Preface

My thirty-year book collaboration with Gene Golub began in 1977 at a matrix computation workshop held at Johns Hopkins University. His interest in my work at the start of my academic career prompted the writing of GVL1. Sadly, Gene died on November 16, 2007. At the time we had only just begun to talk about GVL4. While writing these pages, I was reminded every day of his far-reaching impact and professional generosity. This edition is a way to thank Gene for our collaboration and the friendly research community that his unique personality helped create.

It has been sixteen years since the publication of the third edition—a power-of-two reminder that what we need to know about matrix computations is growing exponentially! Naturally, it is impossible to provide in-depth coverage of all the great new advances and research trends. However, with the relatively recent publication of so many excellent textbooks and specialized volumes, we are able to complement our brief treatments with useful pointers to the literature. That said, here are the new features of GVL4:

Content

The book is about twenty-five percent longer. There are new sections on fast transforms (§1.4), parallel LU (§3.6), fast methods for circulant systems and discrete Poisson systems (§4.8), Hamiltonian and product eigenvalue problems (§7.8), pseudospectra (§7.9), the matrix sign, square root, and logarithm functions (§9.4), Lanczos and quadrature (§10.2), large-scale SVD (§10.4), Jacobi-Davidson (§10.6), sparse direct methods (§11.1), multigrid (§11.6), low displacement rank systems (§12.1), structured-rank systems (§12.2), Kronecker product problems (§12.3), tensor contractions (§12.4), and tensor decompositions (§12.5).

New topics at the subsection level include recursive block LU ($\S3.2.11$), rook pivoting ($\S3.4.7$), tournament pivoting ($\S3.6.3$), diagonal dominance ($\S4.1.1$), recursive block structures ($\S4.2.10$), band matrix inverse properties ($\S4.3.8$), divide-and-conquer strategies for block tridiagonal systems ($\S4.5.4$), the cross product and various point/plane least squares problems ($\S5.3.9$), the polynomial eigenvalue problem ($\S7.7.9$), and the structured quadratic eigenvalue problem ($\S8.7.9$).

Substantial upgrades include our treatment of floating-point arithmetic ($\S2.7$), LU roundoff error analysis ($\S3.3.1$), LS sensitivity analysis ($\S5.3.6$), the generalized singular value decomposition ($\S6.1.6$ and $\S8.7.4$), and the CS decomposition ($\S8.7.6$).

References

The annotated bibliographies at the end of each section remain. Because of space limitations, the master bibliography that was included in previous editions is now available through the book website. References that are historically important have been retained because old ideas have a way of resurrecting themselves. Plus, we must never forget the 1950's and 1960's! As mentioned above, we have the luxury of

being able to draw upon an expanding library of books on matrix computations. A mnemonic-based citation system has been incorporated that supports these connections to the literature.

Examples

Non-illuminating, small-*n* numerical examples have been removed from the text. In their place is a modest suite of MATLAB demo scripts that can be run to provide insight into critical theorems and algorithms. We believe that this is a much more effective way to build intuition. The scripts are available through the book website.

Algorithmic Detail

It is important to have an algorithmic sense and an appreciation for high-performance matrix computations. After all, it is the clever exploitation of advanced architectures that account for much of the field's soaring success. However, the algorithms that we "formally" present in the book must never be considered as even prototype implementations. Clarity and communication of the big picture are what determine the level of detail in our presentations. Even though specific strategies for specific machines are beyond the scope of the text, we hope that our style promotes an ability to reason about memory traffic overheads and the importance of data locality.

Acknowledgements

I would like to thank everybody who has passed along typographical errors and suggestions over the years. Special kudos to the Cornell students in CS 4220, CS 6210, and CS 6220, where I used preliminary versions of GVL4. Harry Terkelson earned big bucks through through my ill-conceived \$5-per-typo program!

A number of colleagues and students provided feedback and encouragement during the writing process. Others provided inspiration through their research and books. Thank you all: Diego Accame, David Bindel, Åke Björck, Laura Bolzano, Jim Demmel, Jack Dongarra, Mark Embree, John Gilbert, David Gleich, Joseph Grcar, Anne Greenbaum, Nick Higham, Ilse Ipsen, Bo Kågström, Vel Kahan, Tammy Kolda, Amy Langville, Julian Langou, Lek-Heng Lim, Nicola Mastronardi, Steve McCormick, Mike McCourt, Volker Mehrmann, Cleve Moler, Dianne O'Leary, Michael Overton, Chris Paige, Beresford Parlett, Stefan Ragnarsson, Lothar Reichel, Yousef Saad, Mike Saunders, Rob Schreiber, Danny Sorensen, Pete Stewart, Gil Strang, Francoise Tisseur, Nick Trefethen, Raf Vandebril, and Jianlin Xia.

Chris Paige and Mike Saunders were especially helpful with the editing of Chapters 10 and 11.

Vincent Burke, Jennifer Mallet, and Juliana McCarthy at Johns Hopkins University Press provided excellent support during the production process. Jennifer Slater did a terrific job of copy-editing. Of course, I alone am responsible for all mistakes and oversights.

Finally, this book would have been impossible to produce without my great family and my 4AM writing companion: Henry the Cat!

Charles F. Van Loan Ithaca, New York July, 2012