
Nexus Authorization Logic (NAL):
Design Rationale and Applications

FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

Cornell University

Nexus Authorization Logic (NAL) provides a principled basis for specifying and reasoning about

credentials and authorization policies. It extends prior access control logics that are based on

“says” and “speaks for” operators. NAL enables authorization of access requests to depend on
(i) the source or pedigree of the requester, (ii) the outcome of any mechanized analysis of the

requester, or (iii) the use of trusted software to encapsulate or modify the requester. To illustrate
the convenience and expressive power of this approach to authorization, a suite of document-

viewer applications were implemented to run on the Nexus operating system. One of the viewers

enforces policies that concern the integrity of excerpts that a document contains; another viewer
enforces confidentiality policies specified by labels tagging blocks of text.

Categories and Subject Descriptors: D.2.0 [General]: Protection mechanisms; D.4.6 [Security and Protection]:
Access controls

General Terms: Security

Additional Key Words and Phrases: Authorization Logic, Credentials-based Authorization, CDD

1. INTRODUCTION

In credentials based authorization, requests to access a resource or obtain service are ac-
companied by credentials. Each request is either authorized or denied by a guard. The
guard is a reference monitor; it uses credentials that accompany the request, perhaps aug-
mented with other credentials or information about system state, to make an authorization
decision that enforces some given policy. Authorization decisions thus can be decentral-
ized, with authority shared by the guard with the principals who issue credentials. Ac-
countability for authorization decisions is made explicit through the credentials.

An untrustworthy principal might attempt accesses that violate a security policy, whereas
(by definition) a trustworthy one wouldn’t. So a guard would never err in authorizing
requests made by trustworthy principals. However, determining whether a principal is
trustworthy is rarely feasible, so guards typically substitute something that is easier to
check.

Access control lists, for example, embody an axiomatic basis for making authorization
decisions. Axioms are statements that we accept without proof. With guards that use an
access control list, we accept without proof that all principals on the access control list are
trustworthy, and the guard only authorizes requests made by these principals. The same

Authors’ addresses: Department of Computer Science, Cornell University, Ithaca, NY 14853 USA; email:
{fbs,kwalsh,egs}@cs.cornell.edu.
Supported in part by NICECAP cooperative agreement FA8750-07-2-0037 administered by AFRL, AFOSR grant
F9550-06-0019, National Science Foundation grants 0430161, 0964409, and CCF-0424422 (TRUST), ONR
grants N00014-01-1-0968 and N00014-09-1-0652, and grants from Microsoft and Intel. The views and con-
clusions contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of these organizations or the U.S. Government.

2 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

rationale is applied when a system uses a principal’s reputation as the basis for deciding
whether that principal’s requests should be authorized. An axiomatic basis is also implicit
when a guard authorizes requests to run some executable only if the value of a hash in-
dicates the executable is unaltered from a standard distribution or if a digital signature
establishes the executable was endorsed by some approved software provider.

Analysis provides a way to predict whether certain behaviors by a program P are possi-
ble, so some guards employ an analytic basis for authorizing requests made by principals
executing P . Specifically, an analysis establishes that P is incapable of certain abuses and,
therefore, granting the request will not enable the security policy to be violated. Proof-
carrying code [Necula 1997] is perhaps the limit case. In this approach, a program P is
accompanied by a proof that its execution satisfies certain properties; a request to execute
P is authorized if and only if a proof checker trusted by the guard establishes that the proof
is correct and that the properties proved are sufficiently restrictive. As another example,
some operating systems [Bershad et al. 1995] will authorize a request to load and execute
code only if that code was type checked; type checking is a form of analysis, and programs
that type check cannot exhibit certain malicious or erroneous behaviors.

Finally, a synthetic basis for authorization is involved whenever a program is trans-
formed prior to execution, if that transformed program can be trusted in ways the original
could not. Examples of this approach include sandboxing [Goldberg et al. 1996], software-
based fault isolation (SFI) [Wahbe et al. 1993], in-lined reference monitors (IRM) [Erlings-
son and Schneider 1999], and other program-rewriting methods [Hamlen et al. 2006; Sirer
et al. 1999].

The discussion above suggests that a single basis for establishing trustworthiness is un-
likely to suffice throughout an entire system. Different schemes are going to be useful in
different settings. And schemes that combine bases are also useful—for example, type
safety can be enforced by using a hybrid of program analysis (an analytic basis) and code
generation that adds run-time checks (a synthetic basis). So we conjectured that substan-
tial benefits could come from an authorization framework that incorporates and unifies
axiomatic, analytic, and synthetic bases. We seem to be the first to classify authoriza-
tion schemes according to this taxonomy and the first to entertain creating such a unifying
framework. Our experience in designing that framework and some initial experiences in
using it are the subject of this paper.

—We developed a logic NAL (Nexus Authorization Logic) for specifying and reasoning
about credentials and authorization policies. NAL makes minor extensions to Abadi’s
access control logic CDD [Abadi 2007; 2008], adding support for axiomatic, analytic,
and synthetic bases1 and adding compound principals (groups and sub-principals) that
help bridge the gap from the simplifications and abstractions found in CDD to the prag-
matics of actual implementations. We show that NAL, with only these two kinds of
compound principals, suffices for a wide range of authorization policies in service of
some novel practical applications.

—We implemented a suite of document-viewer applications that run on Nexus, and we
discuss two2 in this paper. TruDocs (Trustworthy Documents) controls the display

1In fact, any authorization logic that supports a sufficiently expressive language of beliefs should be able to
enforce authorization policies according to axiomatic, analytic, and synthetic bases.
2We also have developed a third application CertiPics (Certified Pictures), discussed in Walsh [2011], which

Nexus Authorization Logic (NAL) · 3

A ::= {|v : F|} | A.τ compound principals

F ::= f (τ, . . .) | A says F | x | (∀x : F)

| F ∧ F | F ∨ F | F ⇒ F | true formulas

| (∀v : F) | (∃v : F)

Fig. 1. NAL syntax.

of documents that contain excerpts whose use is subject to restrictions; it employs an
analytic basis for authorization. ConfDocs (Confidential Documents) protects confi-
dentiality of documents built from text elements that have security labels; it employs
both analytic and synthetic bases for authorization.

NAL was designed for use in a new operating system, Nexus [Shieh et al. 2005], which
employs a TPM [Trusted Computing Group] secure co-processor so that it has a single
hardware-protected root of trust. NAL’s scheme for naming principals and NAL’s opera-
tors for attribution and delegation were informed by the needs of Nexus and the capabilities
a TPM offers. However, we have also found NAL to be valuable in other settings (inde-
pendent of Nexus) where authorization or attestation are important elements. Details about
uses of NAL in Nexus and in these other system settings will be reported elsewhere; here,
we focus on explaining why NAL has the features it does and why we did not include
others.

2. NEXUS AUTHORIZATION LOGIC (NAL)

We start with an informal introduction to NAL, focusing on how NAL can be used to
specify credentials and authorization policies. Principals with modalities says and speaks-
for (→) are what makes NAL different from the higher-order predicate logics often used
in programming; the rest of this section discusses those differences in some detail.

The syntax of NAL formulas is given in Figure 1, and some useful NAL abbreviations
appear in Figure 2. There and throughout this paper, identifiers typeset in lower-case sans-
serif font (e.g., x) denote propositional variables; identifiers typeset in lower-case italic
font (e.g., v) denote first-order variables; v abbreviates a list v1, v2, . . . , vn; identifiers
typeset in upper-case italic font (e.g., A, B, ...) denote principals; and identifiers typeset
in calligraphic font (e.g., F , G, ...) denote NAL formulas. The language for terms τ is left
unspecified.

We write

RULENAME:
F1, F2, ..., Fn

F

to define an inference rule RULENAME that allows a conclusion F to be inferred assuming
that premises F1, F2, ..., Fn have been. The appendix gives the complete list of NAL ax-
ioms and inference rules. We focus below on aspects of the logic concerned with principals
and the says and speaks-for modalities.

enforces the integrity of displayed digital images by imposing chain-of-custody restrictions on the image-editing
pipeline.

4 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

false : (∀x : x)

¬F : (F ⇒ false)

A→ B : (∀x : (A says x)⇒ (B says x))

A
v:F−−→ B : (∀v : (A says F)⇒ (B says F)) for v not free in A or B

Fig. 2. NAL abbreviations.

Like CDD, NAL is a constructive logic. Constructive logics are well suited for reasoning
about authorization [Garg and Pfenning 2006], because constructive proofs include all of
the evidence used for reaching a conclusion and, therefore, information about accountabil-
ity is not lost. Classical logics allow proofs that omit evidence. For example, we can prove
G using a classical logic by proving F ⇒ G and ¬F ⇒ G, since from these theorems we
can conclude (F ∨ ¬F) ⇒ G, hence true ⇒ G due to Law of the Excluded Middle. This
classical proof, however, does not say whether it is F or it is ¬F that is the evidence for
G, and thus the proof is arguably unsatisfactory as a rationale that G holds.

Beliefs and says . NAL, like its predecessors [Abadi 2007; 2008; Abadi et al. 1993;
Bauer et al. 2005; Becker and Sewell 2004; DeTreville 2002; Jim 2001; Lesniewski-Laas
et al. 2007; Li et al. 2002], is a logic of beliefs. Each principal A has a worldview ω(A),
which is a set of beliefs that A holds or, equivalently, formulas that A believes to be true.
NAL formula A says F is interpreted to mean: F ∈ ω(A) holds.

NAL extends CDD by allowing formulas to include system- and application-defined
predicates in place of propositions. Since NAL terms can include the names of principals,
NAL formulas can convey information about, hence potential reasons to trust, a principal.
For example, the NAL formula

Analyzer says numChan(P , “TCP”) = 3 (1)

holds if and only if worldview ω(Analyzer) contains a belief that numChan(P , “TCP”) =
3 holds. System-defined function numChan(P , “TCP”) yields the number of TCP con-
nection open at P . A NAL formula like (1) could specify a credential or specify (part of)
an authorization policy. As a credential, formula (1) asserts that Analyzer believes and is
accountable for the truth of numChan(P , “TCP”) = 3; as a specification for an authoriza-
tion policy, formula (1) requires a guard to establish that numChan(P , “TCP”) = 3 is in
ω(Analyzer).

The worldview of each principal is presumed to contain all NAL theorems. NAL there-
fore includes a necessitation inference rule:

SAYS-I:
F

A says F

We assume a constructive logical theory for reasoning about system- and application-
defined predicates; SAYS-I asserts that those theorems are part of each principal’s world-
view.

Principals may hold beliefs that are not actually true statements and/or that are in conflict
with beliefs that other principals hold. Just because A says F holds does not necessarily
mean that F holds or that B says F holds for a different principal B. However, beliefs
that a principal holds are presumed to be consistent with beliefs that same principal holds

Nexus Authorization Logic (NAL) · 5

about its own beliefs:

SAYS-E:
A says (A says F)

A says F

Deduction and Local Reasoning. A principal’s worldview is assumed to be deductively
closed: for all principals A, any formula G that can be derived using NAL from the for-
mulas in ω(A) is itself an ω(A). This supports having the usual implication-elimination
rule

IMP-E:
F , F ⇒ G

G

along with a closure under implication rule:

DEDUCE:
A says (F ⇒ G)

(A says F)⇒ (A says G)

Notice that all formulas in DEDUCE refer to the same principal. This local-reasoning
restriction limits the impact a principal with inconsistent beliefs can have. In particular,
from A says false, DEDUCE enables us to derive3 A says G for any G, but DEDUCE cannot
be used to derive B says G for a different principal B. So the local reasoning restriction
causes inconsistency within ω(A) to be contained. The local-reasoning restriction also
prevents mutually inconsistent beliefs held by an unrelated set of principals from being
combined to derive A says false for any principal A [Abadi 2007; 2008].

Delegation. The notation A→ B (read “A speaks for B”) abbreviates the NAL formula

(∀x : (A says x)⇒ (B says x)). (2)

Since propositional variable x in sub-formulas “A says x” and “B says x” of (2) can be
instantiated by any NAL formula, we conclude that if A → B holds then all beliefs
in the worldview of principal A also appear in the worldview of principal B ; therefore
ω(A) ⊆ ω(B) holds. In terms of credentials, A→ B characterizes the consequences of B
delegating to A the task of issuing credentials. Not only would A be accountable for such
credentials but so would B .

The transitivity of → follows directly from definition (2), and therefore we have the
following as a derived inference rule of NAL:

→ TRANS:
A→ B ,B → C

A→ C

One theorem of NAL is

(B says (A→ B))⇒ (A→ B), (3)

which implies that the following is a derived inference rule of NAL:

HAND-OFF:
B says (A→ B)

A→ B

3Here is that proof: false ⇒ G is a theorem for all G. Therefore, by SAYS-I we conclude A says (false ⇒ G) is
a theorem for all G. We then use DEDUCE and IMP-E to derive A says G.

6 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

An interpretation of HAND-OFF (or equivalently theorem (3)) is that each principal B is an
authority on its own delegations.

NAL also supports an abbreviation to assert the restricted delegation that only certain
beliefs held by A are attributed to B . We write A v:F−−→ B (read “A speaks for B about
F”), where no identifier in v appears free in B or A, to assert:

(∀v : (A says F)⇒ (B says F))

Such a restricted delegation allows us to specify in NAL that a principal B delegates au-
thority or trusts another principal A for only certain kinds of credentials.

For example, we should not be surprised to find a university’s registrar UnivReg trusted
by academic department CSdept about whether somebody is a student at that university.
We specify this trust by writing the NAL restricted delegation formula

UnivReg v:v∈Students−−−−−−−−→ CSdept , (4)

meaning

(∀v : UnivReg says v ∈ Students ⇒ CSdept says v ∈ Students).

Restricted delegation (4) limits which credentials issued by UnivReg can be attributed to
CSdept . So, credential UnivReg says F can be used with (4) to derive CSDept says F
when F is “Bob ∈ Students” but not when F is “offer(CS101,Spr)”.

Restricted delegation (4) limits the abuse of privilege and spread of bogus beliefs by
asserting that CSDept will adopt only certain kinds of beliefs held by UnivReg . Some
care is required, though, when using this defense. A second unrestricted delegation

UnivReg
v:v 6∈Students−−−−−−−−→ CSdept

along with (4) could allow CSdept says false to be derived if UnivReg is compromised
and thus willing to issue bogus credentials

UnivReg says v ∈ Students
UnivReg says v 6∈ Students

for some student v.
As with→, we have a corresponding derived inference rule for transitivity of v:F−−→:

v:F−−−→ TRANS :
A v:F−−→ B ,B v:F−−→ C

A v:F−−→ C

and we have the NAL theorem

(B says (A v:F−−→ B))⇒ (A v:F−−→ B),

which leads to a corresponding derived inference rule:

REST-HAND-OFF:
B says (A v:F−−→ B)

A v:F−−→ B

Nexus Authorization Logic (NAL) · 7

2.1 Predicates and Terms in NAL

NAL is largely agnostic about how predicates and terms are implemented.4 But an au-
thorization mechanism that evaluates NAL formulas would be impractical unless efficient
implementations are available for NAL predicate and term evaluation. The Nexus ker-
nel, for example, provides efficient system routines for programs to read certain operating
system state (abstracted in NAL formulas as terms) and to evaluate certain pre-defined
predicates on that state. Also, any deterministic boolean-valued routine running in Nexus
can serve as a NAL predicate. So if an authorization policy can be programmed in Nexus
then it can be specified using a NAL formula.

The designer of a guard in Nexus must decide what sources to trust for information
about the current and past states. Presumably, a guard would trust predicate evaluations
that it performs itself or that the Nexus kernel performs on its behalf. Other components
might have to be trusted, too, because it is unlikely that every principal would be able
to evaluate every predicate due to constraints imposed by locality and/or confidentiality.
Arguably, a large part of designing a secure system is concerned with aligning what must
be trusted with what can be trusted. NAL helps focus on these design choices by having
each credential explicitly bind the name of principal to the belief that credential conveys,
thereby surfacing what is being trusted.

NAL is agnostic about predicate and function naming, assuming only that the name is
associated with a unique interpretation across all principals. One approach it to define an
authoritative interpretation (including an evaluation scheme) for each name; all principals
are then required to use that. Implicit in such a solution would have to be some way to
determine what is the authoritative interpretation for a given name. Nexus addresses this
by implementing hierarchical naming, where a name encodes the identity of the principal
that is the authority for performing evaluations.

2.2 Principals in NAL

Principals model entities to which beliefs can be attributed. Examples include active enti-
ties like processors, processes, and channels, as well as passive objects like data structures
and files. We require that distinct NAL principals have distinct names and that credentials
attributed to a principal cannot be forged. Schemes that satisfy these requirements include:

—Use a public key as the name of a principal, where that principal is the only entity that
can digitally sign content using the corresponding private key. A principal named by a
public key KA signifies that a belief F is in worldview ω(KA) by digitally signing an
encoding of F . So, a digitally signed representation of the NAL statement F , where
public key KA verifies the signature, conveys NAL formula KA says F .

—Use the hash of a digital representation of an object as the name of a principal associated
with that object. A principal named by hashH(obj) includes a beliefF in its worldview
ω(H(obj)) by having an encoding of F stored in obj .5 So by having F be part of obj ,
H(obj) conveys NAL formula H(obj) says F .

The benefit of using a public key KA to name a principal is that this name then suffices
for validating that a credential KA says F has not been forged or corrupted. Also, creden-

4Because it is a constructive logic, NAL does require that all terms and predicates be computable.
5We might adopt the convention that every object obj involves two parts. The first part is a possibly empty list
of the NAL formulas F1, F2, ..., Fn in ω(H(obj)); the second part is some other digital content.

8 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

tials conveying individual beliefs or subsets of beliefs in ω(KA) can be issued at any time.
But public–private key pairs are expensive to create. Moreover, private keys can be kept
secret only by certain types of principals. With a TPM, you can associate a private key
with a processor and keep it secret from all software that runs on the processor; without a
TPM, you can associate a private key with a processor but keep it secret only from non-
privileged software. And there is no way to associate a private key with a non-privileged
program executing on a processor yet have that key be secret from the processor or from
privileged software being run.

Hashes are an attractive basis for naming principals, because hashes are relatively inex-
pensive to calculate and do not require secrets. However, a principal must have read-access
to obj in order to generate or validate a credential H(obj) says F for conveying beliefs
that, because they are stored in obj , are part of the worldview of H(obj). The use of
hashes for naming principals is useful only for conveying static sets of beliefs held by ob-
jects whose state is fixed. Change the beliefs or the state of object obj and name H(obj)
changes too, which means credentials previously issued for that object could no longer
validate.

NAL is agnostic about what schemes are used to name principals. Our experience with
Nexus applications has been that public keys and hashes both have uses. Nexus also im-
plements various specialized naming schemes for some of its abstractions (e.g., processes
and the kernel) that serve as principals.

Sub-principals. System components often depend on other system components. In hi-
erarchically structured systems, for example, higher levels depend on lower levels. Also,
dependencies are created when one component loads and starts executing (or interpreting)
another. The dependency of a principal Sub on another principal Dom can be so strong that
Sub is materialized by Dom , hence Sub says F holds only if Dom says (Sub says F)
holds. For example, execution of a program Prog is ultimately materialized by computer
hardware (say) CPU , and therefore Prog says F holds only if CPU says (Prog says F)
holds.

NAL offers sub-principals as a convenience for naming a principal that is materialized
by another. Given a principal A and any term τ , sub-principal A.τ is a NAL principal6

materialized by A. This is captured in a NAL rule:

SUBPRIN:
A→ A.τ

Equivalent terms define sub-principals having the same worldviews:

EQUIV SUBPRIN:
τ1 = τ2

A.τ1 → A.τ2

Here, we assume some theory is available for proving premise τ1 = τ2.
Sub-principals are particularly useful for describing structures where a principal is multi-

plexed among various roles. For example, processes are often materialized by an operating
system that multiplexes a processor. Thus the principal that corresponds to an executing

6Sub-principals can themselves have sub-principals, with left-associativity assumed so that A.τ1.τ2 abbreviates
(A.τ1).τ2.

Nexus Authorization Logic (NAL) · 9

program is a sub-principal of the operating system that runs that program; and the operating
system itself is a sub-principal of the processor.

As an illustration, consider a system comprising a certification authority CA being exe-
cuted by an operating system OS that is multiplexing a processor among a number of ap-
plications. And suppose the hash of the in-memory image for CA is HCA, the hash of the
in-memory image OS is HOS , and the processor’s TPM stores a private key whose signa-
tures can be verified using public key KCPU . In NAL, these dependencies could be charac-
terized using a sub-principal KCPU .HOS for the OS and a sub-principal KCPU .HOS .HCA

for the CA. According to SUBPRIN, we have:

KCPU → KCPU .HOS (5)
KCPU .HOS → KCPU .HOS .HCA (6)

A credential attributed to execution of CA would, in fact, be issued by KCPU , materializ-
ing operating system OS , materializing CA. So the credential for a belief F held by CA
would be specified by the NAL formula

KCPU says (KCPU .HOS says (KCPU .HOS .HCA says F)),

from which we can derive

KCPU .HOS .HCA says
(KCPU .HOS .HCA says

(KCPU .HOS .HCA says F)),

by (5) and (6) and definition (2) of A→ B; using SAYS-E twice then obtains

KCPU .HOS .HCA says F .

Sub-principals are also useful for creating different instances of a given principal, where
each instance is accountable for the credentials issued during disjoint epochs or under
the auspices of a different nonce or different circumstances. This allows the subset of
credentials issued by some principal A at a time when you trust A to be distinguished
from credentials issued by A at other times. So instead of using a single principal FileSys ,
we might employ a sequence FileSys.1, FileSys.2, ..., FileSys.i, ... of sub-principals,
each accountable for issuing credentials during successive epochs. Then by specifying
security policies that are satisfied only by credentials attributed to a “current instance”
FileSys.now (for now an integer variable), a guard can reject requests accompanied by
outdated credentials.

SUBPRIN allows any statement by a principal A to be attributed to any sub-principal
of A. That is, from A says F we could derive A.τ says F for any sub-principal A.τ .
Unintended attributions can be avoided, however, by adopting a sub-principal naming con-
vention. We might, for example, agree to attribute to sub-principalA.ε any belief byA that
should not be attributed to any other sub-principal A.τ of A.

Groups. A NAL group is a principal constructed from a set of other principals, called
constituents, and is specified intensionally by giving a characteristic predicate. We write
{|v : P|} to denote the group formed from characteristic predicate P; the group’s con-

10 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

stituents are those principals A for which P[v := A] holds.7 As an example,

{|v : v → KCPU .HOS .HCA|}

is the group of all principals that speak for principal KCPU .HOS .HCA.
The worldview of a NAL group is defined to be the union, deductively closed, of the

worldviews for its constituents. Thus, if the worldview for one constituent of the group
contains F ⇒ G and another contains F , then the group’s worldview contains beliefs F ,
F ⇒ G, and G—even if the worldview for no constituent of the group contains G.

Because the worldview of each constituent is a subset of the group’s worldview, we
conclude for each constituent A of group G, that A→ G holds. Thus, if P[v := A] holds
then A→ {|v : P|} holds:

MEMBER:
P[v := A]
A→ {|v : P|}

free variables of A are free for v in P

Note that A → {|v : P|} does not necessarily imply that P[v := A] holds. In the absence
of a NAL derivation for P[v := A], we could still derive A → {|v : P|} from derivations
for A→ B and B → {|v : P|}.

When v → A holds for all constituents v of a group, then all beliefs in the group’s
worldview necessarily appear in ω(A), so the group speaks for A:

→ GROUP:
(∀v : P ⇒ (v → A))
{|v : P|} → A

This inference rule, in combination with MEMBER, allows us to justify the following de-
rived inference rule, which asserts groups and→ are monotonic relative to implication:

GROUP MONOTONICITY:
(∀v : P ⇒ P ′)

{|v : P|} → {|v : P ′|}

Finally, note that NAL does not preclude specification of extensionally defined groups,
wherein constituents are simply enumerated. For example, {|v : v ∈ {A,B,C}|} is the
extensionally defined group whose constituents are principals A, B, and C.

3. GUARDS: THEORY AND PRACTICE

The decision to authorize a request can be posed as a question about NAL formula deriva-
tion. We represent requests, credentials, and authorization policies as NAL formulas. A
guard G that enforces an authorization policy G allows a request R to proceed by if and
only if

(i) G has a set of unforged credentials C1,C2, . . . ,Cn, where credential Ci conveys NAL
formula Ci, and

(ii) G establishes that NAL can be used to derive G from

R∧ C1 ∧ C2 ∧ · · · ∧ Cn.

7P[v := exp] denotes textual substitution of all free occurrences of v in P ′ by exp, where P ′ is obtained from
P by renaming bound variables to avoid capture.

Nexus Authorization Logic (NAL) · 11

Credentials could be stored at the requesting principal, at the guard, or elsewhere in the
system; and they could accompany a request, be fetched when needed by the guard, or be
sent periodically to the guard. Notice that if request R is granted, then a NAL derivation
of G to discharge (ii) documents the rationale for this authorization decision, indicating the
role each credential plays. The NAL derivation of G is thus a form of audit log—and a
particularly descriptive one, at that.

A file system guard FileSys might, for example, enforce discretionary access control8

for accessing a file (say) foo by employing authorization policy

FileSys says read(foo) (7)

and issuing a restricted delegation

A
read(foo)−−−−−−→ FileSys (8)

for any principal A whose requests A says read(foo) should be allowed to proceed, since
(8) allows (7) to be derived fromA says read(foo). Store the restricted delegation creden-
tial for a principal at that principal, and the result is reminiscent of capabilities; aggregate
and store all of the restricted delegation credentials at the guard, and access control lists
result.

Credential Distribution and Revocation. Whenever a guard G has some credential C
that G determines is not forged, the NAL formula C conveyed by C is part of G’s beliefs.
G having credential C thus can be formalized in NAL as G says C.

One might hope that

(G says C)⇒ C (9)

would hold and, therefore, beliefs acquired through credentials are sound. This property,
however, is not guaranteed. A principal P might issue C but then change beliefs (perhaps
because the state or environment has changed) in a way that invalidates C.

If P invalidates C after C has been distributed to other principals, then an access could
be granted on false pretense because a guard has C and therefore believes that C holds even
though C does not. Even if guards check the truth of each credential just before use, access
might still be granted on false pretense—checking a credential takes time, and concurrent
actions elsewhere in the system could falsify the formula conveyed by a credential after
being checked.

For example, a request A says access(obj) accompanied by a credential that conveys
TimeServ says clock = 900 suffices to derive the authorization policy:

A says access(obj) ∧ TimeServ says clock < 1000 (10)

But

(G says (TimeServ says clock = 900)) ⇒ TimeServ says clock = 900

does not hold if TimeServ revises its beliefs whenever the passage of time causes clock
to increase. A guard that checks whether credentials are not forged and whether a NAL
derivation exists for authorization policy (10) thus could grant access for requests made
after clock < 1000 ceases to hold. So the guard could grant requests on false pretense.

8This is not the only way to specify discretionary access control using NAL and guards.

12 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

There are two general strategies for ensuring that (9) will hold and, thus, prevent accesses
from being granted on false pretense:

(i) Require that antecedent G says C of (9) is false prior to changes in beliefs that inval-
idate its consequent C.

(ii) Choose for consequent C of (9) a formula that cannot be invalidated by principals
changing their beliefs.

With strategy (i), all principals G that have a credential C must delete their copies
(thereby falsifying G says C) before any principal is allowed to change its beliefs in a
way that invalidates C. This credential revocation is not a new problem9 and is generally
considered infeasible when credentials propagate in unrestricted ways. But a feasible real-
ization of strategy (i), used extensively in Nexus, exists when the propagation of credentials
is restricted in a rather natural way.

In Nexus, a principal is called an authority if it is both the sole source of certain cre-
dentials and the only principal that can invalidate a NAL formula conveyed by those cre-
dentials. We ensure that the only way that a principal can obtain a credential issued by an
authority is directly from that authority. The authority thus knows which principals have
its credentials. Prior to invalidating the belief conveyed in such a credential, the authority
requests that these principals delete their copies and awaits confirmations (either from the
principal or from Nexus asserting that the principal has been terminated).

To ensure that principals obtain credentialsA says F directly from the issuing authority
A, such credentials are represented in a way that conveysF , allows the recipient to attribute
F to A, but does not allow any other principal to validate that attribution. For example,
the Nexus IPC mechanism implements authenticated, integrity-protected channels. Such
a channel can speak for an authority A and transmit a formula F that only the single
recipient at the end point of that channel can attribute to A. Authorities in Nexus distribute
credentials using such channels. However, the same effect also could be achieved on an
ordinary channel by using cryptography; if the two endpoints share a secret, for example,
then message authentication codes suffice.

Strategy (ii) for ensuring that (9) will hold requires restricting the execution of principals
and/or choosing for C a sufficiently weak formula. System developers thus are made re-
sponsible for supporting revocation. Fortunately, system execution generally does satisfy
certain restrictions—time never decreases and the past is immutable, for example—not
to mention restrictions coupled to the semantics of system and application functional-
ity. So some truths do not change as execution proceeds, and this can be leveraged for
defining NAL formulas C that cannot be falsified by future execution. For instance, once
clock > 1000 holds, it cannot be later falsified by time advancing. And a credential attest-
ing that some predicate p once held cannot subsequently be falsified if p holds when that
credential is issued.

Imposing additional execution restrictions on principals is the other way to instantiate
strategy (ii) for ensuring that (9) continues to hold. Suppose that, in order to authorize
some request, a guard G requires A says p for p a state predicate, but that A says p could
be invalidated from time to time.

9It arises, for example, in connection with capabilities and with public–key certificates that describe name–key
bindings.

Nexus Authorization Logic (NAL) · 13

—One solution is to prevent principals from invalidating p until some time in the future,
in effect using a credential that conveys a form of lease [Gray and Cheriton 1989]. For
example,

A says (clock < 1000 ⇒ p)

is not falsified when clock advances, so (9) will now hold. And if credentials

TimeServ says clock < 1000 (11)

TimeServ v:clock<v−−−−−−→ G (12)

are available, thenG can still conclude thatA says p is satisfied. Moreover, if TimeServ
is implemented as an authority then we can ensure that (11) satisfies (9); and if delega-
tion (12) is never disseminated outside of G, then it too will satisfy (9).

—An alternative to using leases is to have principals follow a locking protocol before
invalidating p. For example, we might postulate a lock `p with two modes of access.
Any number of principals can concurrently hold shared access, and a principal can
hold exclusive access only if no other principal holds shared or exclusive
access, with the following restrictions on execution:
(i) a guard acquires shared access to `p before authorizing a decision using a cre-

dential involving p, and the guard releases the lock afterward,
(ii) a principal acquires exclusive access to `p before falsifying p and must reestab-

lish p prior to releasing `p.
Then a credential conveying

A says (locked(shared, `p)⇒ p)

is never falsified even though p might be, so (9) holds. Moreover, if a guard G acquires
`p with shared access before making an authorization decision, so G has credentials

LockMngr says locked(shared, `p) (13)

LockMngr
locked(shared,`p)−−−−−−−−−−−→ G (14)

attesting to locked(shared, `P), then G guard can conclude that A says p is satisfied
at that time. Credentials (13) and (14) can be made to satisfy (9) if LockMngr is imple-
mented as an authority and (14) is never disseminated outside of G.

Sources of Derivations. If NAL includes terms whose axiomatization is undecidable
(e.g., integers or rich data structures), as will often be the case, then we cannot hope to
build a universal guard—a guard that, for any choice of authorization policy G and set
of credentials {C1,C2, . . . ,Cn}, derives G from {C1, C2, . . . , Cn} if and only if such a
NAL derivation exists. This undecidability result, however, does not preclude building
guards that automatically generate a NAL derivation for some particular authorization pol-
icy when given credentials in some pre-specified form. The file system example above
illustrates this, because authorization policy (7) can be derived automatically from a re-
quest A says read(foo) when given a credential that conveys (8).

An alternative to having a guard perform the derivation of an authorization policy G
would be to accompany each request with a NAL derivation of G [Appel and Felten 1999;
Bauer 2003] or for the guard to solicit the derivation from trusted third parties [Bauer et al.
2005]. In either case, the guard checks a NAL derivation rather than generating its own.

14 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

This check is a decidable task, because NAL derivations are finite in length and inference
rule applications are mechanically checkable. But having each request be accompanied by
a derivation is not a panacea. For a principal to produce a derivation of an authorization
policy G, that principal must know what G is. Yet sometimes G must be kept secret so
that, for example, various principals do not learn that different authorization criteria apply
to each. Also, having each requester independently derive G makes changing G difficult,
since principals that will submit requests to the guard must either be programmed to ac-
commodate such changes (which might not be possible for the same reason that universal
guards cannot exist) or must be found and manually updated whenever G is altered.

4. EXAMPLE APPLICATIONS: A DOCUMENT-VIEWER SUITE

To gain confidence in the utility of our authorization framework, we used it and prototyped
a suite of document-viewer applications that run on Nexus. This required formulating
authorization policies in NAL, implementing a NAL proof checker (see appendix B of
Schneider et al. [2009] for details about the proof checker), and building Nexus support for
creating credentials and guards.

In each of the viewer applications, we define a one-to-one correspondence between doc-
uments and principals. And the principal for the document to be displayed—not the human
user viewing the document—is the principal whose requests are authorized by a guard.
This unconventional architecture allows us to benefit from employing analytic and syn-
thetic bases for authorization. Had the system instead been designed to process requests
from human users wishing to view documents, then we would have been limited to em-
ploying an axiomatic basis for authorization, since humans are hard to analyze and do not
take kindly to transformations.

4.1 TruDocs: Analytic and Axiomatic Bases for Authorization

TruDocs is a document-viewer application that ensures excerpts attributed to a docu-
ment are consistent with policies that document specifies. We start with the observations
that documents convey beliefs and that excerpts derived from a document also convey
beliefs. So for di some document, NAL provides a natural way for formalizing which
beliefs di conveys. We identify di with a principal Prin(di) and write a NAL formula
Prin(di) says P for each belief P that di conveys.

We represent an excerpt e appearing in a document d as a 4-tuple e = 〈χ, d, l, d′〉, where
χ is the text of the excerpt, d′ is a source document to which the excerpt is being attributed,
and l is the location where the excerpt appears in d. Notice, distinct appearances of text
χ in d are considered to be different excerpts. As with documents, each excerpt ei can be
identified with a NAL principal Prin(ei), where Prin(ei) says P holds for every belief
P that except ei conveys. Define src(e) to be the source document (i.e., d′ above) from
which e was purportedly derived; Prin(src(e)) is therefore the principal corresponding to
src(e).

The reader of an excerpt e and the author of source document src(e) would expect that
beliefs conveyed by e are also conveyed by src(e): ω(Prin(e)) ⊆ ω(Prin(src(e))) or
equivalently Prin(e) → Prin(src(e)) would therefore hold. But whether Prin(e) →
Prin(src(e)) actually holds will depend on how e was derived from src(e). Quoting too
few words, quoting out of context, redaction, elision of words and clauses, all can produce
an “excerpt” that conveys different beliefs than are conveyed in the source. We define a
document d to have integrity if and only if for every excerpt e appearing in d, the beliefs

Nexus Authorization Logic (NAL) · 15

e conveys are also conveyed by src(e). This property can be formalized in NAL as a
credential

TruDocs says (∀e : e ∈ d ⇒ Prin(e)→ Prin(src(e))) (15)

that TruDocs issues about d, where relation e ∈ d holds if and only if document d
contains excerpt e.10

The author of a document d′ cannot be expected to enumerate all possible excerpts e that
convey beliefs found in d′. So authors (or the organizations they work for) associate use
policies with documents they produce. To be eligible for inclusion in another document d,
an excerpt e must comply with the use policy associated with src(e). TruDocs limits use
policies to those that can be specified as syntactic criteria or as other computable checks
whose compliance implies Prin(e)→ Prin(d′), meaning the beliefs expressed by excerpt
e are from document d′.

We can associate a use policy with a source document d′ by issuing a credential that
conveys the NAL formula

Prin(d′) says (∀e, d : (d′ = src(e) ∧ usePold′(e, d)) ⇒ (Prin(e)→ Prin(d′))) (16)

where usePold′(e, d) is a predicate satisfied if excerpt e appearing in d is consistent with
the use policy associated with d′. Credentials like (16) enable (15) to be derived by check-
ing each excerpt e against the use policy for src(e):

TruDocs says (∀e : e ∈ d ⇒ usePol src(e)(e, d)) (17)

Thus, a guard handling a request for the display of a document d can mechanically derive
(15) or, conversely, deny a display request if d does not have integrity. Note that (17) is
discharged using an analytic basis for trust because authorization depends on a form of
analysis: checking use policies.
TruDocs can also handle copyright’s “fair use” and other non-computable use policies

by employing an axiomatic basis for trust. One or more human authorities Hi for which
TruDocs has issued a credential that conveys

TruDocs says (Hi → TruDocs) (18)

are solicited to check the use policy. Hi in turn provides credentials that convey

Hi says (Prin(e)→ Prin(src(e))) (19)

for excerpts e, such that e ∈ d holds and the use policy is satisfied. Receipt of such a
credential for each excerpt e in d is all that is needed for TruDocs to derive (15). So this
approach corresponds to deriving (17), where usePol src(e)(e, d) is satisfied if and only if
TruDocs has credentials (18) and (19).

Implementation Details. TruDocs comprises an editor TDed for use by document au-
thors, a viewer TDview for displaying documents, and some additional support software.

—TDed allows a document d that contains excerpts to be created, enables a use policy to be
defined and associated with that document, and constructs a unique name nme(d) for the
document. By construction, nme(d) embodies a validated set of document particulars,
such as title, author, publication venue, publication date, etc.

10Definition (15) treats nested excerpts as if each appears directly in d. Other treatments are possible.

16 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

—TDview implements a guard to authorize display requests from documents; a display
request for d is granted only if (17) can be derived, since (15) can then be derived from
that. Whenever TDview displays a document, it displays at the end of each excerpt e
the document particulars embodied in nme(src(e)), thereby giving the reader a human-
intelligible description for the source document from which e was derived.

TDed and TDviewwere obtained by modifying the OpenOffice software suite [OpenOf-
fice]. We added 739 lines of Visual Basic code and 5066 lines of C code to OpenOffice.
TDed and TDview also use the NAL proof checker library (an additional 4677 lines of
C code) and third party libraries: OpenSSL (for hashing, signature generation, and signa-
ture verification) and XOM (for XML manipulation and canonicalization). Because Nexus
does not yet support sophisticated user interfaces, TDview was implemented as two sep-
arate components. One component is trusted and runs on the Nexus kernel; it executes the
NAL proof checker and an analysis engine. The other component is not trusted and runs
on a Linux platform; it displays information and implements the user interface. TDed runs
on an untrusted Linux platform.

In order to derive (17) for a document d, the TDview guard enumerates the excerpts in
d and processes each excerpt e as follows.

(i) Determine the predicate usePol src(e)(e, d) that applies for each excerpt e in d.

(ii) Check usePol src(e)(e, d) and, if it holds, issue

TruDocs says usePol src(e)(e, d). (20)

Step (ii) is implemented with assistance from the NAL proof checker and built-in support
for text matching, as follows:

—TDview checks to see if the display request was accompanied by credentials and/or a
NAL proof that discharges (20), and if so, TDview checks that proof, issuing a creden-
tial conveying (20) if the proof is sound;

—if not, TDview determines if it has built-in support to validate usePol src(e)(e, d), at-
tempts that validation, and if successful TDview issues a credential conveying (20);

—otherwise, TDview displays an error message that details the use policy that it could
not satisfy, requesting additional credentials and/or a NAL proof be provided.

Note that some trust assumptions are required, because of NAL’s local reasoning restric-
tion. First, TDview→ TruDocs must be assumed so that credentials issued by TDview
can contribute to the derivation of (20), a statement being attributed to TruDocs. This
assumption can be discharged if we take TruDocs to be HCPU .HOS .HTDview, making
TruDocs synonymous with TDview. Alternatively, we could take TruDocs to be a
public key KTruDocs chosen for this purpose by the user or an administrator; we would
then have to arrange for the distribution of signed credentials that convey

KTruDocs says TDview→ KTruDocs.

A second trust assumption we require is that for each credential EAi says F provided
by an external authority EAi and used in step (ii), there must be a credential

TDview says (EAi → TDview)

Nexus Authorization Logic (NAL) · 17

that signifies EAi is trusted by TDview and, therefore, TDview says F can be derived
by TDview from EAi says F . The name of each such trusted external authority EAi is
communicated to TDview at startup.

Limits in on-line storage or concerns about confidentiality are just two reasons TDview
might not have access to certain source documents. So TDview is not always able to val-
idate usePol src(e)(e, d) directly and might instead have to import credentials from human
or external authorities. Moreover, having TDview import credentials can improve perfor-
mance by undertaking an expensive analysis once rather than each time a document display
is requested. For example, when creating a document d, TDed has access to all documents
from which excerpts appearing in d are derived. TDed is therefore an obvious place to
perform some analysis and issue credentials that later aid TDview in deriving (20). This,
however, does require an additional trust assumption: TDed→ TDview.
TDview currently supports: matching an excerpt and source text verbatim or allowing

for change of case, replacing fragments of text by ellipses, inserting editorial comments
enclosed within square brackets, and limiting the length of individual excerpts or the ag-
gregate length or number of the excerpts from a given document. TDview also can validate
compliance with a use policy that stipulates excerpts not appear in documents having cer-
tain document particulars—for example, that excerpts not appear in documents authored
by a given individual or published in a given venue.

A name nme(d) that lists document particulars would prove problematic if we want to
use an ordinary file system and store d as a file named nme(d). So TruDocs associates
with each document d a principal named Hnme(d), as follows. Each document d is repre-
sented in XML, and we define Hnme(d) = H(xd), where xd is the XML representation
(using the DocBook [DocBook] standard) for d and whereH(·) is a SHA1 hash. Hnme(d),
because it is relatively short, can serve as the name for a file storing xd in a file system or
web server. For each excerpt e, TruDocs stores in xd name nme(src(e)), which pro-
vides the document particulars for src(e), and name Hnme(src(e)), which provides direct
access to the file storing xsrc(e).11

A binding between principals Hnme(d) (i.e.,H(xd)) and nme(d) is made by TruDocs
principal Reg (named by public key KReg); Reg runs on a separate machine from TDed
and TDview. Reg creates bindings, validates document particulars, and disseminates
the existence of Hnme(d) to nme(d) bindings by issuing credentials. In particular, a
document d created with TDed becomes eligible for view only after the user invokes the
publish operation; publish causes pair 〈xd,nme(d)〉 to be forwarded to Reg, which
checks that

(i) nme(d) is unique,

(ii) nme(d) is consistent with document particulars (e.g., author, title, publication venue,
publication date) conveyed in xd, and

(iii) each document particular in nme(d) is valid according to relevant external authori-
ties (e.g., the authoritative reprints repository maintained by the journal where d is
purported to have been published).

11If only name Hnme(src(e)) were stored in xd, then after d has been created, an attacker could change what
is stored in file Hnme(src(e)), thereby invalidating the consistency of the information from nme(src(e)) that
gets displayed at the end of e with the document particulars for src(e).

18 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

If (i) – (iii) hold, then nme(d) is considered validated and Reg generates a credential

KReg says (Hnme(d)→ KReg.nme(d)), (21)

which is returned by Reg to TDed, where it is piggybacked12 on xd. Notice that if we
define Prin(d) to be KReg.nme(d), we can derive

Hnme(d)→ Prin(d), (22)

a binding between Hnme(d) and Prin(d): SUBPRIN derives Hnme(d) → KReg.nme(d)
from (21) and then use the above definition of Prin(d) to substitute for KReg.nme(d).

Finally, as noted above, when TDed creates a document d′, it stores a use-policy creden-
tial as part of xd′ . The credential stored is actually a variant of (16), now that two different
principals are associated with each document:

Hnme(d′) says (∀e, d : (d′ = src(e) ∧ usePold′(e, d))
⇒ (Prin(e)→ Hnme(d′)))

(23)

But Prin(e) → Hnme(d′) derives Prin(e) → Prin(d′), since (22) can be derived from
the instance of (21) piggybacked on xd′ . This means that from (21) and (23), TDview can
always automatically derive:

H(xd′) says (∀e, d : (d′ = src(e) ∧ usePold′(e, d))
⇒ (Prin(e)→ Prin(d′)))

(24)

And the NAL derivation of (15) from (24) is virtually the same as the derivation of (15)
from (16), again remaining independent of document d and thus not something the guard
of TDview must regenerate to authorize each display request.

4.2 ConfDocs: A Synthetic Basis for Authorization

ConfDocs implements multi-level security [Department of Defense 1985; Weissman
1969] for accessing documents comprising text elements. Each text element χ in a docu-
ment is assigned a classification label λT (χ) by some trusted classification authority T ;
each human user H is assigned a clearance λU (H) by some trusted clearance authority
U . And each document d is identified with with a unique principal Prin(d).

Classification labels and clearances are selected from a set of security labels on which
a partial order relation � has been defined. A document d comprising a set txt(d) of text
elements is authorized for display to a user H if and only if

Prin(d) says (∀χ ∈ txt(d) : λT (χ) � λU (H)) (25)

holds. Policy (25) makes d—or, rather, the publisher of d—the ultimate authority on which
users can read d, by leaving the choice of classification authority and clearance authority
with d. In particular, the choice of classification authority determines the value of λT (χ)
and the choice of clearance authority determines the value of λU (H), so these choices
(albeit indirectly) effect whether H satisfies (25).
ConfDocs is agnostic about the set of security labels and partial order relation �. The

system simply requires the means (internally built-in or by appeal to an external authority)

12Credential (21) cannot be stored in xd, because that would change name H(xd) for that principal, rendering
credential (21) useless.

Nexus Authorization Logic (NAL) · 19

to determine whether L � L′ holds for any pair of security labels L and L′. ConfDocs
has built-in support for security labels structured as pairs [Denning 1976; Sandhu 1993],
where the first element of the pair designates a sensitivity level U (unclassified), C (confi-
dential), S (secret), or TS (top-secret), and the second element of the pair designates a set
of compartments constructed from descriptors, such as crypto, nuclear, etc. There is a
strict total order < on the levels (U < C, C < S, and S < TS), the usual partial order ⊆ on
sets of compartments, and

〈lvl , cmpt〉 � 〈lvl ′, cmpt ′〉

holds if and only if lvl v lvl ′ and cmpt ⊆ cmpt ′ hold.
If a document d does not satisfy authorization policy (25) for a given user H , then it is

often possible to derive a document that does.

—Deleting text from d narrows the scope of the universal quantification in (25) by remov-
ing a text element χ from txt(d), thereby eliminating an obligation λT (χ) � λU (H)
that could not be discharged.

—Modifying d (say, by changing certain prose in a text element χ to obtain χ′) could
change the contents of txt(d) in a way that transforms an obligation λT (χ) � λU (H)
that could not be discharged into one λT (χ′) � λU (H) that can be.

Each implements a synthetic basis for authorization, and our ConfDocs prototype sup-
ports both.

Implementation Details. ConfDocs provides a program CDview for viewing docu-
ments and provides some shell scripts for creating documents. CDview is 5787 of C code
that runs on Nexus and uses of the NAL proof checker library. Shell scripts (175 lines
of Bash) that invoke the OpenSSL library to perform encryption allow a user (as detailed
below) to attach policies to documents and then encrypt the result for subsequent use by
CDview.

Each ConfDocs document d is represented using XML according to the DocBook
standard. The representation for a document d includes set txt(d) of text elements, as well
as credentials that give a classification label Lχ for each text element χ ∈ txt(d):

Prin(d) says (λT (χ) = Lχ) or CAT says (λT (χ) = Lχ)

Here, CAT is a classification authority; credentials it issues must be accompanied by a
suitable restricted delegation

Prin(d) says CAT
v1,v2 : λT (v1)=v2−−−−−−−−−−−→ Prin(d) (26)

attesting that the publisher of d trusts CAT to assign classification labels to text elements
in d.

The representation of d optionally may include sanitization credentials

San says (λT (edit(χ, s)) = Ledit(χ,s)) (27)

that give a classification label for the text element produced by executing a built-in edit
function to modify χ according to script s . Here, San is either Prin(d) or some classifi-
cation authority CAT for which restricted delegation (26) appears in the representation of
d. Script s comprises standard text editor commands like Replace(x , y), which replaces
all instances of character string x with string y, and so on.

20 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

Credentials like (27) define a sanitization policy. Such a policy characterizes ways to
transform a document containing information that readers are not authorized to access
into a document those readers are. The hard part is resolving the tension between hiding
too much and indirectly leaking classified information. Sanitization of paper documents,
for example, often involves replacing fragments of text with white space but a document
sanitized in this manner might still leak information to a reader by revealing the length of
a replaced name or the existence of an explanatory note.

A user H attempting to view a document d invokes CDview, furnishing a credential
signed by some clearance authority CAU that attests to λU (H):

CAU says λU (H) = LH

Not all clearance authorities are equivalent. The publisher of d controls whether a clearance
authority CAU is trusted to assign clearances and, thus, can participate in determining
which users have access to d. Specifically, the publisher includes a credential

Prin(d) says CAU
v1,v2 : λU (v1)=v2−−−−−−−−−−−→ Prin(d)

in the ConfDocs representation of d for each clearance authority CAU that is trusted.

Nexus Sealed Bundles. To ensure that CDview is the only way to view documents, they
are stored and transmitted in encrypted form. Nexus, in conjunction with a TPM secure
co-processor, implements a storage abstraction that is ideal for this task. A Nexus sealed
bundle b comprises (i) a payload payload(b) stored in encrypted form and (ii) a NAL group
Group(b) of constituents authorized to decrypt payload(b).

By invoking the Nexus decrypt(b) kernel operation, a principal A is seen by the Nexus
kernel (which, by design, knows the identity of the process it is executing) to be providing
the credential

A says decrypt(b),

although this credential is never actually generated and thus cannot be stolen for use by
some other principal. Nexus responds by decrypting and returning payload(b) to A if and
only if authorization policy

Group(b) says decrypt(b)

can be derived. To allow an access thus requires the kernel to verify a proof of A →
Group(b), thereby establishing that A is among Group(b) constituents. The kernel dis-
charges this obligation by checking whether A satisfies a NAL formula Pb[v := A], where
Pb was originally provided for defining Group(b) and saved in the bundle;A→ Group(b)
then follows due to MEMBER. Our implementation also allows A to provide a proof of
A → C, where C is some other principal; the kernel would validate that proof and then
check that Pb[v := C] is satisfied. Notice, the set of principals satisfying Pb is not nec-
essarily static if Pb depends on state, and therefore the Group(b) constituents may be
dynamic.

Each ConfDocs document d is stored using a Nexus bundle bd, where Group(bd) is
a fixed set of principals corresponding to valid instances of CDview. A program is con-
sidered a valid copy of CDview if and only if it’s hash equals the hash HCDview of some
pre-determined correct object code for CDview, that object code was loaded and is being
executed by a Nexus process running on a valid Nexus kernel, and the Nexus kernel is

Nexus Authorization Logic (NAL) · 21

itself executing on a trusted processor with associated TPM. Such a principal is specified
using NAL sub-principals as KCPU .HNexus .process23.HCDview because CDview is actu-
ally being materialized by some Nexus process (here, process23), which in turn is being
materialized by the Nexus, which itself is materialized by the hardware processor.13 And
the group Group(bd) of principals for each document d is defined in NAL as:

{|v : (∃i : v → KCPU .HNexus .processi.HCDview)|}

5. DISCUSSION

Genesis of NAL. Our original plan for Nexus was to adopt—not adapt—prior work in
credentials-based authorization. The Lampson et al. [1992] account (which introduced
says and → operators) seemed to offer a compelling framework for the kinds of autho-
rization Nexus was going to support, had been formalized by Abadi et al. [1993] as a logic,
and was used in the Taos operating system [Wobber et al. 1994]. There was the matter
of generating proofs and checking them—Taos had implemented only a decidable sub-
set of the logic. Appel and Felten’s [1999] proof-carrying authentication addressed that,
suggesting that all requests be accompanied by proofs and that guards perform only proof
checking. Moreover, proof-carrying authentication employed a higher-order logic, so it
supported application-specific predicates; and it was implemented in Twelf [Pfenning and
Schürmann 1999], so a proof checker was available.

A clear focus of this prior work was authentication for the varied and nuanced principals
found in distributed systems. Operators to construct new principals (e.g., roles, quoting,
etc.) were central to that enterprise. In Nexus, system state and properties of principals
were going to be important inputs to authorization, too. We embarked on a series of design
exercises to see how well those needs would be served by the prior work.

Our attempt to design a simple digital rights management (DRM) system was particu-
larly instructive. We sought flexibility in what should count as an access to the managed
content (e.g., accessing any part versus accessing a majority versus accessing all of the
content). A system designer would presumably record accesses by changing the system’s
state. So we concluded that a logic for credentials and authorization policies ought to
include state predicates.

However, adding arbitrary state predicates to an authentication logic is subtle. If stand-
alone state predicates can be formulas then an inconsistency would have far-reaching effect
by allowing false to be derived, hence any authorization policy to be satisfied. We thus re-
stricted state predicates to appearing only in worldviews of principals. Since it is unrealistic
to expect that every principal could evaluate every state predicate or that different princi-
pals evaluating the same state predicate at different times would compute the same value,
we needed a way for one principal to include in its worldview a state predicate p evaluated
by some other principal.

—One approach [Abadi et al. 1993; Appel and Felten 1999; Howell 2000] is to use SAYS-I
along with a new inference rule

CNTRL:
A says p, controls(A, p)

p

13To simplify the exposition, above we name principals using only program names rather than giving the fully
qualified list of sub-principals (hardware key, kernel, process) that actually defines the principal’s name.

22 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

where controls(A, p) holds if A is considered a trusted source regarding the truth of p.
—The other [Abadi 2007; 2008; Lesniewski-Laas et al. 2007] is to postulate a local-

reasoning restriction and require that principals use delegation to import and reason
about beliefs from others.

We rejected the first approach because it offers fewer guarantees about the propagation of
inconsistencies, and it also requires characterizing sets of state predicates p′ covered by
controls(A, p): if controls(A, p) holds and p⇒ p′ is valid then is A necessarily also trusted
on p′? Is A necessarily trusted on ¬p?

CDD [Abadi 2007; 2008], which had been subject to careful analysis and embraced a
local reasoning restriction, then became an obvious candidate for the foundation of NAL.
Moreover, CDD left unspecified details about principals and beliefs, so it offered us free-
dom to define principals that would match what Nexus provided and to use state predicates
in beliefs (with theories that interpret these state predicates).

NAL sub-principals are derived from named roles in Alpaca [Lesniewski-Laas et al.
2007]. Prior proposals (e.g., SDSI/SPKI [Rivest and Lampson 1996] and Taos [Wobber
et al. 1994]) had restricted the term τ used in defining a sub-principal A.τ to being a fixed
string, which meant that only static roles could be supported. By allowing τ to be any term,
the identity of a NAL sub-principal can be state-dependent.

Groups in NAL are a special case of the dynamic unweighted threshold structures de-
fined by Delegation Logic [Li et al. 2003]. And Delegation Logic was the first to suggest
that group membership be specified intensionally, although no proof rules were given (nor
were they needed) there. Our approach to authorization requires proof rules for satisfy-
ing authorization policies from credentials; with inference rules MEMBER and→ GROUP,
NAL appears to be the first logic for reasoning about such groups. The deductive closure
semantics we selected for NAL groups was first proposed in [Abadi et al. 1993] along with
an axiomatization for extensionally defined instances of such groups.

Other semantics for groups have been proposed. With the or-groups of Syverson and
Stubblebine [1999], which are also supported in proof-carrying authentication [Appel and
Felten 1999], a belief is considered to be in the worldview of a group if and only if that
belief is in the worldview of some14 group member; or-groups are not sound with respect
to IMP-E and therefore would require different proof rules from other NAL principals. In
groups with conjunctive semantics (sometimes called conjunctive principals [Abadi et al.
1993; DeTreville 2002; Ellison et al. 1999; Li et al. 2003] or and-groups [Syverson and
Stubblebine 1999]), a belief appears in the worldview of a group if and only if that belief
appears in the deductive closure of the intersection of the worldviews for all members. We
conjecture that conjunctional groups could be supported in NAL as the following abbrevi-
ation:

〈〈v : P〉〉 says F : (∀v : P ⇒ (v says F))

Finally, various proposals (e.g., [Ellison et al. 1999] and [Li et al. 2003]) have been made
for groups that exhibit k threshold semantics, whereby a belief is in the worldview of the
group if and only if that belief is in the worldviews of at least k group members. This
construct is quite expressive, difficult to axiomatize, and (fortunately) has not been needed
for the applications we explored.

14Some authors refer to such as groups as implementing disjunctive semantics, but this term is used by other
authors to describe groups that have the semantics defined by NAL, which also requires a deductive closure.

Nexus Authorization Logic (NAL) · 23

We were not the first to see a need for state in an authentication logic. As soon as support
for revocation or expiration of credentials is contemplated, the need for state-dependent
credentials and policies becomes apparent. In Becker and Nanz [2007], credentials and
policies can have side effects that involve the addition or removal of assertions from the
local rule base; Cassandra [Becker and Sewell 2004] represents state in terms of the acti-
vation and deactivation of roles; and linear logics [Garg et al. 2006; Bowers et al. 2007]
encode state information in terms of how many times an axiom can be used. These encod-
ings all duplicate in the logic state that already exists in a system. Expressiveness is often
lost in the translation, preventing certain policies from being formalized. Moreover, in this
prior work, either some sort of globally available state is being assumed, which becomes
difficult to implement in a distributed system, or the state is local to a guard, which limits
what authorization policies could be implemented.

Other Related Work. PolicyMaker [Blaze et al. 1999; Blaze et al. 1996; Blaze et al.
1998] was the first authorization scheme to focus on considerations of trust as an input
to authorization decisions.15 Policies, credentials, and trust relationships are expressed
in PolicyMaker as imperative programs in a safe language; a generic compliance checker
interprets these programs to determine whether a policy is satisfied given the provided
credentials and trust assumptions. REFEREE [Chu et al. 1997], designed to support web
applications, extends this approach by supporting policies about credential-fetching and
signature verification; KeyNote [Blaze et al. 1998] adds restrictions to make compliance
checking efficient; and Delegation Logic [Li et al. 2003] replaces PolicyMaker’s imperative
programs with D1LP, a monotonic version of Datalog that has declarative semantics and
can be compiled into ordinary logic programs (e.g., Prolog).

SD3 [Jim 2001], Binder [DeTreville 2002], the RT family of logics [Li et al. 2002], Cas-
sandra [Becker and Sewell 2004], Soutei [Pimlott and Kselyov 2006], and SecPAL [Becker
et al. 2007] all employ languages based on Datalog; the result is a tasteful compromise be-
tween the efficient decision procedures that come with PolicyMaker’s imperative programs
and the declarative elegance of the Abadi et al. [1993] access control calculus.

SecPAL, which targets grid computing environments and has also been used for au-
thorization in a weakly-consistent peer-to-peer setting [Wobber et al. 2009], is quite ex-
pressive despite limitations inherent in Datalog. It supports delegation credentials that are
contingent on the evaluation of predicates over a guard’s local state. And, unlike other
authorization schemes based on logic programming, SecPAL allows negations of the form
¬(A says F) to appear within policies (but not credentials); syntactic constraints on cre-
dentials and policies nevertheless guarantee policy checking is sound, complete, and al-
ways terminates, under the assumption (which unfortunately can be violated by a denial of
service attack) that all credentials are available whenever a policy is evaluated. A tractable
decision procedure for authorization was obtained by translating from SecPAL into a Dat-
alog variant (viz. Datalog with Constraints).

DKAL [Gurevich and Neeman 2008] introduces a new dimension to credentials-based
authorization by extending SecPAL to prevent any sensitive information carried in creden-
tials and authorization policies from leaking, even when users that have different clearances
share the same underlying authorization policies, database of credentials, and implemen-

15However, considerations about trust are the basis for the definitions of groups and roles in prior work on access
control.

24 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

tation.
Alpaca [Lesniewski-Laas et al. 2007], like NAL, builds on proof-carrying authentica-

tion [Appel and Felten 1999]. However, the domain of applications for Alpaca—unifying
and generalizing public key infrastructures (PKIs) to support authentication—is quite dif-
ferent from NAL’s goal of supporting authorization. And that explains differences in focus
and function. Alpaca authorities (different from NAL authorities), for example, provide a
structure to localize reasoning associated with a given logical theory; this turns out to be
convenient in Alpaca for dealing with the mathematical operations and coercions used in
authentication protocols. NAL and other logics that are dependent on signatures and hashes
for attributing beliefs to principals, do not provide support for reasoning about these op-
erations within the logic. Another important point of difference is that Alpaca—unlike
NAL—has only limited support for stateful protocols. Nonces can be used in Alpaca to
achieve one-use or limited-use credentials; there is no way, however, to use Alpaca for pro-
tocols that depend in general on history, as would be required (and is supported in NAL)
for DRM or even as needed for implementing many authentication protocols.

Relatively few systems—most, research prototypes—support credentials-based autho-
rization, but none do so in anything that approaches the generality needed for using an-
alytic or synthetic bases in authorization. This prior work includes Taos and SecPAL,
which were already mentioned; the W3C Web Services WS-Security [Organization for the
Advancement of Structured Information Standards (OASIS) 2004] standard (in particular,
WS-Policy [World Wide Web Consortium 2007]) is also rooted in this general approach,
and that could bode well for the future. Bauer [2003] used proof-carrying authorization for
access control to web pages. The Grey Project [Bauer et al. 2008; Bauer et al. 2005] inte-
grates a linear logic and proof-carrying authentication on a smart phone platform, and it has
been used for authorizing access to offices and shared labs. And Howell and Kotz [2000]
implemented a credentials-based approach for use within and between applications running
in Java virtual machines; that logic is an extension of SPKI [Ellison et al. 1999].

6. CONCLUDING REMARKS

This paper describes NAL, a logic for specifying credentials and authorization policies.
Novelty was not a design goal of NAL—simplicity was. So instead of designing NAL from
scratch, we started with an existing bare-bones authorization logic (CDD) that abstracts the
essence of such logics, and we instantiated its notion of principals and its underlying pred-
icate logic. Then, by building a suite of document-viewer applications, we demonstrated
that NAL, despite its simplicity, is expressive and convenient enough to be a practical basis
for implementing authorization in real systems.

NAL also provided a vehicle for us to understand and bridge the gap between what au-
thorization logics provide and real systems. The implementation of credentials and of prin-
cipal names is one area where such a gap often exists. There are, for example, significant
practical differences between credentials implemented by digital signatures, by hashes,
and by ordinary messages on authenticated channels. These differences include the cost to
create and validate credentials, whether secrets must be stored or shared, whether certain
memory must be accessible to the credential holders, and whether the credential can be
forwarded. Only in contemplating authorization for real applications, did these differences
become apparent and did the design-trade-offs they enable become clear.

An imperative in the design of NAL and in our approach to supporting authorization

Nexus Authorization Logic (NAL) · 25

was to empower system designers with flexibility for defining policies and implementing
guards. This caused us to resist adding to NAL special-purpose constructs that shape policy
by directly supporting revocation of credentials or by enforcing bounds on credential usage.
Such constructs are only one way to create an authorization logic that is inherently non-
temporal for use in a setting, like a computer system, where principals’ beliefs actually
do change over time. A system designer—informed by the semantics of an application—
should know the best means for handling changes in principals’ beliefs and, therefore,
should be given the flexibility to implement that means. The state predicates that can
appear in NAL formulas provide that flexibility, because changes in principals’ beliefs are
necessarily correlated with changes in system state.

NAL’s flexibility also led us to take a very different view about the role of guards (or
reference monitors) in systems. We proposed in this paper that guards be seen as testing re-
quester trustworthiness, where the authorization policy enforced by a guard defines the cri-
teria by which requester trustworthiness is evaluated. Identity-based and reputation-based
authorization illustrate an axiomatic basis for deciding whether a requester is trustworthy,
and this basis is widely used in practice. We argued in this paper, however, that analytic
and synthetic bases are also worth supporting; and our document-viewer applications illus-
trated the power and convenience of these. Note, our thesis that authorization be viewed
not as an end to itself but rather as a proxy for a trustworthiness test is not limited to NAL
or even to authorization logics.

Since credentials convey attributes of principals, any approach to authorization that
makes decisions based on credentials could impinge on the privacy of individuals.16 This
risk is formulated succinctly by Cameron [2005] in his second law:

Minimal Disclosure for a Constrained Use. The solution that discloses the least
amount of identifying information and best limits its use is the most stable long-term
solution.

Viewed though this lens, identity-based authorization can be problematic when a requester
does not have the flexibility to create different identities for different kinds of requests. The
easy route—a single identity for each individual—creates the greatest opportunity for pri-
vacy compromise. With the analytic and synthetic bases, the focus changes to determining
what attributes must be known for an authorization decision. The easy route here is to ask
for less, and that bias helps with privacy.

Authorization that favors privacy is not only good for people but also turns out to be
good for system security. A privilege imparts a special right to perform some task. Hence,
a credential can be seen as conveying a kind of privilege, and logical implication defines
a partial order on these privileges: if C ⇒ C′ holds, then a credential that conveys C is
considered stronger than one that conveys C′. Notice that disclosure of stronger credentials
is more likely to violate privacy. And recall the well-known Saltzer–Schroeder [1975]
guidelines for building secure systems:

Principle of Least Privilege. Assign each principal the minimum privileges it needs to
accomplish its task.

16We define privacy to be the right of an individual to control the dissemination and use of information about
that individual.

26 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

The Saltzer–Schroeder mandate thus offers the same guidance as Cameron’s second law,
above; security and privacy are both well served by using weaker credentials.

APPENDIX: NAL Inference Rules

NAL’s axiomatization is similar to CDD [Abadi 2007; 2008], augmented with rules for
subprincipals and groups, and with standard rules for quantification in a predicate calcu-
lus [van Dalen 2004; Troelstra and van Dalen 1988]. The SAYS-I rule of NAL is called
UNIT in CDD; and Abadi shows that CDD’s BINDM axiom is equivalent to NAL’s SAYS-E
(also known as C4) in the presence of SAYS-I and DEDUCE (both of which are present in
NAL). We assume, but do not show, rules for variable renaming and substitution.

The derivation of any NAL formula F can be represented as a proof tree whose nodes
correspond to NAL formulas.

—Leaves correspond to axioms and assumptions. Each assumption has a unique label Λi.
—Each internal node in the tree corresponds to the conclusion G of some NAL infer-

ence rule. The formulas that correspond to the node’s immediate predecessors are the
premises needed to conclude G using the rule.

—The root of the tree corresponds to F .

Rules PROP-FORALL-I, FORALL-I, and EXISTS-E below involve side conditions that
refer to “uncancelled assumptions”. In a proof tree that derives F , an assumption A with
label Λi is defined to be cancelled if and only if any path from the node that corresponds to
F to the node that corresponds to A passes through a node derived by applying inference
rule IMP-I(Λi); otherwise A is considered uncancelled.

NAL Rules from Constructive Predicate Logic:

TRUE:
true

IMP-E:
F , F ⇒ G

G
IMP-I(Λi):

Λi :
F...
G

F ⇒ G

AND-I:
F , G
F ∧ G

AND-LEFT-E:
F ∧ G
F

AND-RIGHT-E:
F ∧ G
G

OR-LEFT-I:
F
F ∨ G

OR-RIGHT-I:
G
F ∨ G

OR-E:
F ⇒ H , G ⇒ H , F ∨ G

H

PROP-FORALL-I:
F

(∀x : F)
x is not free in any uncancelled
assumptions in the derivation of F

PROP-FORALL-E:
(∀x : F)
F [x := G]

free variables of formula G are free for x in F

Nexus Authorization Logic (NAL) · 27

FORALL-I:
F

(∀v : F)
v is not free in any uncancelled
assumptions in the derivation of F

FORALL-E:
(∀v : F)
F [v := τ]

free variables of term τ are free for v in F

EXISTS-I:
F [v := τ]
(∃v : F)

free variables of term τ are free for v in F

EXISTS-E:
F ⇒ G , (∃v : F)

G
v is not free in G or in any uncancelled
assumptions in the derivation of F ⇒ G

NAL Rules Derived from CDD:

DEDUCE:
A says (F ⇒ G)

(A says F)⇒ (A says G)

SAYS-I:
F

A says F
SAYS-E:

A says (A says F)
A says F

NAL Extensions:

SUBPRIN:
A→ A.τ

EQUIV SUBPRIN:
τ1 = τ2

A.τ1 → A.τ2

MEMBER:
P[v := A]
A→ {|v : P|}

free variables of A are free for v in P

→ GROUP:
(∀v : P ⇒ (v → A))
{|v : P|} → A

v is not free in A

NAL Derived Inference Rules:

FALSE:
false

F

28 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

→ TRANS:
A→ B , B → C

A→ C
v:F−−−→ TRANS:

A v:F−−→ B , B v:F−−→ C

A v:F−−→ C

HAND-OFF:
B says (A→ B)

A→ B
REST-HAND-OFF:

B says (A v:F−−→ B)

A v:F−−→ B

GROUP MONOTONICITY:
(∀v : P ⇒ P ′)

{|v : P|} → {|v : P ′|}

ACKNOWLEDGMENTS

Martin Abadi has been an extremely helpful sounding board throughout the evolution of
this work, and he brought GROUP MONOTONICITY to our attention. In addition, he, Lujo
Bauer, Willem de Bruijn, Michael Clarkson, Robert Constable, Joe Halpern, Andrew My-
ers, and Ted Wobber gave us useful feedback on an early draft of this paper. The three
TISSEC reviewers provided prompt and very thoughtful feedback on our initial submis-
sion. We are very grateful to them all.

REFERENCES

ABADI, M. 2007. Access Control in a Core Calculus of Dependency. Electronic Notes in Theoretical Computer
Science 172, 5–31.

ABADI, M. 2008. Variations in Access Control Logic. In Deontic Logic in Computer Science. 96–109.
ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A Calculus for Access Control in Dis-

tributed Systems. ACM Programming Languages and Systems 15, 4, 706–734.
APPEL, A. W. AND FELTEN, E. W. 1999. Proof-Carrying Authentication. In ACM Computer and Communica-

tions Security. ACM, New York, NY, USA, 52–62.
BAUER, L. 2003. Access Control for the Web via Proof-Carrying Authorization. Ph.D. thesis, Princeton Uni-

versity, Princeton, NJ, USA.
BAUER, L., CRANOR, L., REEDER, R. W., REITER, M. K., AND VANIEA, K. 2008. A User Study of Policy

Creation in a Flexible Access-control System. In Human Factors in Computing Systems. 543–552.
BAUER, L., GARRISS, S., MCCUNE, J. M., REITER, M. K., ROUSE, J., AND RUTENBAR, P. 2005. Device-

enabled authorization in the Grey system. In Information Security Conference. 431–445.
BAUER, L., GARRISS, S., AND REITER, M. K. 2005. Distributed Proving in Access-Control Systems. In IEEE

Security and Privacy. IEEE Computer Society Press, Washington, DC, USA, 81–95.
BECKER, M., FOURNET, C., AND GORDON, A. 2007. Design and Semantics of a Decentralized Authorization

Language. In IEEE Computer Security Foundations. IEEE Computer Society Press, Washington, DC, USA,
3–15.

BECKER, M. Y. AND NANZ, S. 2007. A Logic for State-Modifying Authorization Policies. In European
Symposium on Research in Computer Security. 203–218.

BECKER, M. Y. AND SEWELL, P. 2004. Cassandra: Flexible Trust Management, Applied to Electronic Health
Records. In IEEE Computer Security Foundations. IEEE Computer Society Press, Washington, DC, USA,
139–154.

BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FIUCZYNSKI, M. E., BECKER, D., CHAMBERS,
C., AND EGGERS, S. 1995. Extensibility, safety, and performance in the SPIN operating system. In SOSP
’95: Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles. ACM, New York, NY,
USA, 267–283.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. D. 1999. The Role of Trust Management
in Distributed Systems Security. Secure Internet Programming: Security Issues for Mobile and Distributed
Objects, 185–210.

Nexus Authorization Logic (NAL) · 29

BLAZE, M., FEIGENBAUM, J., AND KEROMYTIS, A. D. 1998. KeyNote: Trust Management for Public-Key
Infrastructures. In Security Protocols Workshop. 59–63.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized Trust Management. In IEEE Security and
Privacy. IEEE Computer Society Press, Washington, DC, USA, 164–173.

BLAZE, M., FEIGENBAUM, J., AND STRAUSS, M. 1998. Compliance Checking in the PolicyMaker Trust
Management System. In Financial Cryptography. Springer-Verlag, 254–274.

BOWERS, K. D., BAUER, L., GARG, D., PFENNING, F., AND REITER, M. K. 2007. Consumable Credentials
in Logic-Based Access-Control Systems. In Network and Distributed System Security Symposium. Internet
Society, San Diego, California, 143–157.

CAMERON, K. 2005. The laws of identity. http://www.identitybloc.com/?p=352.
CHU, Y.-H., FEIGENBAUM, J., LAMACCHIA, B., RESNICK, P., AND STRAUSS, M. 1997. REFEREE: Trust

Management for Web Applications. World Wide Web Journal 2, 3, 127–139.
DENNING, D. E. 1976. A Lattice Model of Secure Information Flow. Communications of the ACM 19, 5 (May),

236–243.
DEPARTMENT OF DEFENSE. 1985. Trusted Computer Security Evaluation Criteria (TCSEC), DoD 5200.28-

STD. http://csrc.nist.gov/publications/history/dod85.pdf.
DETREVILLE, J. 2002. Binder, a Logic-Based Security Language. In IEEE Security and Privacy. IEEE Com-

puter Society Press, Washington, DC, USA, 105–113.
DOCBOOK. http://www.docbook.org/.
ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLONEN, T. 1999. SPKI Certificate

Theory. IETF RFC 2693.
ERLINGSSON, Ú. AND SCHNEIDER, F. B. 1999. SASI Enforcement of Security Policies: A Retrospective. In

New Security Paradigms Workshop. ACM Press, New York, NY, USA, 87–95.
GARG, D., BAUER, L., BOWERS, K., PFENNING, F., AND REITER, M. 2006. A Linear Logic of Authorization

and Knowledge. In European Symposium on Research in Computer Security. Springer-Verlag, 297–312.
GARG, D. AND PFENNING, F. 2006. Non-Interference in Constructive Authorization Logic. In IEEE Computer

Security Foundations. IEEE Computer Society Press, Washington, DC, USA, 283–296.
GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER, E. A. 1996. A Secure Environment for Untrusted

Helper Applications: Confining the Wily Hacker. In Usenix Security Symposium.
GRAY, C. AND CHERITON, D. 1989. Leases: an efficient fault-tolerant mechanism for distributed file cache

consistency. In SOSP ’89: Proceedings of the Twelfth ACM Symposium on Operating Systems Principles.
ACM, New York, NY, USA, 202–210.

GUREVICH, Y. AND NEEMAN, I. 2008. Dkal: Distributed-knowledge authorization language. In CSF ’08:
Proceedings of the 2008 21st IEEE Computer Security Foundations Symposium. IEEE Computer Society,
Washington, DC, USA, 149–162.

HAMLEN, K. W., MORRISETT, G., AND SCHNEIDER, F. B. 2006. Certified In-lined Reference Monitoring on
.NET. In ACM Workshop on Programming Languages and Analysis for Security. ACM, New York, NY, USA,
7–16.

HOWELL, J. 2000. Naming and Sharing Resources Across Administrative Boundaries. Ph.D. thesis, Dartmouth
College, Hanover, New Hampshire, USA.

HOWELL, J. AND KOTZ, D. 2000. End-to-end authorization. In Operating System Design & Implementation.
USENIX Association, Berkeley, CA, USA, 151–164.

JIM, T. 2001. SD3: A Trust Management System with Certified Evaluation. In IEEE Security and Privacy. IEEE
Computer Society Press, Washington, DC, USA, 106–115.

LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E. 1992. Authentication in Distributed Systems:
Theory and Practice. ACM Transactions on Computer Systems 10, 265–310.

LESNIEWSKI-LAAS, C., FORD, B., STRAUSS, J., MORRIS, R., AND KAASHOEK, M. F. 2007. Alpaca: Exten-
sible Authorization for Distributed Services. In ACM Computer and Communications Security. ACM, New
York, NY, USA, 432–444.

LI, N., GROSOF, B. N., AND FEIGENBAUM, J. 2003. Delegation Logic: A Logic-Based Approach to Distributed
Authorization. ACM Transactions on Information and System Security 6, 128–171.

LI, N., MITCHELL, J. C., AND WINSBOROUGH, W. H. 2002. Design of a Role-Based Trust-Management
Framework. In IEEE Security and Privacy. IEEE Computer Society Press, Washington, DC, USA, 114–130.

30 · FRED B. SCHNEIDER, KEVIN WALSH and EMIN GÜN SIRER

NECULA, G. C. 1997. Proof-Carrying Code. In ACM Principles of Programming Languages. ACM, New York,
106–119.

OPENOFFICE. http://www.openoffice.org/.
ORGANIZATION FOR THE ADVANCEMENT OF STRUCTURED INFORMATION STANDARDS (OASIS). 2004.

Web Services Security: SOAP Message Security 1.0 (WS-Security 2004). http://docs.oasis-open.
org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

PFENNING, F. AND SCHÜRMANN, C. 1999. System Description: Twelf—A Meta-Logical Framework for De-
ductive Systems. In International Conference on Automated Deduction. Springer-Verlag, 202–206.

PIMLOTT, A. AND KSELYOV, O. 2006. Soutei, a Logic-Based Trust Management System, System Descrip-
tion. In Proceedings 8th International Symposium on Functional and Logic Programming (FLOPS 2006),
M. Hagiya and P. Wadler, Eds. Lecture Notes in Computer Science, vol. 3945. 130–145.

RIVEST, R. AND LAMPSON, B. 1996. SDSI—A Simple Distributed Security Infrastructure. http://
theory.lcs.mit.edu/cis/sdsi.html.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The Protection of Information in Computer Systems.
IEEE 63, 9 (Sept.), 1278–1308.

SANDHU, R. S. 1993. Lattice-Based Access Control Models. IEEE Computer 26, 11, 9–19.
SCHNEIDER, F. B., WALSH, K., AND SIRER, E. G. 2009. Nexus authorization logic (NAL): Design rationale

and applications. Tech. Rep. http://hdl.handle.net/1813/13679, Cornell Computing and Information Science
Technical Reports.

SHIEH, A., WILLIAMS, D., SIRER, E. G., AND SCHNEIDER, F. B. 2005. Nexus: A New Operating System for
Trustworthy Computing. In Symposium on Operating Systems Principles, Work-in-Progress Session.

SIRER, E. G., GRIMM, R., GREGORY, A. J., AND BERSHAD, B. N. 1999. Design and implementation of
a distributed virtual machine for networked computers. In SOSP ’99: Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles. ACM, New York, NY, USA, 202–216.

SYVERSON, P. F. AND STUBBLEBINE, S. G. 1999. Group Principals and the Formalization of Anonymity.
In World Congress on Formal Methods in the Development of Computing Systems. Springer-Verlag, London,
UK, 814–833.

TROELSTRA, A. S. AND VAN DALEN, D. 1988. Constructivism in Mathematics. Studies in Logic and the
Foundations of Mathematics, vol. 121. Elsevier Science Publishers. J. Barwise et al., editors.

TRUSTED COMPUTING GROUP. Trusted Platform Module (TPM) Specification, version 1.2. https://www.
trustedcomputinggroup.org/specs/TPM/.

VAN DALEN, D. 2004. Logic and Structure, 4 ed. Springer.
WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM, S. L. 1993. Efficient Software-Based Fault

Isolation. In Symposium on Operating Systems Principles. 203–216.
WALSH, K. 2011. Support for mutually suspicious subsystems. Ph.D. thesis, Cornell University. To appear.
WEISSMAN, C. 1969. Security Controls in the ADEPT-50 Time-Sharing System. In AFIPS Fall Joint Computer

Conference (FJCC). Vol. 35. 119–133.
WOBBER, E., ABADI, M., BURROWS, M., AND LAMPSON, B. 1994. Authentication in the TAOS Operating

System. ACM Transactions on Computer Systems 12, 1, 3–32.
WOBBER, T., RODEHEFFER, T. L., AND TERRY, D. B. 2009. Policy-based Access Control for Weakly Consis-

tent Replication. Tech. Rep. MSR–TR–2009–15, Microsoft Research. July.
WORLD WIDE WEB CONSORTIUM. 2007. Web Services Policy 1.5 - Framework (WS-Policy). http://www.
w3.org/TR/ws-policy/.

Submitted September 24, 2009. Accepted December 30, 2009. Revised December 2010.

