
Chapter 1

From Formula to Program

§1.1 A Small Example
Program structure, comments, variable declaration, names,

types, real , ShowText, readln, writeln, format, printing

messages, the assignment statement.

§1.2 Sines and Cosines
Fragments, assertions, overwriting, syntactic errors, run-

time errors, built-in functions, sqr, sqrt, sin, cos, arctan

§1.3 Max’s and Min’s
If-then-else, boolean expressions, relational operators,

compound statements, top-down development of nested

ifs, and, or, not

§1.4 Quotients and Remainders
integer, mod, div, trunc, round, maxint

We grow up in mathematics thinking that “the formula” is a ticket to
solution space. Want the surface area of a sphere? Use

A = 4πr2.

Have the cosine of some angle θ ∈ [0, π/2] and want cos(θ/2)? Use

cos(θ/2) =

√

1 + cos(θ)

2
.

Want the minimum value µ of the quadratic function q(x) = x2 + bx+ c on
the interval [L, R]? Use

µ =

q(−b/2) if L ≤ −b/2 ≤ R

min{q(L), q(R)} otherwise
.

1

2 Chapter 1. From Formula to Program

Want to know if year y is a leap year? Use the rule that y is a leap year if
it is a century year divisible by 400 or a non-century year divisible by 4.

Sometimes the application of a formula involves a simple substitution.
Thus, the surface area of a one-inch ball bearing is 4π(1/2)2 = π square
inches. Sometimes we have to check things before choosing the correct
“option” within a formula. Since 0 ≤ 3 ≤ 10, the minimum value of
q(x) = x2 − 6x + 5 on the interval [0,10] is q(3) = −4. Sometimes we must
clarify the assumptions upon which the formula rests. Thus, if a century
year means something like 1400, 1500, and 2000, then 1900 was not a leap
year.

Writing programs that use simple formulas like the above are a good
way to begin our introduction to computational science. We’ll see that the
mere possession of a formula is just the start of the problem-solving process.
The real ticket to solution space, if you travel by computer, is the program.
And that’s what we have to learn to write.

Chapter 2

Numerical Exploration

§2.1 Discovering Limits
The for-loop and the while-loop.

§2.2 Confirming Conjectures
The type longint, maxlongint.

§2.3 Floating Point Terrain
The floating point representation, exponent, mantissa, over-

flow, underflow, inf, NaN, roundoff error, machine preci-

sion, the type double

§2.4 Interactive Frameworks
The type char, testing, nested loops.,

All work and no play does not a computational scientist make. It is essential
to be able to play with computational idea before moving on to its formal
codification and development. This is very much a comment about the role
of intuition. A computational experiment can get our mind moving in a
creative direction. In that sense, merely watching what a program does
is no different then watching a chemistry experiment unfold: it gets us to
think about concepts and relationships. It builds intuition.

The chapter begins with a small example to illustrate this point. The
area of a circle is computed as a limit of regular polygon areas. We “dis-
cover” π by writing and running a sequence of programs.

Sometimes our understanding of an established result is solidified by
experiments that confirm its correctness. In §2.2 we check out a theorem
from number theory that says 32k+1 + 2k is divisible by 7 for all positive
integers k.

To set the stage for more involved “computational trips” into mathe-
matics and science, we explore the landscape of floating point numbers.

3

4 Chapter 2. Numerical Exploration

The terrain is finite and dangerous. Our aim is simply to build a working
intuition for the limits of floating point arithmetic. Formal models are not
developed. We’re quite happy just to run a few well chosen computational
experiments that show the lay of the land and build an appreciation for the
inexactitude of real arithmetic.

The design of effective problem-solving environments for the computa-
tional scientist is a research area of immense importance. The goal is to
shorten the path from concept to computer program. We have much to say
about this throughout the text, In §2.4 we develop the notion of an inter-
active framework that fosters the exploration of elementary computational
ideas.

Chapter 3

Elementary Graphics

§3.1 Grids
ShowDrawing, the DrawWindow, screen coordinates, pix-

els, MoveTo, LineTo, declaring constants with const

§3.2 Rectangles and Ovals
FrameRect, PaintRect, FrameOvalPaintOval, PenPat, PenSize

§3.3 Granularity
WriteDraw, programs that use the DrawWindow and the

TextWindow.

It is hard to overstate the importance of graphics to computational science.
Three reasons immediately come to mind:

• In most large applications, the amount of numerical data that makes
up “the answer” is just too much for the human mind to assimilate
in tabular form.

• The visual display of data often permits the computational scientist
to spot patterns that would otherwise be hidden.

• Many computations have geometric answers and it is more effective
to show the answer than to describe it in numerical terms.

To build an appreciation for computer graphics we need to do computer
graphics. In this chapter we get started with a handful of ThinkPascal
graphics procedures that are utilized throughout the text. Elementary
graphical problems are solved that involve grids, rectangles, and ovals. A
fringe benefit of the chosen applications is that they give us an opportu-
nity to build up our iteration expertise. Visual patterns involve repetition
and repetition requires the writing of loops. Screen granularity provides
another setting for exploring the interplay between continuous and the dis-
crete mathematics.

5

6 Chapter 3. Elementary Graphics

Chapter 4

Sequences

§4.1 Summation
While-loops with compound termination criteria, comput-

ing n-th terms

§4.2 Recursions
One-term recursion, searching for a first occurrence, two-

term recursion.

In Chapter 2 we played with the sequence of regular n-gon areas {an} where

An =
n

2
sin

(

2π

n

)

.

We numerically “discovered” that

lim
n→∞

An = π ,

a fact that is consistent with our geometric intuition.
In this chapter we build our “n-th term expertise” by exploring se-

quences that are specified in various ways. At the top of our agenda are
sequences of sums like

Sn = 1 +
1

4
+

1

9
+ · · ·+ 1

n2
.

Many important functions can be approximated by very simple summa-
tions, e.g.,

exp(x) ≈ 1 + x +
x2

2!
+ · · ·+ xn

n!
.

The quality of the approximation depends upon the value of x and the
integer n.

7

8 Chapter 4. Sequences

Sometimes a sequence is defined recursively. The n-term may be speci-
fied as a function of previous terms, e.g.,

fn =

1 if n = 1 or 2

fn−1 + fn−2 if n ≥ 3

Sequence problems of this variety give us the opportunity to practice some
difficult formula-to-program transitions.

Chapter 5

Random Simulations

§5.1 Generating Random Reals and Integers
The unit concept, the uses declaration, write, the seed,

§5.2 Estimating Probabilities and Averages
Counting occurrences.

§5.3 Monte Carlo
Counting occurrences.

Many phenomena have a random, probabilistic aspect: the role of the dice,
the diffusion of a gas, the number of customers the enter a bank between
noon and 12:05. Some special tools are needed to simulate events like these
with the computer. This section is about random number generation and
how to write programs that answer questions about random phenomena.

9

10 Chapter 5. Random Simulations

Chapter 6

Fast, Faster, Fastest

§6.1 Benchmarking
TickCount, clock granularity, string constants, relative tim-

ings

§6.2 Efficiency
Reducing function call and arithmetic, linear and quadratic

running times, searching for a minimum value,

How fast a program runs is usually of interest and so the intelligent ac-
quisition of timing data, called benchmarking, is important. Benchmarking
serves many purposes:

• It can be used to identify program bottlenecks.

• It can be used to the quantify how hard it is to solve a problem.

• It can be used to determine whether one solution process is more
favorable than another.

• It can be used to calibrate the performance of a particular machine
architecture.

However, in this chapter we merely illustrate the mechanics of benchmark-
ing and show how it can be used to assess efficiency improvements as a
program undergoes development.

Two examples are used to illustrate the design of efficient code. The
plotting of an ellipse is used to show how to remove redundant arithmetic
and function evaluation in a loop context. The computation of a rational
approximation to π is used to show how the reduction of a doubly-nested
fragment to a single loop can result in an order-of-magnitude speed-up.

11

12 Chapter 6. Fast, Faster, Fastest

Behind all the discussion is a quiet, but very important ambition: to
build an aesthetic appreciation for the fast program. Programs that run
fast are creations of beauty. This is widely accepted in practical settings
where time is money. But in addition, program efficiency is something to
revel in for its own sake. It should be among the aspirations for every
computational scientist who writes programs.

Chapter 7

Exponential Growth

§7.1 Powers
function declarations, real-valued functions, precondi-

tions and post conditions, parameter lists, formal and ac-

tual parameters, functions that call other functions, scope

rules, development through generalization, integer-valued

functions.

§7.2 Binomial Coefficients
longint-valued functions, weakening the precondition, the

uses declaration, setting up a unit, the interface and

implementation declarations.

There are a number of reasons why the built-in sin function is so handy. To
begin with, it enables us to compute sines without having a clue about the
method used. It so happens that the design of an accurate and efficient sine
function is somewhat involved. But by taking the “black box” approach,
we are able to be effective sin-users while being blissfully unaware of how
the built-in function works. All we need to know is that sin expects a real
input value and that it returns the sine of that value interpreted in radians.

Another advantage of sin can be measured in keystrokes and program
readability. Instead of disrupting the “real business” of a program with
lengthy compute-the-sine fragments, we merely invoke sin as required. The
resulting program is shorter and reads more like traditional mathematics.

A programming language like ThinkPascal always comes equipped with
a library of built-in functions. The designers of the language determine the
library’s content by anticipating who will be using the language. If that
group includes scientists and engineers, then invariably there will be built-
in functions for the sine, cosine, log, and exponential functions because they
are of central importance to work in these areas.

13

14 Chapter 7. Exponential Growth

It turns out that if you need a function that is not part of the built-in
function library, then you can write your own. The art of being able to
write efficient, carefully organized functions is an absolutely essential skill
for the computational scientist because it suppresses detail and permits a
higher level of algorithmic thought.

To illustrate the mechanics of function writing we have chosen a set
of examples that highlight a number of important issues. On the contin-
uous side we look at powers, exponentials, and logs. These functions are
monotone increasing and can be used to capture different rates of growth.
Factorials and binomial coefficients are important for counting combina-
tions. We bridge the continuous/discrete dichotomy through a selection of
problems that involve approximation.

Chapter 8

Patterns

§8.1 Encapsulation
The procedure, formal and actual parameters, pre and

post conditions, local variables and constants,

§8.2 Hierarchy
Boolean variables, Procedures that call other procedures

Procedures hide computational detail and in that regard they are similar
to functions. The procedures discussed in this chapter draw objects1 . Once
such a procedure is written, it can be used as a “black box.”

Writing and using procedures that draw geometric patterns is symbolic
of what engineers and scientists do. Geometric patterns are defined by pa-
rameters and deciding what the “right” parameters are requires a geometric
intuition. Similar is the design of an alloy that requires a metallurgist’s in-
tuition or the building of a model to predict crop yield that requires a
biologist’s intuition. What are to be the constituent metals? What are
the factors effecting the growth? Once the parameters are identified, con-
struction is possible by setting their value. A pattern is drawn. An alloy is
mixed. A model is formulated. Optimality can then pursued: What choice
of parameter values renders the most pleasing pattern, the strongest alloy,
the most accurate model of crop yield?

Our use of graphics procedures to shed light on the processes of engi-
neering design and scientific discovery begins in this chapter. We start by
showing how to “package” the computations that produce the pattern. It’s
an occasion to practice the writing of clear specifications that define what a
piece of software can do. Patterns can be built upon other, more elemental
patterns, a fact that we use to motivate the design of procedure hierarchies.
Optimization issues are discussed further in Chapters 13, 23, and 24.

1Procedures that return values are covered in Chapter 10.

15

16 Chapter 8. Patterns

Chapter 9

Proximity

§9.1 Distance
Real-Valued functions, nesting if’s,

§9.2 Inclusion
Boolean-valued functions

§9.3 Collinearity
Real-valued vs. Boolean-valued functions

Questions of proximity are of central importance in computational sci-
ence. How near is a given mechanical system to wild oscillation? How near

is a given fluid flow to turbulence? How near is a given configuration of
molecules to a state of minimal energy? How near is one digitized picture to
another? The key word is “near” and the recognition that a “distance func-
tion” is required to measure “nearness.” The notion of distance is familiar
to us in geometric settings:

• What is the distance between two points in the xy plane?

• What is the distance from a point to a line segment?

• What is the distance from a point to a polygon?

Our plan is to cut our “nearness” teeth on planar distance problems of this
variety, illustrating the distinction between constrained and unconstrained
optimization and the complicated boundary between exact mathematics
and practical computation.

In the geometric setting, extreme nearness “turns into” inclusion.” In-
stead of asking how near one rectangle is to another, we may ask whether
one rectangle is inside another. Questions like this have yes/no answers.

17

18 Chapter 9. Proximity

Distance questions, on the other hand, have a continuity about them and
culminate in the production of a single, nonnegative real number.

The problem of when three points are collinear gives us a snapshot of just
how tricky it can be to handle a yes/no geometric question. In theory, three
points either line up or they do not. In practice, fuzzy data and inexact
arithmetic muddy the waters. For example, we may be using a telescope
and a computer to determine the precise moment when both members of
a binary star system line up. But both tools have limited precision. Stars
and numbers that are too close together are impossible to resolve, and so
the computational scientist formulates a distance function that can be used
to investigate how near the astronomical situation is to exact collinearity.

Chapter 10

Roots

§10.1 Quadratic Equations
Procedures with var parameters and boolean flags.

§10.2 The Method of Bisection
Functions as parameters, nested functions, and global vari-

ables.

§10.3 The Method of Newton
More on functions as parameters and nesting.

Our first experiences with root-finding are typically with “easy” func-
tions that permit exact, closed-form solutions like the quadratic equation:

ax2 + bx + c = 0 ⇒ x =
−b ±

√
b2 − 4ac

2a
, a 6= 0

However, even the implementation of such a math book formula involves
interesting computational issues.

In practical problems we are rarely able to express roots in closed form
and this pushes us once again into the realm of the approximate. Just as
we had to develop the notion of approximate collinearity to make “compu-
tational progress” in §9.3, so must we develop the notion of an approximate
root. Two definitions are presented and exploited in the methods of bisec-
tion and Newton that we develop. The discussion of these implementations
lead to some larger software issues. For example, these root finders expect
the underlying function to be specified in a certain way. This may require
the “repackaging” of an existing implementation that does not meet the
required specification. The exercise of modifying “your” software so that it
can interact with “someone else’s” software is typical in computational sci-
ence, where so many techniques are embodied in existing software libraries.

19

20 Chapter 10. Roots

We use the development of a modest Newton method root-finder to dra-
matize the difference between a math book implementation of a formula and
a finished, usable piece of software. It is absolutely essential for the com-
putational scientist to appreciate the difficulties associated with software
development.

Chapter 11

Area

§11.1 Triangulation
Partitioning.

§11.2 Tiling
Integer-valued functions, discrete approximation.

§11.3 Integration
Functions as parameters.

The breaking down of large complex problems into smaller, solvable
subproblems is at the heart of computational science. The calculation of
area is symbolic of this enterprise and makes an interesting case study.
When the region is simple, there may be a formula, e.g., A = base · height.
Otherwise, we may have to partition the region into simpler regions for
which there are area formulas. For example, we can cover a polygon with
triangles and then sum their areas. Other times we may have to resort
to approximation. If we can pack (without overlap) N h-by-h tiles inside
a shape that is bounded by curves, then Nh2 approximates its area. A
variation of this idea, with limits, leads to the concept of integration in the
calculus. By exploring these limits we obtain yet another glimpse of the
boundary between exact mathematics and approximate calculation.

21

22 Chapter 11. Area

Chapter 12

Encoding Information

§12.1 Notation and Representation
The type string, length, copy, pos, concat, reading data

from a file, the EoF function, procedures with string pa-

rameters.

§12.2 Place Value
String-valued functions, functions with string parameters.

This chapter is about the representation of information, a term already
familiar to us. For example, a real number has a floating point representa-

tion when stored in a real variable. Numbers stored in integer variables
have a different kind of representation. In this chapter we advance our
understanding of the representation “idea” by looking at several “conver-
sion problems” that involve numbers as strings of characters. A greater
appreciation for the place-value notation is obtained.

23

24 Chapter 12. Encoding Information

Chapter 13

Visualization

§13.1 Exploratory Environments
Functions that expect user response. Button.

§13.2 Coordinate Systems
Global variables.

In Chapter 2 we developed the notion of numerical exploration, the main
idea being that we could get a handle on difficult mathematical questions
through computer experimentation. This is one of the most important
aspects of computational science. To dramatize further this point, we enlist
the services of computer graphics. Our geometric intuition and our ability
to visualize go hand-in-hand. Both are essential in many problem-solving
domains and graphics can lend a real helping hand.

We start by developing a handful of graphical tools that permit the
construction of simple exploratory environments. Sometimes the computer
visualization of a problem or a task is an end in itself. On other occasions,
it merely sets the stage for analytical work. Regardless of how it is used, a
“visualization system” is driven by many behind-the-scenes computations
that permit the suppression of mundane detail. Typical among these are the
coordinate transformations that take us from “problem space” to “screen
space.” The intelligent handling of these transformations leads to some
important software issues.

259

260 Chapter 13. Visualization

Chapter 14

Points In The Plane

§14.1 Centroids
Array types, procedures with array parameters.

§14.2 Max’s and Min’s
Functions with array parameters, array-valued functions.

All of the programs that we have considered so far involve relatively few
variables. We have seen problems that involve a lot of data, but there was
never any need to store it “all at once.” This will now change. Tools will
be developed that enable us to store a large amount of data that can be
accessed during program execution. We introduce this new framework by
considering various problems that involve sets of points in the plane. If
these points are given by (x1, y1), . . . , (xn, yn), then we may ask:

• What is their centroid?

• What two points are furthest apart?

• What point is closest to the origin (0,0)?

• What is the smallest rectangle that contains all the points?

The usual readln/writeln methods for input and output are not con-
venient for problems like this. The amount of data is too large and too
geometric.1

1In this chapter we’ll be making extensive use of cGetPosition, cDrawDot,

cDrawBigDot, DrawAxes, cMoveTo, and cLinetO. These procedures are declared in DDCodes

and are developed in §13.2. Throughout this chapter the underlying coordinate trans-

formation is a non-issue and will be fixed with the xy origin at the screen center and 10

pixels per unit xy distance

261

262 Chapter 14. Points In The Plane

Chapter 15

Tables

§15.1 Set-Up
Functions that return an array value, nested functions,

global variables.

§15.2 Plotting
Procedures with array parameters, searching an array.

§15.3 Efficiency Issues
Array operations.

§15.4 Look-Up
While-loops and arrays.

Suppose it costs one dollar to evaluate a function f(x) and that a given
fragment calls f 1000 times. If each function call involves a different value
of x, then $1000 must be spent on f evaluations. However, if only 10 differ-
ent x values are involved, then there is a $10 solution to the f-evaluation
problem:

(a) “precompute” the 10 necessary f evaluations and store them in an
array. (This costs $10.)

(b) extract the necessary f-values from the array during the execution of
the fragment.

Storing x-values and f-values in a pair of arrays is just a method for rep-
resenting a table in the computer.

A plotting environment is developed that allows us to display in a win-
dow the values in a table. Although the plotting tools that we offer are
crude, they are good enough to build an appreciation for plotting as a
vehicle that builds intuition about a function’s behavior.

The setting up of a table is an occasion to discuss several efficiency
issues that have to do with function evaluation. A sine/cosine example

263

264 Chapter 15. Tables

is used to show how to exploit recursive relations that may exist between
table entries. The “parallel ” construction of the entries in a table using
array-level operations is also discussed

Once a table is set up, there is the issue of looking up values that it
contains. The methods of linear search and binary search are discussed.
The “missing” data problem is handled by linear interpolation.

Chapter 16

Divisors

§16.1 The Prime Numbers
Integer arrays, arrays as parameters, functions that return

arrays, boolean arrays.

§16.2 The Apportionment Problem
Integer and real arrays, searching for a max, comparing

two arrays.

A division problem need not have a “happy ending.” Quotients like 1 ÷ 0
are not defined. Ratios like 1/3 have no finite base-10 expansion. Real
numbers like

√
2 cannot be obtained by dividing one integer into another.

Integers like 7 have no proper divisors. Etc, Etc.

Division is hard. That’s why we learn it last in grade school. That’s
why the IRS permits rounding to the nearest dollar. That’s why base-60
systems were favored by the Maya and the Babylonians.1

Yes, division is by far the most interesting of the four arithmetic opera-
tions. But the idea of division transcends the purely numerical. Geometry
and combinatorics are filled with partitioning problems. How can a polygon
be divided into a set of triangles? How many ways can a set of m objects
be divided into n non-empty subsets?

In this chapter we consider a pair of representative division problems.
One is purely arithmetic and involves the prime numbers. A prime number
is an integer that has no divisors except itself and one. They figure in many
important applications. Our treatment of the prime numbers in §16.1 is
designed to build intuition about integer divisibility.

The second division problem we consider also involves the integers, but
it is essentially a partitioning problem with social constraints. This is the
problem of apportionment, which in its most familiar form is this: how can

1More numbers divide 60 than 10, and this permits a simpler arithmetic life.

265

266 Chapter 16. Divisors

435 Congressional districts be divided among 50 states? Few division prob-
lems have such far-reaching ramifications and that alone is reason enough
to study the computation. the algorithms that solve the apportionment
But the apportionment problem is a good place to show how reasonable
methods may differ in the results that they produce, a fact of life in com-
putational science.

Chapter 17

The Second Dimension

§17.1 “ij” Thinking
2-dimensional arrays and functions and procedures that

involve them.

§17.2 Operations
Searching a 2-dimensional array and updating its values.

§17.3 Tables in Two Dimensions
Using 2-dimensional arrays to represent a function of two

variables.

§17.4 Bit Maps
Two-dimensional boolean arrays, arrays of arrays.

As we have said before, the ability to think at the array level is very
important in computational science. This is challenging enough when the
arrays involved are linear, i.e., one-dimensional. Now we consider the two-
dimensional array using this chapter to set the stage for more involved
applications that involve this structure. Two-dimensional array thinking is
essential in application areas that involve image processing. (A digitized
picture is a 2-dimensional array.) Moreover, many 3-dimensional problems
are solved by solving a sequence of 2-dimensional, “cross-section” problems.

We start by considering some array set-up computations in §17.1. The
idea is to develop an intuition about the parts of a 2-dimensional array: its
rows, its columns, and its subarrays.

Once an array is set up, it can be searched and its entries manipulated.
Things are not too different from the 1-dimensional array setting, but we
get additional row/column practice in §17.2 by considering a look-for-the-
max problem and also a mean/standard deviation calculation typical in
data analysis. Computations that involve both 1- and 2-dimensional arrays
at the same time are explored through a cost/purchase order/inventory

267

268 Chapter 17. The Second Dimension

application. Using a 2-dimensional array to store a finite snapshot of a
2-dimensional continuous function f(x, y) is examined in §17.3.

In the last section we present the 2-dimensional boolean array as a
vehicle for representing some familiar patterns of “yes-no” data.

Chapter 18

Polygons

§18.1 Points
records, arrays of records, procedures and functions with

parameters that are records, functions that return a record

type

§18.2 Line Segments
Records of records.

§18.3 Triangles and Rectangles
Records of records.

§18.4 N-gons
Records with array fields.

Plane geometry is filled with hierarchies. For example, each side of a poly-
gon is a line segment. In turn, each line segment is defined by two points,
and each point is defined by two real numbers. Problem solving in this
domain is made easier by using records. With records, the data that de-
fines a problem can be “packaged” in a way that facilitates our geometric
thinking.

269

270 Chapter 18. Polygons

Chapter 19

Special Arithmetics

§19.1 The Very Long Integer
records with array fields

§19.2 The Rational
Records of records.

§19.3 The Complex
Records of records.

In this chapter we push out from the constraints of computer arithmetic.
We have no way to represent exactly 100! or even 1/3 or

√
−1. To address

these constraints we develop three environments. The first is for very long
integer arithmetic and will permit us to compute very large integers. The
idea is to use an array to represent an integer. Functions are developed
that permit the manipulation of integers that are stored in this fashion and
enable us to compute exactly things like

100! = 33262154439441526816992388562667004907159682643812146859296389521759999322991
56089414639761565182825369792082722375825118521091686400000000000000000000000

Quotients of integers give us the rational numbers. Unfortunately, even
simple rational numbers like 1/3 have no exact (base-2) floating point rep-
resentation. Clearly, the thing to do is to represent a rational number as a
pair of integers in the computer. By doing this and developing arithmetic
functions that can operate on rational numbers, we can compute exactly
rational numbers like

1 +
1

2
+

1

3
+ · · ·+ 1

10
=

7381

2580

Our third extended arithmetic system deals more with a shortcoming
of the real numbers than with real floating point arithmetic. The problem

271

272 Chapter 19. Special Arithmetics

is that the square root of a negative real number is not real, but complex.
But if we let i stand for

√
−1, then many interesting doors are opened. For

starters, square roots like
√
−36 have a complex representation, e.g., 6i.

General complex numbers have the form a + bi where a and b are real. We
develop an environment that supports their representation and manipula-
tion. The display of complex numbers in the complex plane enables us to
acquire a geometric intuition about their behavior in certain computational
settings.

Chapter 20

Polynomials

§20.1 Representation and Operations
Records with an array field.

§20.2 Evaluation
Records of records.

§20.3 Quotients
Records of records.

A polynomial is a function of the following form:

p(x) = a0 + a1x + a2x
2 + · · ·+ anxn.

If an is nonzero, then the degree of p(x) is n. An n-degree polynomial has
exactly n roots. Some of these roots may be complex, but if the coefficients
are real, then the complex roots come in conjugate pairs. For quadratics
(degree = 2), cubics (degree = 3) and quartics (degree = 4), there are closed
formulae for the roots. A famous theorem by Galois states that no such
recipes exist for polynomials having degree ≥ 5. Polynomials are widely
used because

• They have a tractable algebra with many interesting and useful prop-
erties.

• They are easy to integrate and differentiate.

• They can be used to approximate more complicated functions.

• They are used to build rational functions.

In this chapter we build an appreciation for these things and generally
develop an ability to work with this important family of functions.

273

274 Chapter 20. Polynomials

Chapter 21

Permutations

§21.1 Shifts and Shuffles
Real arrays, functions that return arrays.

§21.2 Sorting
Real arrays, procedures that return arrays.

§21.3 Representation
Arrays of subscripts, indirect addressing.

The when data is re-ordered it undergoes a permutation. An ability to
compute with permutations and to reason about them is very important in
computational science. Unfortunately, it’s an activity that is very prone to
error because it often involves intricate subscripting. So we start gently by
discussing two very straightforward but important permutations: the shift
and the perfect shuffle. These operations play a key role in many signal
processing applications.

Sorting is by far the most important permutation that arises in appli-
cations and three elementary methods are discussed in §21.2: bubble sort,
insertion sort, and merge sort. These methods are developed and compared
in the context of real arrays. When arrays or records are to be sorted, other
issues come to the fore and these are discussed in §21.3.

An important undercurrent throughout the chapter is the concept of
data motion. On most advanced machines, program efficiency is a function
of how much data flows back and forth between the computer’s memory and
processing units. The volume of arithmetic is almost a side issue. Because
programs that implement permutations deal almost exclusively with moving
data, they are good for rounding out our intuition about efficiency.

275

276 Chapter 21. Permutations

Chapter 22

Optimization

§22.1 Shortest Path
Integer, real, and boolean arrays, indirect addressing.

§22.2 Best Design
Records of Records, indirect addressing.

§22.3 Smallest Ellipse
Records.

Optimization problems involve finding the “best” of “something. The
search for the optimum ranges over a set called the search space and the
notion of best is quantified through an objective function. One example
encountered in §8.3 is to find the closest point on a line L to a given point
P . Thus, L is the search space and Euclidean distance is the objective
function. Using the calculus, a formula can be given that explicitly specifies
the optimal point. This, however, is not typical. In practice, explicit recipes
give way to algorithms and exact solutions give way to approximations.
Suboptimal solutions are happily accepted if they are cheap to compute
and “good enough.”

To clarify these points we describe three different applications in this
chapter. Our goal is to show how one goes about solving complicated opti-
mization problems and build an appreciation for their role in computational
science. In §22.1 we consider the traveling salesperson problem where the
aim is to find the shortest roundtrip path that visits each of n given points
exactly once. The search space is huge, consisting of (n − 1)! possible
itineraries. A brute force search plan that considers every possibility is out
of the question except for very small values of n. But with an appropriately
chosen computational rule-of-thumb called a heuristic, we show that it is
not necessary to scan the entire search space. A good, low-mileage itinerary
can be produced relatively cheaply.

277

278 Chapter 22. Optimization

In §22.2 we use a small engineering design problem to discuss the im-
portant role that constraints play in optimization and how there is often
more than one natural choice for an objective function. The problem is
to build a 10-sprocket bicycle with a desirable range of gear ratios. As in
the traveling salesperson problem, the number of possibilities to consider
is huge, although finite. Constraints reduce the size of the search space
and but extra care must be exercised to stay within the set of allowable
solutions. The application is small as engineering design problems go, but
rich enough in complexity to illustrate once again the key role of heuristics.

The last problem we consider is that of enclosing a given set of points
with the smallest possible ellipse. In contrast to the previous two problems,
this is a continuous optimization problem with a genuinely infinite search
space. We set up a graphical environment that facilitates the search for the
optimum ellipse.

Chapter 23

Divide and Conquer

§23.1 Recursion Versus Iteration
Recursive functions.

§23.2 Repeated Halving
Recursive procedures.

§23.3 Mesh Refinement
Function evaluations and recursion

The family of divide and conquer algorithms have a very central role
to play in computational science. These algorithms involve the repeated
subdivision of the original problem into successively smaller parts. The so-
lutions of the smaller parts are then “glued together” in hierarchical fashion
to obtain the overall solution. There are many variations of this theme and
we cover several major examples in this chapter.

We have already met the divide and conquer idea. The method of
bisection discussed in §10.x “divides” the current bracketing interval in
half and “conquers” that half known to include a root. The method of
merge sort that we discussed in §21.x proceeds by dividing the given list in
halve, sorting (conquering) the two halves, and merging the results.

A new technique is required to carry out the divide and conquer solution
strategy in its most powerful form, and that is the recursive procedure.
Simply put, a recursive procedure (or function) calls itself. This capability
is supported in Pascal and is of fundamental importance.

In §23.1 we introduce the mechanics of recursion and develop a recursive
function for exponentiation. The example is not very convincing because
the nonrecursive algorithm is such a simple alternative, but it does permit
a comparison of recursion and iteration. Binary squaring, merge sort, and
other “repeated halving” computations are discussed in §23.2. Dynamic
mesh generation is developed in the last section. Many important applica-
tions in computational science involve solving complicated equations over

279

280 Chapter 23. Divide and Conquer

complicated regions. A general solution strategy is to partition the region
into the union of smaller, simpler, subregions. The problem, or more likely,
a simplified version of the problem is then solved on each subregion. The
mesh is often generated recursively. To give a sense of this enterprise, we
show how to approximate a curve in the plane with a polygonal line whose
break points are recursively determined.

Chapter 24

Models and Simulation

§24.1 Prediction and Intuition
Nested loops, boolean expressions, arrays, functions and

procedures.

§24.2 The Effect of Dimension
1, 2, and 3-dimensional arrays.

§24.3 Building Models from Data
Records of records, functions and procedures.

Scientists use models to express what they know. The level of precision
and detail depends upon several factors including the mission of the model,
the traditions of the parent science, and the mathematical expertise of the
model-builder. When a model is implemented as a computer program and
then run, a computer simulation results. This activity is at the heart of
computational science and we have dealt with it many times before. In this
closing chapter we focus more on the model/simulation “interface” shed-
ding light on how simulations are used, what makes them computationally
intensive, and how they are tied up with data acquisition.

Suppose a physicist builds a complicated model that explains what hap-
pens to a neutron stream when it bombards a lead shield. A simulation
based upon this model could be used to answer a design question: How
thick must the shield be in order to make it an effective barrier from the
safety point of view? The simulation acts as a predictor. The computer
makes it possible to see what the underlying mathematics “says.” Alterna-
tively, the physicist may just be interested in exploring how certain model
parameters effect the simulation outcome. In this setting the simulation
has a more qualitative, intuition-building role to play. The precise value of
the numerical output is less important than the relationships that produce
it. In §24.1 we examine these two roles that computer simulation can play
using Monte Carlo, which we introduced in §6.3.

281

282 Chapter 24. Models and Simulation

The time required to carry out a simulation on a grid usually depends
strongly upon the grid’s dimension. In §24.2 we build an appreciation for
this by experimenting with a family of one, two, and three dimensional
problems.

In the last section we discuss the role that data plays in model-building.
The least squares fitting of a line to a set of points in the plane illus-
trates that a model’s parameters can sometimes be specified as a solution
to an optimization problem. A ray tracing application shows how a two-
dimensional density model can be obtained by gathering lots of data from
one-dimensional snapshots.

