
Preface

As the title suggests, this book is both an introduction to Matlab programming
and to the computational side of science and engineering. We target college fresh-
man intending to major in engineering (including computer science) or a natural
science (including mathematics). Given the quantitative abilities of this group of
students, we do not shy away from trigonometry and elementary notions of approxi-
mation as seen in Calculus I. Indeed, it is against the grain of liberal education not to
intermingle introductory programming with continuous mathematics if the student
clientele is capable of handling the mix. Liberal education is all about acquiring
an appreciation for different modes of thought. Why squander the opportunity to
contrast digital thinking with continuous thinking?

Our approach is simple. Each section begins with the posing of a problem
that points to some larger computational story. The solution is carefully derived
and along the way we introduce whatever new Matlab is required. This is followed
by a brief “talking point” that emphasizes some aspect of the larger story. This
pattern resonates with our belief that a first course in programming should be
taught through examples. Every section culminates in the production of a working
Matlab script and (usually) a few Matlab functions. The section exercises include
straight forward “M-problems” that focus on the developed codes and whatever new
Matlab is developed. More involved “P-problems” are designed to reinforce the
section’s computational message.

We use the Matlab environment because of its friendliness to the first-time
programmer and because it supports the idea of playing with computational ideas
through experimentation. This is central to the development of computational
intuition.

Playing with programs builds computational intuition.

Intuition is a sense of direction no different from the sense of direction that enables
you to find your way around an old childhood neighborhood without a map. The
key is that you have been there before. If intuition is a sense of direction, then
computational intuition is a sense of computational direction. Those who have it
will be able to find their way around science and engineering in the 21st century.
Navigation requires five keen senses. Through examples and problems we aim to

1. Develop eyes for the geometric. The ability to visualize is very important to
the computational scientist. Of course, computer graphics plays a tremendous
role here, but the visualization tools that it offers do not obviate the need to
reason in geometric terms. It is critical to be familiar with sines and cosines,
polygons and polyhedra, metrics and proximity, etc.

i



2. Develop an ear that can hear the “combinatoric explosion.” Many design and
optimization problems involve huge search spaces with an exponential number
of possibilities. It is important to anticipate this complexity and to have the
wherewithal to handle it with intelligent heuristics.

3. Develop a taste for the random. Science and engineering is populated with
processes that have a random component. Having a sense of probability and
the ability to gather and interpret statistics with the computer is vital.

4. Develop a nose for dimension. Simulation is much more computationally
intensive in three dimensions than in two dimensions – a hard fact of life
that is staring many computational scientists right in the face. An accurate
impression of how computers assist in the understanding of the physical world
requires an appreciation of this point. Moreover, being able to think at the
array level is essential for effective, high-performance computing.

5. Develop a touch for what is finite, inexact, and approximate. Rounding er-
rors attend floating-point arithmetic, computer displays are granular, analytic
derivatives are approximated with divided differences, a polynomial is used in
lieu of the sine function, and the data acquired in a lab may only be correct to
three significant digits. Life in computational science is like this and the prac-
titioner must be solid enough to face such uncertainties. Steady footwork is
required on the balance beam that separates the continuous and the discrete.

While the development of these five senses is an explicit priority, our overar-
ching ambition is to communicate the excitement of computing together with an
appreciation for its constraints and its connections to other methodologies. The in-
terplay between computing, theory, and experimentation is particularly important:

Theory Experiment

Computation

Each vertex represents a style of research and provides a window through which we
can look at science and engineering in the large. The vibrancy of what we see inside
the triangle depends upon the ideas that flow around its edges. A good theory
couched in the language of mathematics may be realized in the form of a computer
program, perhaps just to affirm its correctness. Running the program results in a

ii



simulation that may suggest a physical experiment. The experiment in turn may
reveal a missed parameter in the underlying mathematical model, and around we
go again.

There are also interesting dynamics in the other direction. A physical experi-
ment may be restricted in scope for reasons of budget or safety, so the scene shifts
to computer simulation. The act of writing the program to perform the simulation
will most likely have a clarifying influence, prompting some new mathematical pur-
suit. Innovative models are discovered, leading to a modification of the initial set
of experiments, and so forth.

In thinking about these critical interactions we are reminded of the great
mathematical scientist Richard Hamming who stated in the 1960’s that “the purpose
of computing is insight, not numbers.” We are in obvious agreement with this point
of view. The takeaway message from a first programming course should be “Insight
Through Computing” instead of just “Output Through Computing.” The next
generation of computational scientists and engineers needs to think broadly and
creatively and we hope that our book is a contribution in that direction.

Acknowledgements

This book is derived from many years of experience teaching CS 100M (now
CS 1112) at Cornell University. We are indebted to the many graduate student
teaching assistants who, through their hard work, have given us the time to refine
our course notes and to develop interesting assignments. In particular, we would
like to thank Mr. Tim Condon for co-authoring Appendix C.

More generally, we are fortunate to have our academic home defined by two
of Cornell’s great academic units: the College of Engineering and the Faculty of
Computing and Information Science. Location is everything if you want to be
energized by both colleagues and students. We have the best.

Daisy Fan
Charlie Van Loan
Ithaca, New York

iii


