Chapter 10

Information Flow Control:
Advanced

There are various reasons that a A-observer could have access to the variables
in Vg) while a program S is executing.

e Variables in Vc) might be used to model the channels that a A-observer
reads while S is executing. Outputs produced during execution would be
implemented as updates to those variables.

e Malware concurrently executing on the same computer as S might be able
to monitor the state as S executes. If the program that was co-opted by
the malware has label A then the malware would become a A-observer.

Therefore, we now consider noninterference policies for settings where the Batch
and Asynchronous assumptions (page 253) that we had adopted for TINI are
replaced by:

Interactive. For a program S with variables V', a A-observer can read
variables in Vg, initially, during execution of S, and after terminating
executions of S.

Termination Detection. A A-observer can detect the termination of S.

Termination Detection implies that a A-observer seeing no change to the vari-
ables in V¢, can determine whether the apparent lack of activity is because
execution of S has terminated or because all of the variables that S is changing
are from Vg,.

10.1 Progress Sensitive Noninterference

Progress sensitive noninterference (PSNI) specifies that the initial values of
variables in Vi) do not affect whether S terminates and do not affect the values

275

September 2025 Copyright Fred B. Schneider All rights reserved.

276 Chapter 10. Information Flow Control: Advanced

of variables V¢, in the sequence of intermediate states produced by a terminating
or a non-terminating execution of S. So PSNI specifies limits on what could
be revealed about the initial values of variables in Vg, to a A-observer that can
detect if S has terminated and that can monitor the values of variables Vg
during an execution.

The following program illustrates how information about the initial values
of variables from Vg, might be revealed through the sequence of values assigned
to variables in V¢ during an execution—even though nothing about the initial
values of variables from Vg, is revealed in the final values of variables in Vcy.

bz y:=0; Lo 2:=0;
l3: if x =0 then {4 y:=1; l5: 2:=2 (10.1)
else lg: w:=4; l7: z:=2; lg: y:=1 ’

fi gg:

The initial value of x determines the order of updates to y and z in the if
statement. So if I'(x) = H, I'(y) = L, and T'(z) = L hold, then the sequence of
values assigned to variables y, z € V¢ in intermediate states reveals information
about the initial value of variable x € Vg . Yet program (10.1) does satisfy TINI,
because the final values of y and z are the same for all initial values of z.

S
For formally specifying PSNI, we define a predicate V —f»ps W that holds if
and only if executions of S from initial states that differ only in the values of
variables in V' produce indistinguishable sequences of values for the variables

s

in W. As an example, {x}—>ps {y,2} does not hold if S is program (10.1),
because different initial values for x can cause executions where the sequences
of values assigned to variables y and z during one execution can differ from
the sequences assigned during another. Figure 10.1 illustrates by giving two
execution traces, each specifying an initial state followed by the intermediate
states produced during an execution of program (10.1). We write “x ~ val” to
indicate that a state maps variable name = to a value wval, where 7 represents
an unknown value. So execution trace o describes the execution from an initial
state satisfying « = 0, and execution trace ¢’ describes execution from an initial
state satisfying = = 1.

s
For {x}—ps {y,2} to hold, the sequences of updates to the values for y
and z in o and in ¢’ is required to be indistinguishable. We can check this
requirement by constructing projected execution traces (a|{yﬁz}) and <0'|{y7z}),

L Progress insensitive noninterference (PINT) has also been studied. Tt drops the Termina-
tion Detection assumption. PINI thus requires that the initial values of variables in Vg, not
affect the values of variables V) in any prefix of the sequence of intermediate states produced
by executing S. PINI, however, does allow the initial values of variables in Vg, to affect when
or whether S terminates.

September 2025 Copyright Fred B. Schneider All rights reserved.

10.1. Progress Sensitive Noninterference 277

(20 J[z~0 J[z~=0 J[z~0 J[z~=0 J[xz~0
> ye? y=0 y+—0 y+—0 y=1 y—1
N A ze 7 z~0 2z~ 0 20 zm 2
[pc =Ly] | pe = Lo | [pe L] | pe = La] [pc = Es | | pe > Lo]
(21 [[z~1 J[z~1 J[z—=1 J[z—=4 ([z~4 [[z~0
o (Y27 [y 0 [Jy=0 ||y 0 | {y=0 f[ly=0 Jly~1
Tz ? z—7 z=0 z=0 z2=0 z+—2 z+=2
[pc = by] | pe Lo | [pe— L] | pe = Lo] | pc m L7 | [pc = Ls] | pc = Lo

Figure 10.1: Sequences ¢ and o’ of intermediate states for executions of (10.1)

which give the sequences of changed values for y and z.

oo (23] [220) [220) 12z [os] oo
CN Voot N ot I o] I Vo B Fiod| INLTE

s
The fourth states of (10.2) and (10.3) are different, so {z} —~ps {y, 2} does not
hold—information about the initial value of x would be revealed to an observer
that is monitoring y and z.

Construction of a projected execution trace (o|y) involves two steps: (i)
variables not in V are deleted from each state of o and (ii) runs of identical
states in the result are collapsed into a single state.? And predicate o =y o’
is defined to hold if de-stuttered trace projections (oly) and {(o’|y,) form trace
projections having the same length and having identical i states, for each i:

o=ya’t (oly)={(d']v)

We collapse runs of identical states when forming a projected execution trace
{(oly) in order to obtain the sequence of states that would be seen by an observer
monitoring V), since state transitions are detectable by such an observer only

2We formalize these steps, as follows. For a sequence o states, define o] to be its ith
state, o[i..] to be the suffix starting with o[¢], and trace projection |y to be the sequence of
state projections for the states in o:

aly: o1y o[2]]y ...

The de-stutter operation (o) collapses runs of identical states in o is defined formally by:

o iflen(c)=1 v (Vl<i<len(o): o[1l] =0o[i])
(o): 4 o[1] (o[2..]) iflen(c)>1 A o[1] #0[2]
(a[2..]) otherwise

September 2025 Copyright Fred B. Schneider All rights reserved.

278 Chapter 10. Information Flow Control: Advanced

if the value of some variable in V changes. Notice, a projected execution trace
(oly) might have finite length even though ¢ has infinite length—this case arises
with a non-terminating loop in which all assignment statements in the loop body
update variables that are not visibile to the observer.

s
The formal definition for ¥V —f>ps W employs a function [S]"(s) that, for
a deterministic program S, maps an initial state s to an execution trace that
begins with s and is followed by the (possibly infinite length) sequence of inter-
mediate states that would be produced by executing S. For defining PSNI, we
are concerned with pairs of projected execution traces that start in initial states
s and s’ satisfying s =; s".

V—/S—>ps Wi (Vs,s' € Initg: s = s = [ST"(s) =w [S]"(s")) (10.4)

s
So V—f>ps W holds if different initial values for variables in V result in indistin-
guishable projected execution sequences for variables in W.

s
To illustrate the use of definition (10.4), we check whether {x} /s {y,2}
holds when S is program (10.1). V is {y,z} (since V is {x}), and W is {y, z},
resulting in:

(Vs,8' € Inits: s =g 8 = [ST°(5) =0 [ST7()) (10.5)

S
The earlier claim that {x}—f>ps {y, 2} does not hold would be confirmed by
showing that (10.5) does not hold. The initial states of o and ¢’ in Figure 10.1
do satisfy antecedent s =g, .y s’, but consequent [S]"(s) =¢,.; [S]"(s") of
(10.5) does not hold, since (10.2) and (10.3) are different. As expected, we have
S

shown that {z} —ps {y, 2} does not hold.

We now have the building blocks needed for specifying that the values of
variables Vg, in initial states are not allowed to affect the termination of a
program S or affect the values of variables that a A-observer can monitor.

Progress Sensitive Noninterference (PSNI). For a deterministic pro-
gram S where the variables have labels from a set A with a partial order
c.

S
(V)\EA: V¢>\—/—>p5 VE)\) O
10.1.1 PSNI Enforcement

The possibility of non-termination by a while statement can cause an implicit
flow that violates PSNI. For example, whether while statement #; terminates
in IMP program

St x:=0;
lig: if 2 =0 then skip
else fy: whiley#0 do y:=y+1 end (10.6)
fi
0 x:=23

September 2025 Copyright Fred B. Schneider All rights reserved.

10.1. Progress Sensitive Noninterference 279

depends on which of y > 0 or y < 0 holds initially. Because final assignment
statement ¢ is neither in the body of while statement £ nor in the body of if
statement £i¢, guards z = 0 and y # 0 are not in Og (). These guards nevertheless
can affect whether assignment statement ¢ is reached: for ¢ to be reached, z = 0
must hold initially or y = 0 must hold eventually so that while statement f
terminates. Thus, there is an implicit flow from the variables in those guards to
target = of assignment statement ¢. If Te(2=0) uTe(y #0) ¢ I'(z) holds then
this implicit flow also is an illicit low—even though ¢ complies with ©g-Safe
Assignment Statements condition (9.26). We conclude that restrictions beyond
those required for enforcing TINI are needed for enforcing PSNI.

In general, there will be an implicit flow to any statement executed after a
while statement. This implicit flow conveys information about the values of the
variables in the while statment guard as well as the variables in the other guards
that could affect whether that while statement is reached. To characterize this
implicit flow to a statement ¢ in a program S, we form the set Ag(¢) containing
those guards that affect whether ¢ can be reached in some execution of S. So
the elements of Ag(¢) come from (i) control-flow statements in S having a body
that contains £ (i.e., ©g(¢)) and (ii) the subset Wy of the while statements in
S that, by not terminating, would prevent ¢ from being reached, where Gy is
the guard on a while statement fyy:

Ag(l): Os(f) v Uryen({Gw}uAs(lw)) (10.7)

Beware that for a statement £ in the body of a while statement, subset W,
used for (10.7) might include while statements appearing as alternatives to ¢
or appearing after £ in the program text. We see this for statement ¢: .Sy in the
program fragment:

while G;do if G then ¢: S;
else while G3 do S5 end
fi;

while G4 do S3 end
end

Certain choices for guards G; and statements S; in this program fragment could
result in G5 (a guard appearing in an alternative to £) and G4 (a guard appearing
after ¢) being members of Ag(¢). Both cases arise if £ can be executed after
the first iteration of outer-most while statement.

We account for illicit flows caused by guards affecting a while statement
that does not have assignment statement ¢ in its body by replacing ©g(¢) with
Ag(?) in ©g-Safe Assignment Statements condition (9.26).

Ag-Safe Assignment Statements. Ensure that

(I‘g(expr) U (L] Fg(G))) c I'(w) (10.8)

GeAg(b)

holds for each assignment statement ¢: w:= expr that S executes. O

September 2025 Copyright Fred B. Schneider All rights reserved.

280 Chapter 10. Information Flow Control: Advanced

Ag-Safe Assignment Statements condition (10.8) is more-stringent than ©g-Safe
Assignment Statements condition (9.26), since Og(¢) ¢ Ag(¢) holds according
to definition (10.7) of Ag(¢). This should not be surprising. TINT ignores non-
terminating executions; PSNI does not. The additional guards in Ag(¢) are
those guards that affect whether ¢ cannot be reached due to non-termination,
causing illicit flows ignored by TINI but not by PSNI.

Calculation of Ag(¢) is undecidable because Ag(¢) is defined in terms of
statement reachability—specifically, which while statements can prevent ¢ from
being reached. However, the calculation of Ag(¢) becomes straightforward for
programs .S that comply with some easily-checked restrictions.

Guard Restrictions for PSNI. If for every while statement fy with
guard Gy in a program S

(i) Te(Gw) = 14 holds, and
(ii) Te(G) = 1a holds for every guard G € Og(lyy).

then for every statement ¢ in S:* | |Te(G) = | |Te(G) O
GéAs(Z) GE@s(é)

So in programs satisfying restrictions (i) and (ii), Ag-Safe Assignment State-
ments condition (10.8) can be discharged by checking ©g-Safe Assignment State-
ments condition (9.26). The former is undecidable but the latter can be dis-
charged using a straightforward static analysis of S.

Extending IMP to Relax Guard Restrictions. Guard Restrictions for
PSNI requires that all iteration be controlled by variables with label 15.* Some
relaxation of the restrictions are possible, though, for looping that is guaranteed
to terminate. Only loops that sometimes terminate can cause implicit flows.

3Here is that derivation. From definition (10.7) for Ag(£) we get:

LITe(G) = LI Te(G) v | Te(@) (10.9)
GeAg(t) GeOg(e) o We
Ge(As(Lw)U{Gw })

Restrictions (i) and (ii) in Guard Restrictions for PSNI imply that for every subset W of the
while statements in a program S we have:

LI Te(G) = 1
Ly eW
Ge(As(bw)U{Gw})

So substituting into (10.9) (with W instantiated by Wy) we get

Ll Te(G) = [Te(G) u La
GeAg(L) GeOg (£)

4Compliance with this restriction on iteration also is necessary if we want to ensure that
delays caused by execution of while statements reveal information only about the values of
public variables. So if we are concerned with preventing side-channel attacks (as discussed in
§12.2) then compliance with this restriction is going to be required, anyway.

September 2025 Copyright Fred B. Schneider All rights reserved.

10.1. Progress Sensitive Noninterference 281

A static analysis cannot determine whether a while statement will always
terminate, due to the undecidability of the halting problem. However, a static
analysis can identify iteration that always terminates if the statements for defin-
ing loops in the programming language are restricted. The for-loop statement

for v:=expr to ezpr’ do T end (10.10)

would be an example of such a statement provided it is considered syntactically
correct only if: (i) v is an integer variable and considered an assignment state-
ment target; (ii) expr and expr’ are integer-valued expressions; and (iii) body T'
does not contain any assignment statements or for-loop statements with v as a
target or with any variable in Vars(ezpr’) as a target. In executions of for-loop
statement (10.10), body T is executed between zero and some bounded number
of times. The guard for for-loop statement statement (10.10) is defined to be
expr < v < expr’, since this predicate holds each time body T starts executing.
So for every statement ¢ in body T of a for-loop statement appearing in a
program S, expr < v < expr’ € Og(¢) will hold.

10.1.2 Enforcing PSNI with Typing Rules

To use type-correctness for enforcing PSNI, we employ judgements I',y ps S,
where typing context I' gives a label I'(v) to each variable v € Vars(S), control
context v is a label, and S is an IMP program. Validity for judgements I', y -ps S
is defined as follows.

Valid Judgements for PSNI. Judgement I',y -5 S for a deterministic
program S is valid if and only if

(i) (V)‘ €A Vsé)\ _/S—’ps VE/\)~

(ii) v e T'(w) holds for target w of every assignment statement in S. O

A program S is defined to be type-correct if judgement I',Lp +ps S can be
derived using the typing rules in Figure 10.2.° Each of theses typing rules
derives a judgement that is valid whenever all of the rule’s hypotheses are valid.
So if a program S is type-correct then I', Ly Fps S is valid and, due to (i) in
Valid Judgements for PSNI, the program will satisfy PSNI.

The typing rules in Figure 10.2 resemble the TINI typing rules in Figure 9.8,
but with rule WHILE modified to ensure that every while statement fy in a
type-correct program satisfies the requirements of Guard Restrictions for PSNI
(page 280). In particular, the use of L, for the control context in the hypothesis

5Here is a typing rule in case IMP is being extended with for-loop statements.

v ¢ tgts(S), tgts(S)n Vars(ezpr') = @,
Te(expr) =\, Te(expr’) =X, T'(v)=X",
yuAuXN N, T,yuduXNul 5 S

I', v tps for v:= expr to expr’ do S end

FOR:

where tgts(S) denotes the set of variables that are the targets of assignment statements in S.

September 2025 Copyright Fred B. Schneider All rights reserved.

282 Chapter 10. Information Flow Control: Advanced

vyuTe(expr) c T'(v)

SKIP: ——————— ASSIGN:

I, 7 +ps skip I,y ps v:=expr

Te(expr) =X, T,yudips S, Toyudeps S
" I',7 bps if ezpr then S else S’ fi

Te(expr) = La, T, 1aps S L,y bps S, Tybps S
WHILE: SEQ:

T, 1A Fps while exprdo S end |

Figure 10.2: Typing rules for PSNI compliance

and conclusion of rule WHILE forces I's (G) = 15 to hold for all G € ©g(fw). Since
every type-correct while statement fy is being restricted in this way, we can
conclude that Te (G) = 1y holds for all G € Ag(¢w). Rule ASSIGN, which ensures
that ©g-Safe Assignment Statements condition (9.26) holds for an assignment
statement, then also ensures that Ag-Safe Assignment Statements condition
(10.8) holds for that assignment statement.

10.1.3 Dynamic Enforcement of PSNI

By monitoring state changes as execution proceeds, a A-observer might be able
to detect that a dynamic enforcement mechanism has blocked an execution. To
account for this, we add

Blocking Detection. A A-observer can detect when execution of a program
becomes blocked by a dynamic enforcement mechanism.

to the Interactive assumption and the Termination Detection assumption.

Detecting that execution is blocked can result in an illicit implicit flow, as
the following IMP program illustrates if 0 < zy, I'(iL) = L, T'(xy) =H, and HZ L
hold.

St oL :=0;
while 7 < N do
if xy =1 then {: x =4 else skip fi (10.11)
iL::iL +1
end

Assignment statement ¢ does not comply with Ag-Safe Assignment Statements
condition (10.8), because ¢ appears in the body of an if statement with guard
ay =14 and Tg(zy = i) # I'(zL) holds. Moreover, a dynamic enforcement mech-
anism that blocks execution upon reaching ¢ would not prevent an L-observer
from deducing the initial value of zy by monitoring i —the last value of 7| that

September 2025 Copyright Fred B. Schneider All rights reserved.

10.1. Progress Sensitive Noninterference 283

the L-observer reads before detecting that execution has blocked is the initial
value of xy.

We conclude that a dynamic enforcement mechanism for PSNI must not
only prevent illicit explicit and implicit flows caused by assignment statements.
It must also prevent illicit detection flows, wherein detecting that an execution
has blocked allows a A-observer to learn information about the initial value of
a variable in Vg, based on the values assigned to variables in Vc) during the
execution. An illicit detection flow occurs whenever (i) a A-observer is able to
determine that execution became blocked upon reaching some statement ¢, and
(ii) T'(v) # A holds for some variable v € Vars(G) and some guard G € Ag(¥¢)
that was evaluated prior to execution becoming blocked. For example, program
(10.11) exhibits an illicit detection flow because reaching assignment statement
{ is the only reason that execution could become blocked, guard xy = i is
evaluated before execution becomes blocked, and I'(zp) ¢ L holds.

The following requirements, then, would be sufficient to ensure that a refer-
ence monitor enforces PSNI without causing illicit detection flows.

(i) To avoid illicit flows from an assignment statement ¢: w:= ezpr, execution
of the monitored program must be blocked before reaching ¢ if £ does not
satisfy Ag-Safe Assignment Statements condition (10.8).

(ii) To avoid illicit flows due to non-termination of a while statement 6y
with guard Gy, execution of the monitored program must be blocked
before reaching 4y if Te(Gw) # Ly holds or if T'e(G) # 1 holds for some
G € Ag(4y) that has been evaluated.

(iii) To avoid illicit detection flows, execution must not be blocked upon reach-
ing a statement ¢ unless I'c(G) = 15 holds, for all guards G € Ag(?).

Notice, requirements (i) and (ii) can be satisfied by blocking execution of the
monitored program at a control point that was reached before a problematic
statement is executed. Even given this flexibility to block execution early, re-
quirement (iii) presents an implementation challenge, since a reference monitor
must operate ignorant of code that has not yet been executed. So a reference
monitor that is invoked when a control-flow statement ¢ is reached cannot de-
termine if the body of ¢ contains a statement that should cause execution to be
blocked in anticipation of the need to satisfy requirements (i) or (ii).

One solution to the implementation challenge for requirement (iii) is to em-
ploy a reference monitor Rpg that is conservative and, therefore, proceeds as if
the body of every control-flow statement contains a statement that would cause
execution to be blocked for satisfying requirements (i) and (ii). Such a refer-
ence monitor would block any execution upon reaching a control-flow statement
having a guard G where I'e(G) # 15 holds. Given this (admittedly draconian)
restriction, I'e(G) = 1o holds for all guards that have been evaluated. Com-
pliance with requirements (ii) and (iii) is thus guaranteed. Also, because no
guard G will be evaluated where T's(G)) # 15 holds, all guards will have label
1A in composition Rpg >S5S of the reference monitor Rpg and S. So program

September 2025 Copyright Fred B. Schneider All rights reserved.

284 Chapter 10. Information Flow Control: Advanced

] upon S reaching e I action to be performed ‘
o w:=exrpr require(g (ezpr) c T'(w))
e if G then ... require(Te(G) = 1a)
ewhileGdo ... require(Te(G) = 1a)

Figure 10.3: Reference monitor Rpg for PSNI

Rps S satisfies Guard Restrictions for PSNI (page 280) and, therefore Ag-
Safe Assignment Statements condition (10.8) is equivalent to I's(ezpr) c I'(w),
which discharges requirement (i). The actions to implement reference monitor
Rps are given in Figure 10.3.

By design, any program that reference monitor Rpg executes without block-
ing is type-correct according to the the typing rules in Figure 10.2. A type-
correct program might be blocked by Rpg, though. As an illustration, if
I'(zp) # La holds then Rpg would block execution by

if zy =0 then zy:=xzy+1 else skip fi (10.12)

even though this program is type-correct. This establishes that Rpg is less
permissive than type-checking is for PSNI enforcement.

Moreover, no reference monitor can be more permissive than Rpg, because
(by definition) the statements in the body of a control flow statement cannot be
known by any reference monitor when that control flow statement is reached.
So, for example, if zy = 0 holds in initial states, then (by definition) a reference
monitor cannot distinguish between an execution of (10.12), a program that
satisfies PSNI, and an execution of

if xy =0 then zy:=xy+1
else while {rue do skip end
fi

a program that violates PSNI. For enforcing PSNI, the improved permissiveness
that is the goal of dynamic enforcement is not achieved by using a reference
monitor.

Hybrid Enforcement for PSNI. With a hybrid enforcement mechanism,
a reference monitor invokes a static analyzer before and/or during executions
of the monitored program. Results from the static analyzer enable reference
monitor actions to take into account code that could be executed in the future
and code that was an alternative to code had been executed.

Our implementation of a PSNI hybrid enforcement mechanism employs a
reference monitor Rypg that invokes a static analyzer Tg(-), where Tg(T) re-
turns true if fragment T of program S is guaranteed to terminate because T

September 2025 Copyright Fred B. Schneider All rights reserved.

10.2. Flow-Sensitive Noninterference 285

contains (i) no while statements and (ii) no assignment statement that would
be blocked by Ryps.

Figure 10.4 details the actions comprising Ryps. Execution of control-flow
statements are blocked by Rypg, as follows.

e A while statement with guard Gy is blocked if T'e (Gw) # 15 holds.

e An if statement with guard Gir and body T is blocked if Te(Grr) # Ia
holds and T contains a while statement that Rgps would block or T'
contains an assignment statementthat Rypgs would block.

This blocking prevents illicit detection flows, because a blocked execution reveals
no information about results obtained by evaluating any guard G that satisfies
I[e(G) # 15o. In addition, Ryps ensures compliance with Guard Restrictions
for PSNI, which allows Ag-Safe Assignment Statements condition (10.8) to be
checked for an assignment statement ¢ by using a stack where top() satisfies
(9.30). Ryps implements such a stack with the actions it performs when an if
or a fi is reached. (No change to the stack is needed when a while statement
is entered, because the guard label will be 14, so (9.30) continues to hold.)

Rups and Rpg both block the same while statements. Some if statements
that Rpg blocks are not blocked by Rypsg. For example, Ryps does not block
execution of (10.12) which, as we observed earlier, Rpg blocks. So Rypgs is more
permissive than Rpg. Moreover, since any static analysis can be formulated as
a type system, hybrid enforcement can be as permissive as any type system
or other form of static analysis. To be more permissive than this, a hybrid
enforcement mechanism would have to identify and ignore program fragments
that would violate PSNI but cannot be reached. No static analyzer can perform
such an analysis, since it requires solving an undecidable problem.

10.2 Flow-Sensitive Noninterference

We now consider programs in which some variables have labels that vary. A fized
variable has the same fixed label throughout all executions; a flexible variable,

\ upon S reaching e | action to be performed |
require(Te(G) =1a Vv (Ts(S") A Ts(S™)))
push(sps, top(sps) uTe(G))

e if G then S’ else S" fi

.fi e pop(sps)
ewhile G do S end require(Ie(G) = 14)
o w:=exrpr require(top(sps) uTs(expr) e I'(w))

Figure 10.4: Hybrid enforcement Rypg for PSNI

September 2025 Copyright Fred B. Schneider All rights reserved.

286 Chapter 10. Information Flow Control: Advanced

which we distinguish with tilde-topped names (e.g., ¥), has a label that can be
changed during an execution. Changing the label of a flexible variable allows
that variable to be used for different purposes during an execution.

To specify label assignments for both fixed and flexible variables, program
states come with a function-valued variable T'(-). The label that a program state
s gives to a fixed variable v is s.f(v), the label s gives a flexible variable 7 is
s.T(7), and the label s gives to an expression F is s.Tg(E) defined by

1A if F/ is a constant c
s.Te(E): s.T(v) if F is a variable v
| |sTe(E:) if Eis f(Ey, Fa,...,E,)
1<isn

We write just T'(v) or Tg (E) when the state is clear from the context or when
discussing fixed variables (since they have the same label in all states).
For defining flow-sensitive noninterference (F-PSNT), we generalize state pro-

s s

jections s|yy and then use V—f>,s W. Definition (10.4) for V —f,s W, employs
state projections s|yy for comparing values of a fixed set W of variables in
corresponding program states in certain pairs of executions. For F-PSNI, the
variables that are compared depends on their label assignments in the states be-
ing compared. We materialize that dependence by using state projections s|p(.,
where F(-) is a function giving the set F'(s) of variables to use for constructing
the state projection. The value of an anchored or flexible variable v in a state
projection s|p(.) is thus defined by:

slpey.v: sw ifveF(s)
)T ? otherwise

Then, to define F-PSNI, instead of using sets Ve and Vg, for the state projec-
tions in PSNI formal definition (10.4), we use the following functions Ve (+) and
Vga(+) from program states to sets of fixed and flexible variables:

VE)\(S)I {ve Vars(S) | Sf(v) =Dy Vp\(s): {ve Vars(S) | sf(v) ¢ A}
We get a definition for F-PSNI by combining these elements:

F-PSNI. For a deterministic program S having states that assign values
to fixed variables, to flexible variables, and to the function I' mapping
variable names to labels from a set A with a partial order c:

(Ve A: V¢A(~)7’ips Ver(4) =

10.2.1 Flexible Variables and Enforcement

We might expect that an update £: §:= expr (say) to a flexible variable § would
not violate F-PSNI if executing ¢ also gives T a new label:

T(@) = Te(expr) u || Te(@). (10.13)
GeAs(¥)

September 2025 Copyright Fred B. Schneider All rights reserved.

10.2. Flow-Sensitive Noninterference 287

However, as we shall see, such a label update can cause an F-PSNI violation.

The problem can be seen in a simple IMP program, where the set of labels
is ALy and f(:cH) = H holds. Two executions of such a program are depicted in
the following diagram—one execution where zy = 0 holds initially and the other
where it doesn’t.

ay=0: |T(@):=L (@) =H| |T(@ =H
i i
y:=0; ; if 2y =0 then §:=0 else skip fiT (10.14)
ap =0 |T(@) =L T[@) =L

Both executions terminate with the same value for i but different labels. Letting
s and s’ denote those two final states, s[g () = sls, () does not hold, since only
one of s|‘~/EL(_) and 8I|\7;L(-) gives a value to 7. So, by definition, F-PSNI does not
to hold. The value of guard xzy = 0 is being leaked through the different label
assignments.

A straightforward way to avoid such leaks is to associate a single label as-
signment I’y with each control point £ by adjusting the exit control points for
control-flow statements, as follows.

Preventing Variation in Label Assignments. For each flexible vari-
able T, give T a more restrictive label if needed to eliminate variation in
label T'(Z) when the exit control point ¢ for a control-flow statement is
reached. O

In (10.14), for example, variation in the label for § at the exit control point for
the if statement would be eliminated by changing that label from L to H before
or after the skip. Executions from any initial values of zy then would terminate
satisfying T(7) = H (without also granting L-observers additional access).

Leaks also can be avoided if there are different label assignments when the
exit control point for a control-flow statement is reached provided the following
holds.®

Matching Outcomes to Guards. If the body of a control-flow state-
ment S with guard Gg contains an assignment statement to a flexible
variable Z then make label T(Z) more restrictive, if necessary, to ensure
that Tg(Gs) € T(Z) holds when the exit control point for S is reached. []

6To see that Matching Outcomes to Guards stops a label f‘(@v) from leaking the value of
guard Gg to a A-observer, we analyze scenerios in which Ts (Gg) ¢ A holds and, therefore,
learning Gg is a leak. Consider two executions of a control-flow statement S, where guard
Gs was evaluated to different values and the executions terminated in states giving different
labels A\; and A2 to . For a A-observer to detect a difference in these labels then either A; € A
and A2 ¢ XA must hold or A2 = X and A\; # A must hold. Without loss of generality, we consider
the former and show that it is not possible because it results in a contradiction. Match-
ing Outcomes to Guards requires that fg(Gg) c A1 holds. So, by transitivity, we conclude
Te(Gs) € A, but that contradicts the earlier assumption that Tg (Gg) ¢ A holds.

September 2025 Copyright Fred B. Schneider All rights reserved.

288 Chapter 10. Information Flow Control: Advanced

Note that in implementing Matching Outcomes to Guards, an execution path
that itself has no assignment statement to a flexible variable ¥ (say) might
nevertheless require an update to label f(g) if alternative execution paths by
that control-flow statement do have assignment statements where 7 is the target.
For IMP programs, this implies:

e An if statement’s then or else alternative might have to update the
label of a flexible variable because that variable is a target in the other
alternative of that if statement.

e A while statement S that does not execute its body (because its guard
was initially false) might still have to update the label of a flexible variable
that is a target in the body of S.

To illustrate an application of Matching Outcomes to Guards, consider a
program having a set A mn = {L, M, H} of labels, where L = M c H holds. Fixed
variables xp and xy in this program satisfy f(a:M) =M and f(xH) = H. Two
executions are depicted.

e =0 |T(@) =1L [(y) = H
| !
y:=0;) if M =0 then £ y:=xy else skip Tfi
om0 |T(@) =L T'(H) =M
(10.15)

The updates to label T'(7) inserted after each assignment statement in (10.15)
are to comply with (10.13); the update after the skip statement is to comply
with Matching Outcomes to Guards. To see that the update after the skip
is necessary, observe that guard xy = 0 affects label f(g) by affecting whether
assignment statement ¢ is executed. So fg(mM =0)c f‘(’g]) needs to hold when
the if statement terminates—whether the then alternative or the the else
alternative has been taken.

Another way to justify the update to
T(7) after the skip in (10.15) is by ana- R A-observer
lyzing what a A-observer can learn when state | I'(%) read 7 7
the fi is reached. The table to the right _atif |atfi | L | M | H
lists that T'(7) is either M or H at that M =0 H no | no | yes
control point. Consequently (as listed in ~ am #0 M no | yes | yes
the L column of the table), an L-observer
cannot read ¥ no matter what value guard xy = 0 had. We conclude that an
L-observer can learn nothing about the guard evaluation from the different la-
bels for ¥ when execution reaches £fi. But an M-observer can detect whether
xm = 0 evaluated to true by attempting to read ¥, since f(y) =M holds if guard
xm = 0 evaluated to false but f(’g]) = H holds if the guard evaluated to true. This
difference does not cause a leak, though, because fg(xM =0) = M holds, so an

September 2025 Copyright Fred B. Schneider All rights reserved.

10.2. Flow-Sensitive Noninterference 289

M-observer is allowed to learn the value of guard) = 0. Finally, an H-observer
is able to read i whether the then or the else alternative was executed, and
the H-observer is also allowed to read guard xpm = 0.

10.2.2 Enforcing F-PSNI with Typing Rules

Typing rules can ensure compliance with Preventing Variation in Label Assign-
ments. In that case, label assignments for the control points in a program S
could be conveyed by a label annotated program—the program text for S along
with a label assignment T, for each control point £ in S.7

One way to represent a label annotated program is by using the notation
S/ T where S identifies a program and T is a function that maps each control
point £ in S (and perhaps other control points) to a label assignment. So upon
reaching control point £, function-valued variable T'(-) would be set to T* ().

Another representation is to insert a label annotation at each control point
in the program text. The label annotation “{I;}” inserted at a control point £
indicates that function-valued variable T'(-) be set to I; whenever control point
{ is reached during an execution. IMP programs have a control point before
and after each statement, so a label annotated IMP program can be represented
by inserting a label annotation before and after each statement in the program
text. Here is an example of a label annotated IMP program, assuming that the
S; are IMP assignment or skip statements and the I are label assignments.®

{Fl} 61: Sl {Fg}
ly: if G then {3} l5: So; {Ty}
else {I's} £4: S5 {Ts}
fi {T7}

It sometimes is helpful to combine the two kinds of representations for label
annotated programs, as follows.

{T'} §/T*: label assignment T'is associated with the entry control
point for S, and the label assignments given by I['* are
used for all other control points in S.

S/T* {I"}: label assignment I" is associated with the exit control
point for S, and the label assignments given by ['* are
used for all other control points in S.

"Flexible variables might have to be given more restrictive labels than required by Matching
Outcomes to Guards. So there will be programs that satisfy F-PSNI but are not type-correct.
Program (10.15) is an example. The label update T'(§) := M performed after the skip state-
ment is less restrictive from the label update (%) := H that would be required by Preventing
Variation in Label Assignments.

8The placement of label annotation “{T;}” immediately after S; and before if statement
5 illustrates that IMP sequential compositions S; S’ have a single control point serving both
as the exit control point of S and as the entry control point of S’. Also notice that the exit
control point for an if statement is distinct from the exit control points for its then alternative
and its else alternative. Therefore, the exit control point for an if statement always will have
two direct predecessor control points.

September 2025 Copyright Fred B. Schneider All rights reserved.

290 Chapter 10. Information Flow Control: Advanced

(T} §/T*{I"}: label assignment T' is associated with the entry con-
trol point for S, label assignment I" is associated with
the exit control point for S, and the label assignments
given by T'* are used for all other control points in S.

Judgements and Typing Rules for F-PSNI. To use type-checking for
enforcing F-PSNI, we employ typing rules that derive judgements 7 g5 S /I
for label annotated programs S/ T*. Validity of these judgements is defined as
follows.

Valid Judgements for FSNI. Judgement 7y g S /T*, where S is a
deterministic program, is valid if and only if

(i) (VAeA: V¢A(')7Zps VE)\())

(ii) v =T'(w) holds for target w of every assignment statement in S. O

A label annotated program S/ T* is considered type-correct if the typing rules
in Figure 10.5 can derive the judgement 1 +5 S/ T*. By design, those typing
rules only derive valid judgements from valid hypotheses. So a type-correct
label annotated program S /T will satisfy F-PSNI, due to (i) in the definition
validity for 1 g S/T*.

The typing rules for control-flow statements are the key to having a label
annotated program be the conclusion of each typing rule, thereby ensuring that
different executions reaching the same control point give the same labels to the
flexible variables. Different label assignments arise when a given control point
is reached only if different execution paths are taken. That requires executing
a control-flow statement. But rule IF mandates the same label assignment for
the exit control point of the then alternative as for the else alternative, and
rule WHILE mandates the same label assignment before each evaluation of the
while statement guard. So in type-correct programs, different label assignments
cannot arise when a given control point is reached.

To enforce F-PSNI, the typing rules also must reject programs that would
allow A\-observers to distinguish executions starting from initial values that differ
only in the values of anchored or flexible variables v satisfying T'(v) # A. The
PSNI typing rules in Figure 10.2 achieve this for programs that only have fixed
variables. The F-PSNI typing rules in Figure 10.5 can be seen as generalizing
these PSNI typing rules in order to accomodate flexible variables. Specifically,
judgements in the F-PSNI typing rules have label annotated programs in place
of the programs appearing in the judgements of the PSNI typing rules, the
F-PSNI typing rules include label annotations giving the mandates discussed
above regarding label updates due to control-flow statements, and rule F-ASSIGN
has been added for characterizing the label assignment produced by assignment
statements that have flexible variables as targets.

Figure 10.6 illustrates the use of the F-PSNI typing rules, giving a derivation
to show that program (10.14) is type-correct and, therefore, satisfies F-PSNIL.®

9The set of labels used by this program is Aiy = {L,H}. Therefore Iayy is L, so type-
correctness requires derivation of judgement L 5 S/ T*.

September 2025 Copyright Fred B. Schneider All rights reserved.

10.2. Flow-Sensitive Noninterference 291

Vg S1/TEATY, vrx {0} S2/T
SKIP: SEQ:

v g {T'} skip {T'} Y S1 /T {T} Sy /T

~yuTg(expr) e T'(w)
A-ASSIGN: F-ASSIGN:

v g {T'} z:=expr {T'} v {T} U=expr {T[vyule(expr)]}

Le(expr) = A, yudeg (T} 51 /T {I'), yudeg (I} S /T (1)
IF: — =
v g {T'} if expr then {T'} S1 /I {I'} else {I'} So /T4 {I'} £i {I'}

Te(expr) = 1, 1arge {T}S/T*{T}
1a s {T} while exprdo {T'} S/T* {I'} end {I'}

WHILE:

v ey, T{ely, Toclh, yig {T1}S/T*{Ts}
v g {1} S/T* {Th}

RELAB:

Notation:
[[Z < Te(expr)]: T, except that T has label e (expr)
rcl”: (Yo,ve Vars(S): T'(v)=T"(v) A T'(®) =I'(7))

Figure 10.5: Typing rules for F-PSNI compliance

Steps 4 and 5 derive judgements for the then and else alternatives. These
judgements have exit control points that mandate different labels for flexible
variable 7, necessitating step 7 to change label f(ﬂ) at the exit control point
of the else alternative (step 5) to match the label assignment for § at the exit
control point of the then alternative (step 4). The hypotheses for rule IF then
can be discharged using the judgements in steps 4 and 7.

When using the F-PSNI typing rules to derive a label annotated program
for an if statement, it is not unusual to start by deriving judgements for the
then and else alternatives, but with different label assignments mandated for
their exit control points:

vrss T} S /T AT} v g (D) S2/T5 {Ta}

Because labels are elements of a lattice, there will always exist a a label assign-
ment I's where I's(Z) is I'1(Z) u Ty (Z) for each flexible variable ¥ (and I's(z)
is I'1 (z) for each fixed variable x). By construction, I's satisfies I'; € I's and
I's =T'5. Rule RELAB then can be used to derive

virss (T} S1/TT {Ts} v g {T) S2/T5 (T3}

September 2025 Copyright Fred B. Schneider All rights reserved.

292 Chapter 10. Information Flow Control: Advanced

L Lirg {T}7:=0;{T[7 < L]}
.. Instance of rule F-ASSIGN.

2. LI_IFg(l’H = O) —ps {F[g <~ L]}
7:=0
{(T[7 <« LD« Lule(zn=0)ul]}
.. instance of rule F-ASSIGN.
3. Py« LD«Lulg(zy=0)ul]) = T[g<H]
.. substitution and simplifcation.

4 LuTe(en=0) 5 (T[T« L]} 7:=0 {(T[F<H])}
.. instance of rule RELAB with 2, 3.

5. LuTe(zn =0) F {T'[y < L]} skip {T'[g«< L]}
.. instance of rule SKIP.

6. T[g<L] c T[g«<H]
... definition of E.

7. Lu Fg(l‘H = 0) Fps {F[gﬁ L]} skip {F[ge H]}
.. instance of rule RELAB with 5, 6.

8. L+g {T[y<L]}
if zy =0then {['[g< L]} 7:=0 {I[g<H]}
else {[[J«< L]} skip {I'[F<H]}
fi
{I'[y<H]}
.. instance of rule 1IF with 4, 7.

9. Lrg {T} 7:=0; {T[7<L]}
if zy =0then {[[g<« L]} 7:=0 {T[g<H]}
else {I'[g< L]} skip {T'[g<H]}
fi

{T[7<H]}
.. instance of rule SEQ with 1, 8.

Figure 10.6: Example F-PSNI derivation

September 2025 Copyright Fred B. Schneider All rights reserved.

10.3. *Other Noninterference Policies 293
which are the hypotheses needed for rule IF.

10.2.3 Dynamic Enforcement of F-PSNI

A reference monitor alone cannot ensure compliance with Preventing Variation
in Label Assignments or with Matching Outcomes to Guards. This is because
reference monitor actions based on untaken execution paths would be necessary
for that compliance. For example, with the programs in (10.14) and (10.15),
an if statment executes either the then alternative or the else alternative but
the label updates required when that if statment terminates depend on the
assignment statement targets in both the then and the else alternatives.

With hybrid enforcement mechanisms, a reference monitor is augmented
with the capability to analyze code that has not yet been executed. Seeking
greater permissiveness than allowed by Preventing Variation in Label Assign-
ments (required for type-correctness), we develop a hybrid enforcement mech-
anism for compliance with Matching Outcomes to Guards. It uses an analyzer
ftgts(S) that provides the set of flexible variables that are targets of assign-
ment statements in a code fragment S. Compliance with Matching Outcomes
to Guards is then maintained by executing

forall 7 e ftgts(S) do T'(Z) := T(Z) uTe(Gs) end

whenever execution reaches the end of a control-flow statement S with guard
Gs.

A dynamic enforcement mechanism to implement these label adjustments is
given in Figure 10.7. It employs a stack sf containing pairs (V, Ag), where V is
a set of flexible variables with labels to be adjusted and A\g is the label to use for
the adjustment. To enforce F-PSNI, this mechanism would be combined with
Rups in Figure 10.4. Or, it could be combined with Reference monitor Ry in
Figure 9.12 to enforce TINI in programs that have fixed and flexible variables.

10.3 *Other Noninterference Policies

Noninterference policies have the form
(Vs,s" e Initg: s~y s = [S]"(s) ~, [S]"(s")) (10.16)

where predicate s ~, s’ is satisfied by initial states s and s” that are indistinguish-
able to an attacker, function [S]"(s) evaluates to a description of the execution
effects produced when S is started in state s, and predicate £ », &' is satisfied if
¢ and ¢’ are descriptions of execution effects that would be indistinguishable to
attackers. Different choices for predicate ~,, function [S]7(-), and predicate w,
result in the various different noninterference policies discussed in this chapter
as well as many others.

The execution effects that [S]7(-) captures reflect the assumptions we are
making about what can be monitored by attackers. For TINI, we assumed

September 2025 Copyright Fred B. Schneider All rights reserved.

294 Chapter 10. Information Flow Control: Advanced

] upon S reaching e I action to be performed ‘
e if G then S'else S” fi | push(sf, (ftgts(S") u ftgts(S"), Te(@)))
.fie (V, Ag) = top(sf)

forall eV do T'(Z) := T'(F) U \g end;
pop(sf)

ewhile G do S end push(sf, (ftgts(S), Te(G)))

while Gdo Send e (V, Ag)=top(sf)
forall eV do T'(Z) := T(F) u\g end;
pop(sf)

Figure 10.7: Compliance for matching outcomes to guards

that attackers can monitor only the final states of terminating executions, so
[ST7() is a function (viz. [S](+)) from initial states to final states; for PSNI,
we assumed that an attacker can monitor intermediate states of all executions,
so [S]"(-) is a function (viz. [S]*"(-)) from initial states to execution traces.

But thus far we have considered only deterministic programs. Nondetermin-
istic programs and concurrent programs can be handled, too. We use a function
[ST7(:) that evaluates to sets of execution effects.

e With a nondeterministic program S, each element in set [S]"(s) would
represent the execution effects resulting from one of the possible sequences
of outcomes for the nondeterministic choices made during an execution
that starts in initial state s.

e With a concurrent program S, each element in set [S]"(s) would rep-
resent the execution effects produced by one of the possible interleavings
of atomic actions by the processes that comprise S, starting from initial
state s. Which interleavings are considered possible would depend on the
scheduler, capacity bounds on resources, and the semantics of any syn-
chronization mechanisms that processes use.

The straightfoward definition for relation X'~, X’ in (10.16) is X = X’. However,
in situations where an attacker can account for differences due to nondetermi-
nacy or scheduling choices, a weaker definition is more suitable:

Xy X's (VEeX: (3 e X ExE'))

With this weaker definition, [S]"7(s) ~, [S]"(s") holds if an attacker observing
the execution effects from an initial state s cannot rule out having witnessed the
execution effects from a different initial state s’. Noninterference policies where
~, involves an existential quantifier are known as possibilistic noninterference.

September 2025 Copyright Fred B. Schneider All rights reserved.

Notes and Reading 295

With nondeterministic and with concurrent programs, we might also want to
impose limits on what an observer might learn by running multiple experiments.
Such a set of experiments could allow the attacker to approximate the likelihood
of an initial state given how often certain execution effects are produced.'®
For those settings, we would want to use a version of noninterference where
[ST7(-) produces a probability distribution for possible execution effects and
[ST7(s) ~, [S]7(s") holds if the probability distributions [S]"(s) and [.S]"(s")
are indistinguishable to attackers.

Finally, we should acknowledge that an attacker must monitor some system
interface to learn about execution effects. The noninterference policies discussed
in this chapter avoided the details of those interfaces by using states to describe
the information that is available to observers. The domain and range for those
states reflect assumptions about what execution effects an attacker is and is not
able to monitor. For example, TINI and PSNT are defined in terms of states that
map variables to values and labels, because these policies assume that attackers
are limited to reading (certain) variables.

Changes to variables are not the only observable execution effects, though.
The passage of time is an execution effect, and measuring the time that elapses
between changes to a variable while a given program executes can reveal infor-
mation about the values of other variables. One reason is that the time required
for performing certain operations can depend on the values of the operands. An-
other reason is that access to a variable may depend on whether that variable
was recently accessed and, therefore, resides in a cache. So from information
about execution timing, an attacker sometimes can make inferences about the
values of variables that the attacker cannot read directly. A noninterference
policy could be formulated that prohibits such leaks—but its states would have
to provide information about execution times, cache contents, and any other
hardware or operating system resources that affect execution timings.

Notes and Reading for Chapter 10

Success with enforcing TINI in sequential programs prompted researchers to
investigate defending against more-capable attackers, developing enforcement
mechanisms that would be more permissive, and supporting programning lan-
guages that had nondeterminacy and concurrency.

The first step was new typing rules in Volpano and Smith [18] for enforcing
(what later became known as) termination-sensitive noninterference (TSNI).
With TSNI, attackers are assumed able to distinguish between terminating and

10As an example, consider the nondeterministic program
S: if x>0 then [z :=1 blgg z:=2] else [z :=1 05 z:=2] fi

where [S' 1, S'] is the syntax for a statement that executes S or S’, choosing S with probability
1 - p and choosing S’ with probablilty p. An L-observer who instigates multiple executions
of S should be able to predict whether xy > 0 holds based on the distribution of the final
values observed for x| in those executions—if x| = 1 holds often then zy > 0 holds with high
probability.

September 2025 Copyright Fred B. Schneider All rights reserved.

296 Chapter 10. Information Flow Control: Advanced

nontermination executions. Therefore, TSNI defends against more-capable at-
tackers than TINI, since TINI ignores nonterminating executions.

Another significant step towards a more realistic model for attackers was the
advent of an interactive model of computation in Askarov et al. [2] to replace the
batch model used for TINT and TSNI. In this interactive model, attackers could
observe outputs and/or intermediate states during an execution. The additional
leaks that became possible were captured by new variants of noninterference,
later named progress insensitive noninterference (PINI) and progress sensitive
noninterference (PSNI) by Askarov and Myers [3]. Askarov et al. [2] also shows
that that the certification conditions in Denning [5] to enforce TINI in the
batch model of computing suffice for enforcing PINI in this interactive model
of computing, which explains why the typing rules in Figure 10.2 resemble the
typing rules in Figure 9.8. Finally, Askarov et al. [2] debunks a widely-held
belief that only a single secret bit would be leaked when observers can detect
that an execution has been terminated by a dynamic enforcement mechanism.

The design of more-permissive enforcement mechanisms has also attracted
considerable attention. Most type systems had employed flow-insensitive analy-
ses. So the program x| :=xy; x| := 63, which satisfies TINI, would be rejected be-
cause it contains a subprogram (viz. x| :=xy) that—in isolation—violates TINI.
Hunt and Sands [7] gives typing rules that implement a flow-sensitive analysis,
thereby avoiding such specious rejections.!! Those typing rules (the basis for
the typing rules in Figure 10.5) associate assertions with control points; each
assertion gives a label assignment. Labels assigned to variables are allowed to
change as execution proceeds, a flexibility Denning [5] allows but the subse-
quent type system formalization in Volpano, Smith, and Irvine [17] did not.
Moreover, Hunt and Sands [7] observes that the label assignments generated by
their typing rules is an abstract characterization of dependencies, leading to the
surprising result: a flow-sensitive analysis of a program having flexible variables
can be replaced by a flow-insensitive analysis of an equivalent program where
all variables have a fixed label assignment if assignments statements to fresh
variables can be added.

Dynamic enforcement mechanisms—reference monitors and hybrid enforce-
ment mechanisms—were seen as another promising avenue for achieving in-
creased permissiveness. Hedin and Sabelfeld [6, §4.3] surveys dynamic enforce-
ment mechanisms found in the literature prior to 2012. These mechanisms differ
in the information flow policy they enforce, the events they intercept, the ac-
tions they take to prevent a policy violation, the analyses they use, and whether
they deliver increased permissiveness over a type system. Space does not permit
giving a detailed enumeration here.

‘We might have expected that a dynamic enforcement mechanism would have
to analyze code that will not be executed, since implicit flows can be caused

M Hunt and Sands [7] is not the first flow-sensitive analysis for checking noninterference. Tt
is preceded by Amtoft and Banerjee [1], which gives a Hoare-style logic that implements a
flow-sensitive analysis for verifying that certain variables are independent. The first Hoare-
style logic for reasoning about information flow policies of sequential and concurrent programs
appears in Reitman and Andrews [11], but that analysis was not flow-sensitive.

September 2025 Copyright Fred B. Schneider All rights reserved.

BIBLIOGRAPHY 297

by assignment statements in the untaken alternative of an if statement or an
unexecuted body of a while statement. However, Sabelfeld and Russo [14]
shows that a reference monitor like Rp; can enforce TINI without analyzing
untaken code. The relationship between the permissiveness of type systems
(which typically analyze all statements in a program) and reference monitors
(which only analyze the statements that execute) is complex. For flow-sensitive
labels and programs that produce output, Russo and Sabelfeld [12] shows that a
reference monitor to enforce PINI will not accept all executions of programs that
are considered type-correct by the Hunt and Sands [7] flow-sensitive type system.
So neither enforcement mechanism is more permissive than the other. However,
Russo and Sabelfeld [12] also shows that a hybrid enforcement mechanism can
be more permissive than the typing rules in Hunt and Sands [7].

To learn more about information flow control, good starting points are the
Sabelfeld and Myers survey [13] of language-based approaches and the Hedin
and Sabelfeld tutorial [6] on how various forms of noninterference can be en-
forced. See Kozyri et al. [8] for an in-depth exploration of the various kinds of
information flow policies. Sabelfeld and Sands [15] is the authoritative treatment
of declassification. Also, consider experimenting with a programming language
like Jif [10, 9] or Flow Caml [16], where types enforce information flow control.
Jif extends Java and has been used to build non-trivial applications. One such
application that is well documented is the Civitas [4] coercion-resistant, univer-
sally and voter verifiable electronic voting system. Flow Caml is a prototype
that extends the Caml language.

Bibliography

[1] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical
form. In Roberto Giacobazzi, editor, Proceedings 11th International Sympo-
sium on Static Analysis (SAS), volume 3148 of Lecture Notes in Computer
Science, pages 100-115, Berlin, Heidelberg, August 2004. Springer-Verlag.

[2] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In Pro-
ceedings of the 13th European Symposium on Research in Computer Secu-
rity: Computer Security, ESORICS ’08, pages 333-348, Berlin, Heidelberg,
October 2008. Springer-Verlag.

[3] Aslan Askarov and Andrew Myers. A semantic framework for declassi-
fication and endorsement. In Andrew D. Gordon, editor, Programming
Languages and Systems, ESOP’10, pages 64-84, Berlin, Heidelberg, March
2010. Springer-Verlag.

[4] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas:

Toward a secure voting system. In 2008 IEEE Symposium on Security and
Privacy, pages 354-368. IEEE Computer Society, May 2008.

September 2025 Copyright Fred B. Schneider All rights reserved.

298 BIBLIOGRAPHY

[56] Dorothy E. Denning. Secure Information Flow in Computer Ssystems. PhD
thesis, Purdue University, USA, 1975.

[6] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow
control. In Tobias Nipkow, Orna Grumberg, and Benedikt Hauptmann,
editors, Software Safety and Security — Tools for Analysis and Verification,
volume 33 of NATO Science for Peace and Security Series — D: Information
and Communication Security, pages 319-347. IOS Press, 2012.

[7] Sebastian Hunt and David Sands. On flow-sensitive security types. In
J. Gregory Morrisett and Simon L. Peyton Jones, editors, Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 06, pages 79-90. ACM, January 2006.

[8] Elisavet Kozyri, Stephen Chong, and Andrew C. Myers. Expressing in-
formation flow properties. Foundations and Trends Privacy and Security,
3(1):1-102, 2022.

[9] A.C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow (software release), July 2001.
http://www.cs.cornell.edu/jif.

[10] Andrew C. Myers. Jflow: Practical mostly-static information flow control.
In Andrew W. Appel and Alex Aiken, editors, Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 99, pages 228-241. ACM, January 1999.

[11] Richard P. Reitman and Gregory R. Andrews. Certifying information
flow properties of programs: An axiomatic approach. In Alfred V. Aho,
Stephen N. Zilles, and Barry K. Rosen, editors, Conference Record of the
Siaxth Annual ACM Symposium on Principles of Programming Languages,
POPL 79, pages 283-290. ACM, January 1979.

[12] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proceedings of the 23rd IEEE Computer Security Foun-
dations Symposium, CSF ’10, pages 186-199. IEEE Computer Society, July
2010.

[13] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communication, 21(1):5-19,
2003.

[14] Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research. In Amir
Pnueli, Irina B. Virbitskaite, and Andrei Voronkov, editors, Perspectives
of Systems Informatics, 7th International Andrei Ershov Memorial Con-
ference (PSI), volume 5947 of Lecture Notes in Computer Science, pages
352-365. Springer, June 2009.

September 2025 Copyright Fred B. Schneider All rights reserved.

BIBLIOGRAPHY 299

[15] Andrei Sabelfeld and David Sands. Declassification: Dimensions and prin-
ciples. Journal of Computer Security, 17(5):517-548, 2009.

[16] Vincent Simonet. The Flow Caml system (ver-
sion 1.00): Documentation and user’s manual.
http://cristal.inria.fr/~simonet/soft /flowcaml/manual /index.html, July
2003.

[17] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. Journal of Computer Security, 4(2/3):167—
188, 1996.

[18] Dennis M. Volpano and Geoffrey Smith. Eliminating covert flows with min-
imum typings. In 10th Computer Security Foundations Workshop (CSFW
’97), pages 156-169. IEEE Computer Society, June 1997.

September 2025 Copyright Fred B. Schneider All rights reserved.

