
RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES∗

DANIEL S. BERNSTEIN† AND CHARLES F. VAN LOAN‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 145–154

Abstract. Suppose f = p/q is a quotient of two polynomials and that p has degree rp and q has
degree rq . Assume that f(A) and f(A+ uvT) are defined where A ∈ R

n×n, u ∈ R
n, and v ∈ R

n are
given and set r = max{rp, rq}. We show how to compute f(A+uvT) in O(rn2) flops assuming that
f(A) is available together with an appropriate factorization of the “denominator matrix” q(A). The
central result can be interpreted as a generalization of the well-known Sherman–Morrison formula.
For an application we consider a Jacobian computation that arises in an inverse problem involving
the matrix exponential. With certain assumptions the work required to set up the Jacobian matrix
can be reduced by an order of magnitude by making effective use of the rank-1 update formulae
developed in this paper.

Key words. matrix functions, Sherman–Morrison

AMS subject classifications. 65F05, 65F99, 65L05

PII. S0895479898333636

1. Introduction. Suppose A ∈ R
n×n, u ∈ R

n, and v ∈ R
n are given and that f

is a prescribed rational function that is defined on the spectrum of A and A+uvT . In
this paper we are concerned with the efficient computation of f(A + uvT) assuming
that f(A) is available.

The special case f(z) = 1/z is well known:

(A+ uvT)−1 = A−1 − αyzT , y = A−1u, z = A−T v, α = 1/(1 + zTu).

This is the Sherman–Morrison formula and it can be used to compute (A + uvT)−1

from A−1 in O(n2) flops. See [2, p. 50]. In a linear equation setting, the Sherman–
Morrison result, together with a QR factorization of A, makes it possible to solve
(A+ uvT)x = b in O(n2) flops.

Interest in a “fast” f(A+ uvT) result can arise in several settings. For example,
Benzi and Golub [1] present a Lanczos-based process for bounding certain matrix
functions. Our generalized Sherman–Morrison result widens the class of problems
that can be efficiently handled by their technique. Kenney and Laub [3] discuss
condition estimation for matrix functions. With our results it is possible to compute
more specialized sensitivity measures, e.g., how a rational function of a matrix A
changes when a particular aij is varied.

The paper is organized as follows. In the next section we derive the generalized
Sherman–Morrison formula and a closed-form expression for the derivative of f(A)
with respect to aij . Numerical results, stability issues, and a Jacobian evaluation
application are discussed in section 3.

2. A generalized Sherman–Morrison result. We first show that if A changes
by a rank-1 matrix, then Aj changes by a rank-j matrix. Krylov matrices and ex-
change permutation matrices are involved. For A ∈ R

n×n, x ∈ R
n, and j > 0, the

∗Received by the editors February 3, 1998; accepted for publication (in revised form) by R. Freund
October 28, 1999; published electronically May 31, 2000.

http://www.siam.org/journals/simax/22-1/33363.html
†Department of Computer Science, University of Massachusetts, 140 Governor’s Drive, Amherst,

MA 01003 (bern@cs.umass.edu).
‡Department of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853

(cv@cs.cornell.edu).

145

146 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

Krylov matrix Kry(A, x, j) ∈ R
n×j is defined by

Kry(A, x, j) =
[
x, Ax, . . . , Aj−1x

] ∈ R
n×j .

We adopt the convention that Kry(A, x, j) is the empty matrix if j = 0. The exchange
permutation matrix Ej ∈ R

j×j is just the identity matrix Ij with its columns in reverse
order, i.e.,

Ej = Ij(:, j:− 1:1) .

Lemma 1. If A ∈ R
n×n, u ∈ R

n, v ∈ R
n, and j > 0, then

(A+ uvT)j = Aj +KjEjL
T
j ,

where Kj = Kry(A, u, j) and Lj = Kry(AT + vuT , v, j).
Proof. We use induction. The lemma is true for j = 1 since K1 = u, E1 = I1,

and L1 = v. Assume that the lemma holds for some j ≥ 1. It follows that

(A+ uvT)j+1 = (A+ uvT)j(A+ uvT) = (Aj +KjEjL
T
j)(A+ uvT)

= Aj+1 +KjEjL
T
j (A+ uvT) +AjuvT

= Aj+1 +Kj((A
T + vuT)LjEj)

T + (Aju)vT

= Aj+1 +Kj

[
(AT + vuT)jv , . . . , (AT + vuT)v

]T
+ (Aju)vT

= Aj+1 +
[
Kj , A

ju
]

vT (A+ uvT)j

...
vT (A+ uvT)

vT

= Aj+1 +Kj+1Ej+1L
T
j+1.

The computation of (A + uvT)j from Aj requires approximately 6jn2 flops if the
lemma is carefully exploited.

The next result shows that if A changes by a rank-1 matrix, then a degree-r
polynomial in A changes by a rank-r matrix. Hankel matrices are involved and for
α = (α1, . . . , αr) we define

Hank(α) =

α1 α2 α3 · · · αr

α2 α3 · · · · · · 0

α3

...
. . . · · · 0

...
...

...
. . .

...
αr 0 0 · · · 0

 ∈ R

r×r.

Lemma 2. If A ∈ R
n×n, u ∈ R

n, v ∈ R
n, and p(z) = α0 + α1z + · · ·+ αrz

r with
r > 0, then

p(A+ uvT) = p(A) +KrHαL
T
r ,

where Kr = Kry(A, u, r), Lr = Kry(AT + vuT , v, r), α = (α1, . . . , αr), and Hα =
Hank(α).

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES 147

Proof. Using Lemma 1 we have

p(A+ uvT) =

r∑
j=0

αj(A+ uvT)j = α0I +

r∑
j=1

αj(A
j +KjEjL

T
j)

= p(A) +

r∑
j=1

αjKjEjL
T
j ,

where Kj = Kry(A, u, j), Lj = Kry(AT + vuT , v, j), and Ej is the j-by-j exchange
permutation. Note that Kj and Lj are the first j columns of Kr = Kry(A, u, r) and
Lr = Kry(AT + vuT , v, r), i.e., Kj = Kr(:, 1:j) and Lj = Lr(:, 1:j). Let zeros(m,n)
denote the m-by-n zeros matrix as in Matlab with the convention that it is the
empty matrix if either argument is zero. It follows that

KjEjL
T
j = Kr

[
Ej 0
0 zeros(r − j, r − j)

]
LT
r

and so

p(A+ uvT) = p(A) + Kr

 r∑

j=1

αj

[
Ej 0
0 zeros(r − j, r − j)

]LT
r .

This proves the lemma since the matrix inside the parentheses is precisely the Hankel
matrix Hα defined above.

The computation of p(A+ uvT) from p(A) involves about 6n2r+ nr2 flops if the
lemma is carefully exploited.

We are now set to prove that if A changes by a rank-1 matrix, then a rational
function of A changes by a rank-r matrix where r is the maximum degree of the
numerator and denominator polynomials.

Theorem 3. Suppose f(z) = p(z)/q(z), where

p(z) =

rp∑
i=0

αiz
i and q(z) =

rq∑
i=0

βiz
i.

Let r = max{rp, rq} and define the r-vectors

α̃ = (α1, . . . , αrp , 0, . . . , 0︸ ︷︷ ︸
r−rp

) and β̃ = (β1, . . . , βrq , 0, . . . , 0︸ ︷︷ ︸
r−rq

).

Suppose A ∈ R
n×n, u ∈ R

n, v ∈ R
n and that f(A) and f(A + uvT) are defined. Set

Hα̃ = Hank(α̃) and Hβ̃ = Hank(β̃). If

Kr = Kry(A, u, r),(1)

Lr = Kry(AT + vuT , v, r),(2)

Y T
α = Hα̃L

T
r ,(3)

Y T
β = Hβ̃L

T
r ,(4)

then

f(A+ uvT) = f(A) +XY T ,(5)

148 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

where

X = q(A)−1Kr,(6)

Y T = Y T
α −M−1Y T

β (f(A) +XY T
α),(7)

where

M = Ir + Y
T
β X.(8)

Proof. Assume for clarity that both rp and rq are positive. The proof is easily
adapted to handle the cases rp = 0 and/or rq = 0. (Various matrices and vectors
below turn out to be empty.)

Set α = (α1, . . . , αrp) and β = (β1, . . . , βrq) and define Hα = Hank(α) and
Hβ = Hank(β). Noting that Krp = Kr(:, 1:rp), Lrp = Lr(:, 1:rp), Krq = Kr(:, 1:rq),
and Lrq = Lr(:, 1:rq), we see from Lemma 2 that

p(A+ uvT) = P +KrpHαL
T
rp = P +KrHα̃L

T
r ,

q(A+ uvT) = Q+KrqHβL
T
rq = Q+KrHβ̃L

T
r ,

where P = p(A) and Q = q(A). Thus,

f(A+ uvT) = q(A+ uvT)−1p(A+ uvT)

=
(
Q+KrHβ̃L

T
r

)−1 (
P +KrHα̃L

T
r

)
=
(
In +Q−1KrHβ̃L

T
r

)−1

Q−1
(
P +KrHα̃L

T
r

)
=
(
In +XY T

β

)−1 (
F +XY T

α

)
,

where F = f(A) = Q−1P . By the Sherman–Morrison–Woodbury formula [2, p. 50],(
In +XY T

β

)−1
= In −XM−1Y T

β ,

where M = Ir + Y
T
β X and so

f(A+ uvT) =
(
In −XM−1Y T

β

) (
F +XY T

α

)
= F +X

(
Y T
α −M−1Y T

β (F +XY T
α)
)

= F +X
(
Y T
α − (Ir + Y

T
β X)−1Y T

β (F +XY T
α)
)

= F +XY T .

The computation of f(A + uvT) from f(A) via (1)–(4) and (6)–(8) requires O(n2r)
flops. Indeed, if we assume that r = rp = rq and that a QR factorization of the
denominator polynomial q(A) is available, then the work is distributed as follows:

Calculation Flops

Kr 2n2r
Lr 2n2r
Yα nr2

Yβ nr2

X 3n2r
M 2nr2

Y 4n2r + 2nr2

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES 149

This totals to 11n2r flops if we assume that r � n. As with any Sherman–Morrison-
type computation, the condition numbers of q(A) and the matrix M defined by (8)
should be monitored because they shed light on the accuracy of the computed update.

Note that Theorem 3 can be generalized in the direction of the Sherman–Morrison–
Woodbury formula (see [2, p. 50]). In particular, if UV T is a rank-d matrix and
f(A + UV T) exists, then it can be shown that f(A) and f(A + UV T) differ by a
matrix that has rank dr.

We conclude this section by using Theorem 3 to develop an expression for the
partial derivative of f(A) with respect to a particular matrix element aij , i.e.,

∂

∂aij
f(A) = lim

δ→0

f(A+ δeie
T
j)− f(A)
δ

,

where In = [e1, . . . , en]. The idea is to use Theorem 3 to simplify the difference
between f(A) and f(A+ δeie

T
j).

Corollary 4. Suppose f(z) = p(z)/q(z), where

p(z) =

rp∑
i=0

αiz
i and q(z) =

rq∑
i=0

βiz
i.

Let r = max{rp, rq} and define the r-vectors

α̃ = (α1, . . . , αrp , 0, . . . , 0︸ ︷︷ ︸
r−rp

) and β̃ = (β1, . . . , βrq , 0, . . . , 0︸ ︷︷ ︸
r−rq

).

Assume that A ∈ R
n×n, f(A) is defined, and 1 ≤ i, j ≤ n. If Hα̃ = Hank(α̃),

Hβ̃ = Hank(β̃), Q = q(A), K(i) = Kry(A, ei, r), and L
(j) = Kry(AT , ej , r), then

∂

∂aij
f(A) = X(i)Z(j)T ,

where

X(i) = Q−1K(i),(9)

Z(j)T = Hα̃L
(j)T −Hβ̃L

(j)T f(A).(10)

Proof. Since f(A) is defined, then the matrix f(A+ δeie
T
j) is also defined for all

δ less than or equal to some sufficiently small δ0. Assuming that δ ≤ δ0, we apply
Theorem 3 with u = ei and v = δej . It follows that if

L(δ) = Kry(AT + δeje
T
i , δej , r),

Yα(δ)
T = Hα̃L(δ)

T ,

Yβ(δ)
T = Hβ̃L(δ)

T ,

then

f(A+ δeie
T
j) = f(A) +X

(i)Y (δ)T ,

where

Y (δ)T = Yα(δ)
T − (Ir + Yβ(δ)

TX(i))−1Yβ(δ)
T (f(A) +X(i)Yα(δ)

T).

150 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

Since

L(δ) = δ ·Kry(AT + δeje
T
i , ej , r),

we see that

lim
δ→0

Yα(δ)

δ
= Hα̃L

(j)T and lim
δ→0

Yβ(δ)

δ
= Hβ̃L

(j)T .

Since Yα(δ) and Yβ(δ) both converge to zero as δ → 0, it follows that

lim
δ→0

Y (δ)T = lim
δ→0

(
Yα(δ)

T

δ
− (Ir + Yβ(δ)

TX(i))−1Yβ(δ)
T

δ
(f(A) +X(i)Yα(δ)

T)

)

= Hα̃L
(j)T −Hβ̃L

(j)T f(A) ≡ Z(j)T .

Note that if f is a polynomial, then Hβ̃ = 0.

3. Discussion. We have written a Matlab function

[XP,YP,XQ,YQ,XF,YF,condM] = Rational_Update(A,u,v,alfa,P,beta,Q_cell)

that implements the update formulae derived in the proof of Theorem 3. The vectors
alfa and beta contain the coefficients of the numerator and denominator polynomials
p and q, respectively. The QR factorization of Q = q(A) is passed via a cell array
representation Q cell. If A is n-by-n and r is the larger of deg(p) and deg(q), then the
output matrices XP, YP, XQ, YQ, XF, and YF are n-by-r and relate p(A) to p(A+ uvT),
q(A) to q(A+ uvT), and f(A) to f(A+ uvT) as follows:

p(A+ uvT) = P +XPY
T
P ,

q(A+ uvT) = Q+XQY
T
Q ,

f(A+ uvT) = F +XFY
T
F .

The r-by-r matrix M defined by (8) has an important role to play in the calculation
of YF , and so its condition number is returned.

Table 1 reports on the quality of f(A + uvT) when f is the diagonal Pade ap-
proximation to the exponential function:

f(A) =

(
r∑

µ=0

βµA
µ

)−1(r∑
µ=0

αµA
µ

)
, αµ =

(2r − µ)!r!
(2r)!µ!(r − µ)! , βµ = (−1)µαµ.

(11)
See [2, p. 572]. Rational Update is used to update f(A). The matrix A is a randomly
generated 100-by-100 example with eigenvalues in the left-half plane and ‖A ‖2 = 15.
The denominator matrix q(A) is well conditioned. The rank-1 correction uvT has unit
2-norm in the test case. Define

F̃0 = expm(A),

F0 = the (p, p) Pade approximation to exp(A),

F̃1 = expm(A+u*v’),

F1 = the (p, p) Pade approximation to exp(A+ uvT),

F
(up)
1 = an estimate of F1 obtained by updating F0,

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES 151

Table 1
Errors associated with the update of the (r, r)-Pade approximation to eA.

r
‖ F0 − F̃0 ‖2

‖ F̃0 ‖
2

‖ F1 − F̃1 ‖2

‖ F̃1 ‖
2

‖ F1 − F
(up)
1 ‖

2

‖ F1 ‖2

cond(Q) cond(M)

0 2.00e+001 1.99e+001 0.00e+000 1.0e+000 1.0e+000
1 1.56e+001 1.55e+001 2.01e−015 3.6e+000 1.0e+000
2 9.42e+000 9.40e+000 3.17e−015 8.9e+000 1.0e+000
3 4.36e+000 4.35e+000 7.66e−015 1.7e+001 1.5e+000
4 1.52e+000 1.52e+000 2.31e−014 2.7e+001 4.7e+000
5 4.01e−001 4.03e−001 3.95e−014 3.9e+001 9.9e+000
6 8.08e−002 8.14e−002 4.46e−014 5.0e+001 3.5e+002
7 1.27e−002 1.28e−002 4.97e−014 6.2e+001 1.2e+004
8 1.59e−003 1.61e−003 5.35e−014 7.3e+001 2.7e+005
9 1.62e−004 1.64e−004 5.80e−014 8.3e+001 4.9e+006
10 1.37e−005 1.39e−005 6.15e−014 9.3e+001 7.9e+007
11 9.76e−007 9.88e−007 6.36e−015 1.0e+002 1.1e+009
12 5.94e−008 6.00e−008 6.88e−014 1.1e+002 1.5e+010
13 3.12e−009 3.14e−009 6.93e−014 1.2e+002 1.8e+011
14 1.43e−010 1.43e−010 7.46e−014 1.2e+002 2.0e+012
15 5.77e−012 5.75e−012 7.80e−014 1.3e+002 2.1e+013
16 2.06e−013 2.05e−013 7.89e−014 1.4e+002 2.0e+014

where expm is the built-inMatlab function for the matrix exponential. In this study
we treat expm as exact, thereby enabling us to report on the relative error in F0 and
F1. We are well aware of the difficulties associated with eA calculations, but this
example is not numerically challenging for expm.

An interesting aspect of Table 1 is that the 2-norm relative error in F
(up)
1 is

consistently small even as the condition of the matrix M deteriorates with increasing
r. We have no analysis or informal explanation for this phenomena, which (it turns
out) is quite typical. The Krylov matrices that “make up” the matrix M and the
“right-hand-side matrix” Y T

β (f(A) + XY T
α) in (7) are notoriously ill conditioned,

especially for large values of r. But somehow the effect of this ill-conditioning is
muted. It is perhaps worth noting that Krylov matrices are always involved (at least
implicitly) with any matrix polynomial calculation because

r∑
i=0

αiA
i = [I, A, . . . , Ar]

α0I
α1I
...
αrI

 .

Apparently there is not a simple connection between the condition of a matrix poly-
nomial computation and the condition of the Krylov matrices that lurk in the back-
ground. Clearly, more research in this area is required, especially if high-degree poly-
nomials are involved.

We now proceed to a discussion of Corollary 4 and how it can be applied in a
systems identification context. Suppose the value of a scalar-valued function

y(t) = cT eAtb, b, c ∈ R
n, A ∈ R

n×n,

is known at t = t1, . . . , tm withm ≥ n2 and that from that data we want to reconstruct
A. Defining

yk = y(tk), k = 1:m,

152 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

we see that yk is a snapshot of the solution to the initial value problem

ẋ = Ax, x(0) = b

“as seen through” the observation vector c, i.e., yk = cTx(tk).

There are several ways to attack this difficult identification problem (see [4, 5]).
One approach is to approximate eAtk with a rational function fk(A) for k = 1:m and
then to minimize ‖ φ(A)− y ‖2, where

φ(A) =

cT f1(A)b
cT f2(A)b

...
cT fm(A)b

 and y =

y1
y2
...
ym

 .

This is a nonlinear least square problem in the n2 entries that define the matrix
A = (aij). If the Levenberg–Marquardt algorithm is applied, then (among other
things) at each step we need to compute the m-by-n2 Jacobian J of the vector-valued
function φ(A).

Suppose an ODE solver is used to generate fk(A)b ≈ x(tk) for k = 1:m. If each
of these vectors requires O(n2) flops to compute, then a φ-evaluation costs O(mn2)
flops and a finite-difference approximation to J would involve O(mn4) flops. We show
how this flop count can be reduced by a factor that ranges from n to n2.

Note that the kth row of the Jacobian involves partial derivatives of the scalar-
valued function cT fk(A)b with respect to each of the matrix entries aij :

∂

∂aij

(
cT fk(A)b

)
= cT

(
∂

∂aij
fk(A)

)
b.

Corollary 4 is therefore applicable. Let us see how we might use the corollary to
simplify the evaluation of these Jacobian entries. Assume that fk is the (rp, rq) Pade
approximation to eAtk , i.e.,

fk(A) = qk(A)
−1pk(A),

pk(A) =

(
rp∑

µ=0

α(k)
µ Aµ

)
,

qk(A) =

(
rq∑

µ=0

β(k)
µ Aµ

)

with

α(k)
µ =

(rp + rq − µ)!rp!
(rp + rq)!µ!(rp − µ)! t

µ
k and β(k)

µ =
(rp + rq − µ)!rq!

(rp + rq)!µ!(rq − µ)! t
µ
k .

Using Corollary 4,

cT
(
∂

∂aij
fk(A)

)
b = cTX

(i)
k Z

(j)T
k b,(12)

RATIONAL MATRIX FUNCTIONS AND RANK-1 UPDATES 153

where

X
(i)
k = qk(A)

−1K(i),(13)

Z
(i)
k = Hα(k)L(j)T −Hβ(k)L(j)T qk(A)

−1pk(A).(14)

Note that if r = max{rp, rq} and we precompute and store the matrix powers A2, . . . ,
Ar, then the Krylov matricesK(i) and L(j) are easily retrieved and the matrices pk(A)
and qk(A) can be set up in O(n2r) flops. For a given Jacobian row index k, we must
compute the vectors ck1, . . . , ckn ∈ R

r defined by

cTki = c
T qk(A)

−1K(i), i = 1:n,(15)

and the vectors bk1, . . . , bkn ∈ R
r defined by

bki = Hα(k)L(i)T b−Hβ(k)L(i)T qk(A)
−1pk(A)b, i = 1:n.(16)

The kth row of the Jacobian is then made up of the inner products cTkibkj , where i
and j each range from 1 to n. Summarizing the overall Jacobian evaluation we get

Compute and save the matrix powers A2, . . . , Ar.
For k = 1:m

Set up qk(A) and pk(A), and compute the QR factorization of the former.
For i = 1:n

Compute the vectors cki and bki defined by (15) and (16).
end
Establish the kth row of the Jacobian by computing the inner products

cTkibkj , i = 1:n, j = 1:n.
end

The powers of A cost O(rn3). As we mentioned above, once these powers are available,
then the Krylov matrices K(i) and L(j) that figure in the computations are “free.” For
each k there is an O(n3) QR factorization. The vectors ck1, . . . , ckn and bk1, . . . , bkn
can altogether be computed in O(rn2) flops. The n2 inner products cTkibkj cost another
O(rn2) flops. Thus, each row of the Jacobian requires O(rn2 + n3) flops. The total
Jacobian evaluation as outlined is therefore an O(rmn2+mn3) computation, a factor
of n less than the ODE finite-difference approach.

We note that if the Pade approximation is a polynomial (rq = 0), then a number
of simplifications result:

Compute and save the matrix powers A2, . . . , Ar.
For i = 1:n

Compute cTi = cTK(i) and bi = L
(i)T b.

end
For k = 1:m

Compute the inner products cTi Hα(k)bj , i = 1:n, j = 1:n.
end

The flop count now is just O(rmn2), which is less than the ODE finite-difference
approach by a factor of n2.

A numerical issue here concerns the size of r. As we mentioned earlier, the Krylov-
related computations can be problematic if this parameter is too large. However,
in some contexts it is possible to base the identification process on observations of
cT eAtb at values t = t1, . . . , tm that are small in value. In this case a low-order Pade
approximation to eAtk can suffice.

Matlab software for carrying out the updates discussed in this paper is available
from http://www.cs.cornell.edu/cv.

154 DANIEL S. BERNSTEIN AND CHARLES F. VAN LOAN

Acknowledgments. The authors became interested in this problem as a result
of discussions with Professor Martha Contreras of the Biometrics Unit at Cornell
University. Mike Todd read an earlier draft of this paper, spotted some errors, and
showed us that the exact Jacobian could be obtained in section 2.

REFERENCES

[1] M. Benzi and G.H. Golub, Bounds for the entries of matrix functions with applications to
preconditioning, BIT, 39 (1999), pp. 417–438.

[2] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1997.

[3] C.S. Kenney and A.J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 191–209.

[4] R.I. Jennrich and P.B. Bright, Fitting systems of linear differential equations using computer
generated exact derivatives, Technometrics, 18 (1976), pp. 385–392.

[5] L. Ljung, System Identification—Theory for the User, Prentice-Hall, Englewood Cliffs, NJ,
1984.

