference assertions, which assert
that actions performed by one group of users do not affect outputs seen by

16Denning was not the first and not the only researcher to have investigated information
flows arising from control structures. Fenton [11] had earlier discussed how to prevent such
information flows in connection with implementing memoryless subsystems. Also presented
at the SOSP conference where Denning gave a preliminary version of her paper [7], Jones and
Lipton [13] uses the term “negative inference” to describe leaks caused by control structures.

17Alternatives that have been suggested, include constraints [20], non-deducibility [29], gen-
eralized non-interference [17], restrictiveness [18], selective interleavings [19], trace closure
properties [32], and the modular assembly kit [15, 16]. None has attracted a large following.
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another group of users. It is just a small step from noninterference assertions
to an information flow definition that involves checking whether changes to
the values of one set variables affects the values of another set, and the term
“noninterference” is a suggestive way to describe that situation. Gougen and
Messequer [12] was not the first paper to suggest such a counterfactual definition,
though. Cohen [5] had previously introduced strong dependency, which defined
information flow from x to y as variation in x that results in variation in y.
However, the theory given in Cohen [5] uses inscrutable formalisms, making the
paper hard to understand. Also, strong dependency was the negation of what
was sought for security.

With noninterference generally accepted as the formal definition for infor-
mation flow, all of the pieces were present to define a type system for ensuring
compliance with the certification conditions in Denning [6]. Volpano, Smith, and
Irvine combine these pieces in a paper [30] that, for programs having a fixed
label assignment, gives typing rules to enforce what Sabelfeld and Sands [27]
later call termination-insensitive noninterference (TINI). The soundness proof
in Volpano, Smith, and Irvine [30] for that type system is the first formal ac-
count of the connection between Denning’s static analysis and a noninterference
policy.

The design of runtime enforcement mechanisms for TINI also attracted at-
tention. Reference monitors were seen as a promising way to achieve increased
permissiveness. Sabelfeld and Russo [26] explores the differences in permissive-
ness and shows that a reference monitor like RTI not only enforces TINI but is
more permissive than a type system. However, reference monitors do not always
lead to increased permissiveness, as seen in Chapter 10.

The development and implementation of secure ways to store classified doc-
uments in computer systems, however, predated and proceeded independently
of research into specifying and enforcing TINI and other information flow poli-
cies. In anticipation of a day when documents would be stored in computers
shared by users having different clearances, DoD interest centered on operating
systems and supporting appropriate access control to files. Multilevel security
labels were developed to replicate the (paper) document-classification system
that was already in use by DoD.18

18The current U.S. document-classification scheme is described in Executive Order
13526 [21] signed by President Barack Obama in December 2009. It is the most recent in
a series of Executive Orders concerned with U.S. document classification, starting with Exec-
utive Order 8381 [25] signed by President Roosevelt in March 1940 [24, chapter 3]. Quist [24,
chapter 2], drawing heavily from an unpublished manuscript by Patterson [23], chronicles the
precursors and development of U.S. document-classification schemes, which were derived from
the British circa 1917. In fact, by late in the 19th century, Britain had all of the elements for
a modern document-classification scheme in place. Prior to the Crimean War (1853–1856),
the British War Office had been marking documents that should be kept confidential, and
by 1894 British Army regulations were distinguishing between markings “Secret” and “Con-
fidential” each of which imposed specific rules for handling and disclosure. An early version
of “need-to-know” appears in an 1868 publication of British Army regulations:

Access to official records is only permitted to those who are entrusted with the
duties of the office or department to which they belong...

Peacetime classification of information in Britain commenced with an 1866 report on mines
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A scheme published in 1973 by Bell and La Padula [2, 1] working at MITRE
became the basis for virtually all DoD computer security work for the next
decade.19 Biba [4] later shows how multilevel security labels used by Bell and
La Padula for confidentiality could be reinterpreted for specifying and enforcing
integrity policies. An attempt to implement a secure version of the Multics [22]
operating system established a need to further extend the theory. Bell and La
Padula [3] adds trusted subjects; Walter et al. [31] is credited with developing the
special access rules needed for tree-structured directories. (Directories in Multics
have a specific semantics and thus warranted special treatment.) Landwehr [14]
positions the Bell and La Padula work relative to other (early) formal models
for computer security.
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