Simpler Proofs for Concurrent Reading and Writing*

Fred B. Schneider

TR 89-1037
September 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This material is based on work supported in part by the Office of Naval Research under contract N00014-86-K-0092, the National Science Foundation under grant number CCR-8701103, and Digital Equipment Corporation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not reflect the views of these agencies.
Simpler Proofs for Concurrent Reading and Writing

Fred B. Schneider

Department of Computer Science
Cornell University
Ithaca, New York 14853

September 13, 1989
Revised October 16, 1989

ABSTRACT
Simplified proofs are given for Lamport's protocols to coordinate concurrent reading and writing.

*This material is based on work supported in part by the Office of Naval Research under contract N00014-86-K-0092, the National Science Foundation under Grant No. CCR-8701103, and Digital Equipment Corporation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not reflect the views of these agencies.
1. Introduction

In most computing systems, hardware ensures that read and write operations to some basic unit of memory can be considered mutually exclusive. As a result, a read that overlaps with a write is serialized and will appear either to precede that write or to follow it. Operations that make multiple accesses to memory are not serialized by the hardware. The processor must ensure that when such operations overlap, they produce meaningful results.

In this paper, we give simplified proofs for two protocols proposed by Lamport [1] for coordinating read and write operations that involve multiple accesses to memory. The two key theorems in [1] are long and intricate. Here, we show that both are corollaries of a single, relatively simple theorem. Our facility with proofs and the use of formalism has improved significantly in a little over 15 years. This is due, in part, to the influence of Edsger Dijkstra.

2. Words from Digits

Consider a computing system in which the basic unit of memory is a digit, and a digit can contain one of \(B \geq 2 \) distinct values. Any element from a finite set of values can be encoded using a finite sequence of digits. We call such a sequence of digits a word. To read the value stored by a word, read operations are performed on its digits; to write a value, write operations are performed. Observe that overlapping read and write operations to a word will not be serialized by the hardware. Therefore, without additional constraints on execution, it is possible for a read that overlaps a write to obtain a meaningless value. For example, suppose digits can encode integers from 0 through 9 and a word \(w \) constructed from three digits initially encodes the value 099. A read that is concurrent with a write of value 100 might obtain any of the following results: 099, 090, 009, 000, 199, 190, 109, 100.

By constraining the order in which digits are read and the order in which digits are written, we can ensure that a read overlapping one or more writes does obtain a meaningful value. Desired are constraints that are both easily implemented and non-intrusive. Execution of neither read nor write operations should be delayed, nor should the constraints require elaborate synchronization primitives.

In the protocols that follow, a word \(w \) is implemented by a sequence \(w[0], w[1], \ldots, w[n] \) of digits. Think of \(w[0] \) as the most-significant (left-most) digit and \(w[n] \) as the least-significant (right-most) digit of a base \(B \) number being stored by \(w \). We assume that \(w \) is written by a single, sequential process. Define \(w[i] \) to be the value written to digit \(w[i] \) by write operation number \(p \). Also, for any sequence \(s = s[0]s[1] \ldots s[n] \), define \(s[i..j] \) to be the subsequence consisting of \(s[i] \ldots s[j] \), and define \(|s| \) to be the length of \(s \). Thus, \(w[0..k] \) is the word constructed from the most-significant (left-most) \(k+1 \) digits of \(w \).

\[1\] [1] was first submitted for publication in September 1974.

\[2\] It will be convenient to assume that a write operation to a word writes a value to every digit. The new value can, of course, be the same as the old.
A read operation that overlaps with one or more writes can obtain a value that corresponds to the result of no write operation. We can describe such values by using a slice, a sequence of positive integers. For a word w and a slice σ of equal length, define:

$$w^\sigma = w[0]^{\sigma[0]}w[1]^{\sigma[1]}...w[n]^{\sigma[n]}$$

We write $(N) \otimes v$ to denote a length N sequence of v's. Thus, $w^{(n+1)\otimes p}$ equals $w[0]^p w[1]^p ... w[n]^p$, the value written to w by write operation number p.

A slice σ is non-decreasing if $(\forall i: 0<i<|\sigma|: \sigma[i-1] \leq \sigma[i])$ and non-increasing if $(\forall i: 0<i<|\sigma|: \sigma[i-1] \geq \sigma[i])$. For slices σ and τ such that $|\sigma| = |\tau|$, define

$$\sigma \leq \tau = (\forall i: 0 < i < |\sigma|: \sigma[i] \leq \tau[i]).$$

Finally, in order to reason about the relative order in which operations occur, define $\mu_i(x)$ to be the number of writes that have been made to digit $w[i]$ as of time x. Observe that $x \leq x'$ implies that $\mu_i(x) \leq \mu_i(x')$ is valid.

3. The Main Result

We first show that if slices σ and τ satisfy certain restrictions (H1 – H3) and values written to w are non-decreasing (H4), then $w^\sigma \leq w^\tau$ where "\leq" denotes lexicographic ordering.

Theorem 1: Let σ and τ be slices such that $|\sigma| = |\tau| \geq N+1$. Then,

$$w[0..N]^{\sigma}[0..N]^{\tau}$$

provided:

(H1) σ is non-decreasing,
(H2) τ is non-increasing,
(H3) $\sigma \leq \tau$, and
(H4) $w[0..N]^{(N+1)\otimes i} \leq w[0..N]^{(N+1)\otimes j}$ for all $i \leq j$.

Proof. From hypothesis H4 and the definition of lexicographic ordering, we conclude that for all $i \leq j$ and any m such that $0 \leq m \leq N$:

$$w[0..m]^{(m+1)\otimes i} \leq w[0..m]^{(m+1)\otimes j}$$

The proof now proceeds by induction on the number of digits in w.

Base Case: Assume w is constructed using a single digit.

$$w^\sigma = \begin{cases} w[0]^{\sigma[0]} & \text{By assumption that } w \text{ is a single digit and hypothesis that } |\sigma| \geq N+1. \\ w[0..N]^{\sigma[0]} & \text{By LO, since } \sigma \geq \tau \text{ by H3.} \end{cases}$$

$$\leq \begin{cases} w[0..N]^{(N+1)\otimes 0} & \text{By assumption that } w \text{ is a single digit and hypothesis that } |\tau| \geq N+1. \end{cases}$$
Induction Case: Assume the Theorem holds for any \(n + 1 \) digit word \(w[0..n] \), where \(0 \leq n < N \). We show that it holds for the \(n+2 \) digit word \(w[0..n+1] \).

1. \(\sigma[0..n] \) is non-decreasing.
2. \(\alpha = (n+1) \otimes \sigma[n+1] \) is non-decreasing.
3. \(\sigma[0..n] \subseteq \alpha \).
4. \(w[0..n] \otimes \sigma[0..n] \leq w[0..n] \).
5. \(w[0..n] \otimes \sigma[0..n] \leq w[0..n+1] \).
6. \(\beta = (n+1) \otimes \tau[n+1] \) is non-decreasing.

By construction of \(\sigma[0..n] \) and \(\alpha \), since (H1) \(\sigma \) is non-decreasing.

7. \(w[0..n] \otimes \sigma[0..n] \leq w[0..n+1] \).

Definition of lexicographic order.

8. \(\beta \leq \tau[n+1] \).

9. \(\tau[0..n] \) is non-increasing.

By construction of \(\beta \) and \(\tau[0..n] \), since (H2) \(\tau \) is non-increasing.

10. \(\beta \leq \tau[0..n] \).

11. \(w[0..n] \leq w[0..n] \).

Definition of lexicographic order.

12. \(w[0..n] \leq w[0..n+1] \).

Transitivity with 7 and 12.

13. \(w[0..n+1] \leq w[0..n+1] \).

Definition of lexicographic order.

14. \(w[0..n+1] \leq w[0..n+1] \).

\(\square \)

4. Reading to the Left, Writing to the Right

We can now show that if the digits of \(w \) are read from right to left (i.e. \(w[n], w[n-1], \ldots, w[0] \)) but written from left to right (i.e. \(w[0], \ldots, w[n-1], w[n] \)) then only certain mixtures of values can be obtained from overlapping writes. In particular, the value read is bounded from below by the value written by the earliest write whose digit is obtained by this read.

Read-Left, Write-Right: If (i) the sequence of values written to \(w \) is non-decreasing, (ii) digits are written from left to right, and (iii) digits are read from right to left, then the value \(w^\tau \) obtained by the read satisfies \(w^\tau \).

Proof. We first show that \(\tau \) is non-increasing. Let \(x_i \) be the time that digit \(w[i] \) is read. Thus, \(\tau[i] = \mu_i(x_i) \) and, due to hypothesis (iii) that digits are read from right to left, \(x_n \leq x_{n-1} \leq \cdots \leq x_0 \). For
any $i, 0 \leq i < \kappa$

\[
\tau[i] = \begin{cases}
\mu_i(x_i) & \text{Assumption that } \tau[i] = \mu_i(x_i), \\
\geq \mu_{i+1}(x_{i+1}) & \text{Digits are written from left to right due to hypothesis (ii).} \\
\geq x_{i+1} & \text{Hypothesis (ii).} \\
= \mu_{i+1}(x_{i+1}) & \text{Assumption that } \tau[i] = \mu_i(x_i). \\
\tau[i+1] & \text{Assumption that } \tau[i] = \mu_i(x_i).
\end{cases}
\]

The correctness of Read-Left, Write-Right now follows from Theorem 1. Choose $(N+1) \otimes \tau[\kappa]$ for σ; this choice for σ satisfies H1 and H3. We showed above that τ satisfies H2. H4 is satisfied by hypothesis (i). Thus, from Theorem 1 we conclude $w^{(N+1) \otimes \tau[\kappa]} \leq w^{\tau}$.

There are two interesting things to note about this protocol. First, exclusive access to digits is the only synchronization required. Second, read operations and write operations do not delay each other.

5. Reading to the Right, Writing to the Left

By reversing the order in which digits are read and written, we obtain another protocol for concurrent reading and writing. With this protocol, the value read is bounded from above by the value written by the latest write whose digit is obtained by this read.

Read-Right, Write-Left: If (i) the sequence of values written to w is non-decreasing, (ii) digits are written from right to left, and (iii) digits are read from left to right, then the value w^σ obtained by any read satisfies $w^\sigma \geq w^{(N+1) \otimes \sigma[\kappa]}$.

Proof. We first show that σ is non-decreasing. Let x_i be the time that digit $w[i]$ is read. Thus, $\sigma[i] = \mu_i(x_i)$ and, due to hypothesis (iii) that digits are read from left to right, $x_0 \leq x_1 \leq \cdots \leq x_\kappa$. For any $i, 0 \leq i < \kappa$

\[
\sigma[i] = \begin{cases}
\mu_i(x_i) & \text{Assumption that } \tau[i] = \mu_i(x_i), \\
\geq \mu_{i+1}(x_{i+1}) & \text{Digits are written from right to left due to hypothesis (ii).} \\
\geq x_{i+1} & \text{Hypothesis (ii).} \\
= \mu_{i+1}(x_{i+1}) & \text{Assumption that } \sigma[i] = \mu_i(x_i). \\
\sigma[i+1] & \text{Assumption that } \sigma[i] = \mu_i(x_i).
\end{cases}
\]

The correctness of Read-Right, Write-Left now follows from Theorem 1. Choose $(N+1) \otimes \sigma[\kappa]$ for τ; this choice for τ satisfies H2 and H3. We showed above that σ satisfies H2. H4 is satisfied by hypothesis (i). Thus, from Theorem 1 we conclude $w^\sigma \leq w^{(N+1) \otimes \sigma[\kappa]}$. \qed
As before, exclusive access to digits is the only synchronization required, and operations are never delayed.

6. Final Remarks

This paper is now in its third revision. The first version contained simple and informal proofs. These, like the proof of Theorem 1 given above, used induction on the number of digits in a word. Unfortunately, the proofs were wrong—the informality let details slip through the cracks. The second version of the paper contained correct and formal versions of those proofs. A total of four lemmas were required—two lemmas for each protocol—although the two pairs of lemmas had proofs that were disturbingly similar. Theorem 1 of the current version of the paper generalizes two of those lemmas, and its proof results from combining the proofs of those two lemmas.

Acknowledgments

David Gries read and commented on many earlier versions of this paper. Jay Misra pointed out the errors in the first version of the paper and proposed the statement of Theorem 1 along with a (long) proof. Avoiding a case analysis in that proof led to the proof finally given above.

References