IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-23, NO. 3, JUNE 1978

395

Computing Integrals Involving the
Matrix Exponential

CHARLES F. VAN LOAN

Abstract—A new algorithm for computing integrals involving the matrix
exponential is given. The method employs diagonal Pade approximation
with scaling and squaring. Rigorous truncation error bounds are given and
incorporated in a Fortran subroutine. The computational aspects of this
program are discussed and compared with existing techniques.

[. INTRODUCTION

LET A, B, and Q, be real matrices of dimensions n X n,
nXp, and nX n, respectively. Assume that Q. 1s sym-
metric (Q. = Q.) and positive semidefinite (x"Q.x>0). In
this paper, we present a new method for computing the
integrals

H(A)=f:e“3ds (1.1)
0(0)= [(er"g.et s (12)
M(A):f:e“fQCH(s)ds (1.3)
W)= ["H(s)Q.H (5)as (14)

The need for computing these integrals arises in several
applications, notably the optimal sampled-data regulator
problem [1], [3].

The method we shall propose involves a) computing the
exponential of a certain block triangular matrix and b)
combining various submatrices of the result to obtain
(1.1)~(1.4). To illustrate the basic idea, if

— AT

ol SB[

then it can be shown that

Q(8)=F;(8)"G,(d).

G, (&)
F(8)

In Section II, we establish this result and other, analogous
expressions for H (A), M (A), and W (A).

In order to harness these results in a practical algo-
rithm, it is necessary to have an effective means for
computing matrix exponentials. The algorithm we for-

Manuscript received June 17, 1977. Paper recommended by E. Polak,
Chairman of the Computational Methods and Discrete Systems Com-
mittee. This work was partially supported by NSF Grant MCS76-08686.

The author is with the Department of Computer Science, Cornell
University, Ithaca, NY 14853,

0018-9286 /78 /0600-0395$00.75

mulate in Section III uses diagonal Padé approximation
with repeated squaring. These approximations have
proven successful when just e““ is desired and fortunately
their attractive features carry over to this new application.

In Section IV, we derive truncation error bounds for
our computed versions of (1.1)-(1.4). These bounds can
then be used in practice to select approximations of ap-
propriate accuracy. A Fortran subroutine called Padé has
been implemented which does this. Some computational
aspects of this program are discussed in Section V. Fi-
nally, in Section VI we assess our algorithm relative to the
work others have done in this area.

II. THEORETICAL RESULTS

In this section we relate the integrals (1.1)«(1.4) to the
exponential of a certain block triangular matrix. We first
prove a general result about such exponentials.

Theorem 1. Let n, n,, ny, and n, be positive integers,
and set m to be their sum. If the m X m block triangular
matrix C is defined by

4, B, C, D, }’II
0 4, B, G,) ny
C= 0 0 A3 83 }?13
0 0 0 4, } ng
R
then for t >0
Fi() Gi(r) H\() K, (1)
o] O B G Hy
0 0 FJ(I) G,(1)
0 0 0 EF, (1)
where
E()=et, j=1,234
I
Gj(z)=J;e"x“ IBetds, j=1,2,3
Hr}_(f)=j‘;{e/{}(r—s)q_e/t”2sds

+f:fsed)(!—s)B_eA}ﬂ(s-—r)
0o /

.B}_+ledf+2’drdg, Jl:: 1'2

©1978 IEEE

396

and

!
Kmn=fMMﬂ@@M¢+f
0

;fse/i,(r——:)[C]e.-«ij(.r—r)B3
00

+ Be*:CC, e dr ds

+ frfsfre"'“'")B,e"z“_’JBze”J("“’)B3e"’-“’dwdrds.
0o Yo

Proof: Since all powers of C have the same block
triangular structure, it is clear that ¢ has the form
indicated. By equating submatrices in the equation

4

d{[ec*]=CeC’ f=€01,=g
we are led to the following differential equations:
E(0)=4,F,(1) FO)=1,
G(0=4,G(0)+BF, (1) G, (0)=0,
H(1)=A4,H () + B,G,, () + C,F,, (1) H,(0)=0,

K\(1)=4,K\(0)+ B,Hy(1)+ C,Gy(1)+ D, Fy(1) K,(0)=0.

The theorem follows by solving these equations, respec-

tively, for F (1), G,(1), H(1), and K ,(¢).

If we apply thm theorem to the (3n+p)xX(3n+p)

matrix
-AT I 0 0
(‘:: 0 —A ’ Qr 0
0 0 A B
0 0 0 0
we find
Fi(n) G A1) R
e 0 Fy(r) Gy(1) Hy(1)
0 0 Fy(1) Gy(0)
0 0 0 F, (1)
where
ﬁ}(f)=em
(fz(!)=€_"‘ f’ffe"rs'Q(\e"‘“‘ds
0
Gi(1)= !e"“ 9B ds
0=
H,(1)= e"“r’fifxe“' 50.e""B dr ds

(g]

fel(f)=e"‘TIIOIIOSLF{?"'J"Q(.eA“'Bdwa’rdf.

It turns out that the integrals (1. 1)-(1.4) can be ex-
pressed in terms of these submatrices of e when we set

r=A:

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-23, NO. 3, JUNE 1978

H(8)=G,(a) (2.1)
Q(8)=F,(8)"G,(a) (22)
M(8)=F,(8)"H,(8) (23)
W (8)=[BTE8)K,(8)]+ [BTEQ)K,@)]". (24)

Equations (2.1)+2.3) follow directly from the definitions
(I.1)=(1.3). To verify (2.4), set -

F(f', W) — eA T}chAw

and notice

LSJ;I[F(r,w)+ F(w,r)}dwdr=fsf3F(r,w)dwdr‘

070
Thus,
J=1234
Jj=123
j=12

[BTA@)R @)]+[BTE)R @)

_f f BT A0 e 4 e AT "0 e]Bdwa’rds

—_ QBT
0

fSBT[

|

o‘—-w

(r,w)+ F(w,r) }dwa’r}Bds

Il

S
é'—-\

F(r w dwdr}Bds- W(A).

III. FORMULATION OF THE ALGORITHM

If (2.1)(2.4) are used to compute the integrals
(1.1)- (l 4) 1n practice, then we need a means for estimat-

ing e %, One possibility is to use estimates of the form

~ »
- CA .
GCA:[R‘W(?)J y q,;)O

where R, (z) is the (¢,q) Padé approximant to e’

(3.1)

B (2g—k)!q!
“T ek (g—k)

k=0

qu(z): e
2 Ck(_z)k
k=0

The scaling by 2/ followed by the repeated squaring
greatly enhances the numerical properties of ordinary
Padé approximation [7], [9].

It is clear that the approximation in (3.1) has the form

VAN LOAN! INTEGRALS AND THE MATRIX EXPONENTIAL

Fi(8) G,(8) H,(d) K(8)
R (g‘g)r‘z 0 Fy(8) Gy(4) H,(4)
W\ 0 0 F5(8) G4(8)
0 0 0 F, (&)

(3.2)

Thus, in accordance with (2.1)2.4), we obtain the follow-
ing approximations to (1.1)«1.4):

H(A)~G5(A)
0 (8)~F5(8)7G,(b)
M (8)~ Fy(8) Hy(8)

W (8)=[BTF,(8)K,(8)]"

This procedure is extremely easy to implement. All that
1s involved is a single call to any Padé matrix exponential
subroutine followed by some elementary matrix computa-
tions. Ward’s algorithm, with its complete error analysis,
is particularly well suited [9]. For problems of small di-
mension, this is certainly a justifiable approach. However,
in the interest of efficiency, the algorithm we shall detail
does not repeatedly square the matrix R, (CA/Z”) as
suggested by (3.2). Instead, setting f,= A/Z we shall
esimate H(fo), Q(t), M(ty), and W(ty) using sub-
matrices of R, (Cty), and then repeatedly exploit the dou-
bling formulas:

+[BTF3(&)TK1(A)]‘

WQO)=2W()+H(1)"M)+ M(1)"H (1)
+H ()"0 ()H (1) (3.3)
MQO)=M()+e*"[Q(VH(N+M(1)] (34)
QQ20)=0(n)+e""Q(1)e (3:5)
H(2t)=H(1)+e"H (1) (3.6)
el = gAlgA!, (3.7)

These formulas follow from definitions (1.1)~(1.4). (See [1]
for details.) Summarizing, our algorithm is as follows:

Algorithm
1) Set
—AT I 0 0
C= 0 -AT Q. 0
0 0 A B
0 0 0 0

and let j be the smallest nonnegative integer such that
|CA|I/2/ <1/2. Set ly=0/2.
2) For some ¢ > 1, compute

Yo=R, (ca)
2_!

397
Fi(ty) Gty H\(1p) K(1)
_| 0 Fy(tg) Gyltg) Hy(1p)
a 0 0 Fi(t5) Gi(1p)
0 0 0 F,(t,)
and set
Fo=F5(1,)
Hy= G5(1o)

Q0= F;(16) "G, (1,

M= F5(10)"H, (1)

Wo= [BTF.?(‘O)TKu(’o)} +[BTF3("0)TK1(IO)T--
3) For k=0,---,j—1
Wi =2W, + HIM,+ MH, + HIQ H,
Mk+|=Mk+FkT[Qka+Mk]

Qk+]=Qk+FkT_Qka
Hy \=H+ F.H,
Fk+l=Fk2-
4) F=F, H=H, =0, M=M, and W=W, are

then appr0x1mates {0 e H(&) Q(A) M(A) and W(_\)
respectively.

Here, as everywhere in this paper, ||-|| denotes the
Frobenius norm

1/2
Y=00) 171=[S Siyf]

Other norms are possible, but the Frobenius norm is
convenient for both practical and theoretical reasons.
In the next section we will show

| F— e8| < eAB (A)e® (3.8)
|H— H(8)] < ma(mwﬂ[1+ % } (3.9)
10— Q(B)[| < eAf (A) e[1+ aA] (3.10)

IM =M (8)]] < A0 (A e[1+ + ad)? (3.11)

IW =W (8)]| <A (8)’e**4[1+ 1.5(a+€)A]* (3.12)
where

. (q!)° _

€e=2>"%Cf| ——t—— 3.13

< (29)!(2q+1)! (3.13)

6(8)= max [le*| (3.14)

a=max (|| B|,[|Q.}. (3.15)

From (3.8)3.12), we see that the accuracy of the
algorithm can be controlled through the selection of g.
The choice of this integer and other computational details
are discussed in Section V.

398

IV. TRUNCATION ERROR ANALYSIS

To establish inequalities (3.8)3.12), we first char-

acterize the errors which arise in Step 2 of the algorithm.

We do this in Lemmas 1 and 2.

Lemma 1. 1f Y is computed according to Step 2 of the
algorithm, then

Y0= e(é+é)r°

(4.1)

where
-ET E, E; E,
E=| O —E[E; E (partitioned as C).
0 0 E, E,
0 0 0 0
(4.2)
Furthermore,
AE,=E,A (4.3)
(A+E\) E,=E)(4+E)T (4.4)
| E]] <€, i=1,---7. (4.5)
Proof: Since §|C'to|| <1/2, we have
qu (A{O) = e(c+£ o
CE=EC
R R ()
LE|<8|Ct)29+! —— 2 4.6
BN <BICHP sy @6)

by using [7, appendix 1, lemma 4]. By rearranging this last
inequality and recalling that || Cr,|| < 1/2, we have

IE||<e. (4.7)

From this it is easy to establish (4.5), because the
Frobenius norm of any submatrix of £ is less than the
Frobenius norm of £. It is also clear from [7] that E has
the same block structure as ¢

Ey E, E; E, |
F_|0 By Ey E

0 0 E E,

0 0 0 E,

Now by scrutinizing Steps 1 and 2 of the algorithm, it is
clear that

Fi(to) = Fy(1)) = qu;(“_A T’O)

[[Ryy(409)]] =[Fyt)™']"

and
F‘i(IO) = qu (0) =1

On the other hand, the equation Y0=e‘é+é)’° coupled
with Theorem 1 tells us that

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-23, No. 3, JUNE 1978

Fl (IO) = e(_ AT+ Eq)
Fy(tg)=el-4 "+ ED
Fyty) = et £

F4(IO) — e(()+ Eohin
and, therefore, Eg=Ey=—E[and E ,=0. Thus £ has
the structure defined by (4.2).

By equating the (3,3) and (1,2) blocks of (4.6), we see
that (43) and 4"E,=E,4" hold. This latter equality
implies that £, commutes with £/, since E, is a function
of A [7]. Thus (4.4) is verified, completing the proof of the
lemma.]

Lemma 2: 1f Fy(1y), Gy(ty), G(to), Ha(1o), and K\(1,)
are defined by Step 2 of the algorithm, then
Fy(tg) = et £t

Gz(’o)=eq("+E'}"’f{°e(”+fu)r:(Qc_+ E) e+ EDs g
0 B
Golto)= [e £ (B + B as
Hz(ro)=ffoe—(,¢+g,);-[;o—;)£6ds
0
[e e Ey
0 Yo
.e(A+£|)($—()(B+E.4)drdS
Kl('{o)=fiue_(’{""g')r("ﬂ"-’)E?dS
0
+ [[Cemtr O g £ =Bt E,) dr d
0 Y0
0 -0
+f:uf.rfr(]+Eg)e_m+,r,|);-(;o_r](Qc+E3)
0 <0 0
'e(A+E')(r_W)(B+E4)dwdrdg_

Proof: From Lemma 1, Y,=e(“* £ where

~(+E) (+E) E B |
(C+E)=| 0 ~(+E) (Q.+E) E
0 0 (A+E|) (B+E,)

0 0 0 0o |

The lemma follows by applying Theorem 1 with C=C+
Eand 1= lo- . =

We now examine how the errors in Step 2 propagate as
the recursions of Step 3 are applied. To simplify the
analysis, define 1, by

VAN LOAN. INTEGRALS AND THE MATRIX EXPONENTIAL
Lemma 3: If F,, H,, Q,, and M, are defined by the
algorithm, then

F.!; = efzﬂ + E iy

Ho= [“e“r£0:(B+) ds

0

Qk=f&-e(,4+£,)rs(Qc+Ej)e(A+£,)st
0

My = [Held+ £0"E g

0
.
[V

AT EN=n(py E,)drds.

Proof: Using Lemma 2, it can be verified that these
equations hold when & =0. Assume that they hold for
some k>0. By showing that they hold in the (k+ 1)st
case, the Lemma will be proven by induction. To this end
we see

F

k

He,\=H, + Fka-—-fOer("“E')‘(B+E4)ds

| = Ff:eu+F,)2:k___e(4+£l):“.
+

Iy
+f0 e(”+5')(’*+”(B+E4)ds

=fl“'e[”‘ YEXS(B+ E,)ds.
0

The computations mmvolving Q, ,, and M, ., are similar,

although more tedious. They are therefore deleted. []
We are now in a position to bound the truncation errors

of the algorithm. Three nequalities simplify the analysis

lef || < e uz0 (4.8)

!Ie(’”"""’“—e’“‘h'éez:e‘“”e"“”, uz0 (4.9)
A 1

é—;ehfoeéé. (4.10)

Inequality (4.8) follows from (4.5) and the fact that le =
<el®il To establish (4.9), take norms in el T B pdu
e“(ef“~ 1), which follows from (4.3). Finally, (4. 10) can
be deduced from (3.13), and the inqualities g=1 and
1Call/2<1/2.

Theorem 2: If F is defined by the algorithm, then

[|F—e™| < eAf (A)ecl,

Proof: This follows from (4.9) with u=A.]
Theorem 3: If H is defined by the algorithm. then

[|H—H(A)| < 6139(&)9"3‘{ 1+ Ezé }

Proof: According to Lemma 3, (k =J) and the defini-
tion of H(A)

A A
H-H©)=[[e("+5=”—e"“]8cﬁf+fo AT EDSE, g,

399

The theorem follows by taking norms and applying (4.5),
(4.8), and (4.9). s
Theorem 4: If Q is defined by the algorithm, then

10— Q)] <ead(8)’e**[1+aa).

Proof: From Lemma 3, (k=) and the definition of

Q(4),

A o . _]
0= 0Q(8)= [[eMEN(Q 4 Ey)ett s — a4 gs
0

- fa[e(A+E,)s_eAs] TQre(A+E|)$
0
+ eA 73Qc[e(A+E|)s eAs:I dﬁ'
A - E
+f0 e(A+,E,l) .9E38(A+ ,).fds.
The theorem follows by taking norms and using (4.5),

(4.8), and (4.9). |
Theorem 5: If M is defined by the algorithm, then

1M =M ()] < €A (8)%e*[1+ e +Aa]

Proof: From Lemma 3, (k =/) and the definition of
M (4) we have

A s T
M- M(A)= eATEDs
) fa fo
-(Qc+E3)e("+£l)“"’)(8+E4)a'rds

A T A ps
+[e B Egds— [["e4%Q, 4= p 4p gs
0 0 Y0
=fﬁfs[e(A+E,)J__eAs]TQCe(A-PE.)(s*r)BdrdS
0 -0
A rs .
+f f oA :Qc_[e(/t+L,)(s—r)_e,4(s—r)]8drds
0 Y0
A o,y T
+ [T 0 4 By Jet B0 g, 4y g
0 -0
+fﬂfse(/i+E,)?}Eae(x\‘-i-:‘:,)(swr)Bdrds
0“0

b [g
0

The theorem follows by taking norms and invoking (4.5),
(4.8), and (4.9). [
Bounding the error of W, is considerably more tedious.
To simplify matters, we shall first prove the following
lemma.
Lemma 4: If W, is defined by the algorithm, then

3
[Wo—W(1,)] < aoe(:o)?[%—(;y rg)

t
+ az(f§+ go + l.44)+a(l‘6{0+3)

Proof: From (2.4), (A=1,) and the definition of W,
we have

400

Wo— W(’o)=BT[Fs(’o)TKx(to)"ﬁs(to)rkl(to)]
+ [Fs(to)TKl(’o)"ﬁs(’o)rﬁl(to)]TB

and thus

| Wo W (10l < 2011 F5(10) Ky (1) — By (1) R (1)l
(a11)

From Lemma 2,

F3(’o)TK|(’o)=€1+€2+€3+f4

where
€= j;’oe(,q YESE. ds
Q= fo o fo (A BV A+)= E,)drds
6=+ Ez)LIOLye(A+E')T’E6drds
B[[gy
€U ENC= Bt E)dwdrds.

(Equation (4.4) is needed to establish the expressions for

€; and ¢,.) By taking norms and using (4.5), (4.8), and
(4.10) we have '

el < 1.2e08 (2,) (4.12)
lleall < 0.72¢(a+€) 120 (1,)? | (4.13)
llesll < 0.6¢(1+€)120(1,). (4.14)

From the definition of 133(t0) and If’l(to) in Section II, we
have

€~ f'3(t0)712, (t)=(1+ EZ)fotofosj(;re(A ’ El)T’(Qc +E;)

€U ENC=W(B4 E,) dwdrds

-fo’“fo’fo'e“' ce*"Badwards

o 51T T
=E eUHEN (O + E
ZL 4/(;](; | (Qc 3)
@A EN =W B4 E Y dwdrds

[0 [et BT et Er- B 4y E.) dhodrds
0 Y0 Y0
+f’ofsfre(A+E')T’ch(A+E')(r_w)E4derdS'
0 Y0 Y0
lo 'S r
+j;°‘/(; j; [e(A+E,)r_eAr]Tch(A+E,)(r—w)Bdwdrdg

Oy LT
0 Y0 Y0

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-23, NO. 3, JUNE 1978 .

By taking norms and using (4.5) and (4.8)-(4.10), we find
lles— ﬁa(’o)Tkx (1)l <0.25¢8 (1,)° }
. [t3a2+_t(3,[(a+e)2+2(a+e)]]

The lemma follows from this result, (4.1 1)-(4.14), and the
fact that

1F5(10) Ky (t0) = F5 (1) Ry (o) < ey | +
*liesll+lles— F5(00) Ry (1)1
Theorem 6: If W is defined by the algorithm, then
W~ W ()] < e (8)"e**4[1+1.5(a+e)A]’.
Proof: Subtracting the doubling formula
W(t)=2W(4)+H(t)"M () + M (%)7H (1)

+ H(t,)"Q (flf)’H(tk)
from "

Wer1=2W, + H{M, + MTH, + HIQ H,
and taking norms gives
IWesr= Wt DI <2 Wi = W (1)1
+2| HIM, — H ()™M (1)
+HIHIQH,~ H(1,)7Q (t)H (1)]|. (4.15)

By applying Lemma 1, Lemma 3, (4.8), and (4.9) the
following bounds can be derived: ‘

1M = H (5) ™M (1)) < e (4, \)?
-ez‘At,f(a+e)[%(a+e)tk+ lr
and
IH O, — H (1)7Q (1) H (1) < 6 (4, , ,)?
e (ate)[3+ 1 (a+e)].
It is thus clear from (4.15) that

IWerr= WG I <2 W~ W ()] +8, (4.16)

where

Se=ef (1)) ’e™*F (a+€)[3(a+e)t, +2 [

A simple induction argument involving (4.16) shows

IW=WQ)l=Iw,-w()|
j—~1
<Y Wo— W (1)l + 12 VRl (417)
k=0

By using elementary properties of geometric series and the
fact that 1, =274, it is easy to verify that

VAN LOAN: INTEGRALS AND THE MATRIX EXPONENTIAL

J=1
S v-k-1g < Lega)
k=0 2

PN (a+ o) [3(a+e)d+2]N (4.18)

Now | Cto|| <0.5 implies at, <0.5 and, since 0t <8 (1),
we have from Lemma 4

V|| Wo— W (1,)]] < 200 (A)*(1+ o)™

The theorem follows by substituting this result together
with (4.18) into (4.17). [|

V. THE SUBROUTINE PADE

The method we have presented and analyzed has been
implemented in a Fortran subroutine called Padé. In this
final section we discuss some of the computational aspects
of this program.

In the course of forming Y,=R,(CA/2/), we must
compute the matrices

401

YVo=—A"Y +V,_,

Z,=-A"Z,_\+R,_,

Vi=—A TVk\-- 1+ 0Dy,

Ry=—A4"R,_\+Q.X,_,

Dy=X,_\B

Xk=AXk—|'
Thus, as N and D are “built up,” we need nX n arrays X,
R, and Z to store the matrices X, R,, and Z,, and nXp
arrays D, V, and Y to store the matrices Dk,AVk, and Y,.

Next, we show that only a portion of N and D is

actually required by the algorithm. Partition these two
matrices as C

Ny Ny Ny Ny

N= 0 Ny Ny Ny
0 0 Ny Ny,

0 0 o I |
‘VD[I D.I2 DI} DM
D= 0 Dy, Dy Dy,
0 0 Dy Dy,

L 0 0 0 I |

Referring to Step 2 in the algorithm, we must solve for
F(10), G3(to), Gy(t), Hy(1), and K (1) in

Dy Dy Dy Dy || Fi(ty) G(1,) H (1) K, (1)
0 Dy Dy Dy, 0 Fy(to) Gy(1g) Hy(1,)
0 D3y Dy, 0 0 Fi(1o) Gi(1y)
0 0 1 0 0 0 F(1)

Ny Ny Ny Ny

_| 0 Ny Ny Ny

0 0 Ny Ny,

0 0 0 I

Hence an efficient and compact means of powering the
matrix C is desirable. It can be shown that for k > 1

k

[—47 1 o

0
Ck=| 0 —4T Q. 0
0 0 A B
0 0 0 o0
(_I)kaT (_])k_lxkr—] Zk Yk
- 0 (-D*X7 R, ¥,
0 0 X, D,
0 0 0 0

where X, =4, D)=B, R,=Q,, Z,=0, Y,=0, ¥,=0, and
for k=2

Noting that D,, = D,, =39 _oc, (- DF (AT =
(290 A¥]"=N], the working equations for Fy(ty),
Gs(tp), Gy(ty), Hy(ty), and K (t,) thus become

D33 F5(tp) = Ny,

D3;G5(19) = Nyy— Dy,

N{G (1) = N3 = Dy Fi(1y)

N5 Hy (1) = Naa= Dy3G5(1y) — Dy,

NEK (1) = Nia= Dy Hy(15) = D13G4 (1) — D,
These linear systems can be solved using Gaussian
elimination. Since ||CA/2/||<1/2, it is easy to show that

both Dy; and N4 are diagonally dominant and, therefore,
that no pivoting is necessary [2, p. 152). Arrays are needed

402

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-23, NO. 3, JUNE 1978

TABLE I
Approximate
CODE Matrices Storage Magnitude of Work
Computed Required (Multiplicative Operations)
I F an? lq+)+ 31’
> FH nttam (g4t S+ g+l
3 FQ 8n? [3q+%j+~§-}n3
4 FHQM 8n2+Tm [3q+%j+§]n3+[3q+3j]n7p
5 FEHQMW 1lnt+10m [4q+%j—%]n3+{4q+ lzlj+2]n7p

to form the submatrices Dy;, Dy, Dy, Doy, Dy, Dy, D,
Ny, Nig Ny, Ny, and Ny, After that, they can be
overwritten as the just mentioned linear systems are
solved.

The implementation of the doubling formulas is
straightforward and does not require any special commen-
tary. Suffice it to say that no additional storage is neces-
sary to execute that portion of the program.

Regarding storage and efficiency, it may be that not all
of the matrices F, H, Q, M, and W are desired. For
example, suppose that W is not wanted. We can effec-
tively compute F, H, Q, and M by working with

{—AT 0. 0
0 A B
Lo 0 o

instead of C. We merely ignore all the computations that
are specific to the construction of W. The truncation error
bounds (3.8)~(3.11) still hold. Similar techniques exist if
only Q, H, or F are wanted.

Through an integer variable copg, the user can specify
certain subsets of the matrices F, H, Q, M, and W which
are to be computed. This allows for a saving in both
storage and execution time, as Table I indicates.

The volume of computation is seen to depend upon the
scale parameter j and the degree ¢ of the Padé approxi-
mant which is used. The selection of j was described in
Section III. The integer g is chosen in accordance with a
user specified tolerance ToL. From Theorems 2-6, we
know that if ToL >0, then g can be picked so

[F=F(4)]| < eAed (A) <TOLO (A) (5.1)

1H—H(8)] < fae‘ﬂ[1+ 2 Jg(a) <TOLO(8) (52)

10- 0 (8)] <ede’™*[1+aA]f(A) <TOLO(A) (5.3)

IM=M(8)] < ede®™ [1+e+ad]0 (A <TOLO(A)?
(5.4)

W= W) < 4eaem[1+ 2 (at e)Ara ()2

<TOLA (M) (5.5)

(The definitions of ¢ #(A), and « are given in
(3.13)~(3.15)). In PADE, ¢ is chosen to be the smallest
integer so that the appropriate inequalities just mentioned
are satisfied. For example, if CODE=3, then H, M, and W
are not required, and so ¢ is chosen so only (5.1) and (5.3)
hold.

An upper bound is placed on the size of g, which
depends upon the precision of the machine used. This
bound, called gMmax, is the largest value of g for which
et
INCPTE

where the mantissas in the floating-point number system
used consist of 7, base § digits. When IBM 370 double
precision arithmetic is used (8=16, = 14), oMax=10.
There is no point in selecting a “g” larger than QMax, for
then the truncation errors we are trying to control through
¢q are dominated by rounding errors.

To obtain absolute error bounds, we see from
(5.1)=(5.5) that a bound must be obtained for (A). There
are many ways that the norm of a matrix exponential can
be bounded [8]. The crudest of these

ca
2)'

< B!

€y

e < el

implies #(A) < el“I% However, in the interest of a more
realistic estimate of #(A), PADE returns the easily com-

puted quantity
Ek
(RQQ‘ |:]) ’

In practice, 6 (A) is usually a small number and therefore
knowledge of its exact value is not too critical. Further-
more, one is often interested in relative error bounds, and
in this sense TOL is a fair measure. (If §(4) is large, then
normally the same can be said of H (A), O (A), M (4), and
W (4).)

To give the reader a feel for the speed of PADE, we
mention that it took 5 s of IBM 370/168 CPU time to
compute F, H, Q, M, and W in a problem of dimension
n=30and p=15. In this test problem, ToL=10"3, and the
resulting parameters of the approximation were g=7 and
J=9.

A4
2

THETA= max

Ok

VAN LOAN. INTEGRALS AND THE MATRIX EXPONENTIAL

As a test of accuracy, PADE was used to compute F,
H, O, M, and W when

2 -8 -6 501 4
A=] 10 =19 —-12| B=|1 4| Q.=|1]
-10 15 8 3 2 2
Because the eigensystem of A4 is known
-2 0 0 l
A=XDX~', D=| 0 -3 0| X=| 2
0 0 -4 -2

F(d), H(A), Q(A), M(A), and W(A) can be computed
analytically and are to 10 significant digits:

0.477528143 —0.522155363 —0.351058933
F(A)=| 0855482148 —0.994523657 —0.702117866
| —0.855482148 1.012839296 0.720433505
1.999431436 —3.394449325
H(A)=] 1148224072 —6.155423359
| —0.166539711 7.627949901
9.934877720 — 11.08568953 —9.123023900
Q(A)=] —11.08568953 13.66870748 11.50451512
—9.123023900 11.50451512 10.29179555
3.515982340 —24.87596341
M(A)=| —2.516164470 30.94693518
| —1.194242580 24.29316617
W(g); 12.29648659 —5.373425530
| —5.373425530 105.9996704 |’

With ToL=107", the computed versions of these matrices
were found to be correct through the sixth decimal place.
(In this example, g=4, j=7, and THETA=4.2.)

We do not expect the accuracy of our computed
matrices to undercut the value of ToL by such amounts in
all problems. Indeed, one must be wary of rounding errors
which have not been accounted for in our analysis. How-
ever, as experience with Ward’s Padé scaling and squaring
algorithm for matrix exponentials suggests, we can be
fairly confident of our error bounds so long as TOL is not
in the immediate neighborhood of the machine precision.

VI. CONCLUSIONS

We conclude by contrasting our algorithm with some of
the other techniques that have been suggested for comput-
ing the various integrals (1.1)—(1.4).

Johnson and Phillips [4] have proposed the computation
of H(A) through the formula

m—1

2 (e.4r)k

k=0

H(g)=[H(1), mi=A

the idea being that for small ¢, e* and H(r) can be
accurately computed. (Their discussion assumes B = I, but
it is easy to extend their results for general B.) However, if
m =2/, their algorithm requires about 2/[n’+ n%] opera-
tions to compute H(A) from H (r) in contrast to our

403

algorithm where the corresponding figure is only j[n®+

n’pl.
1 2
3 1.
s]

2 3
5 6]

=5 =5

In search for an efficient squaring algorithm, Kallstrom
[5] has proposed repeated application of

HQ20)=H(0)[2I+AH (1)].

Unfortunately, this formula only holds if B is the identity
and, therefore, one has to compute H(A) by applying
Kallstrom’s formula to the problem

ﬁ(&)%foﬂe’“dS

and then forming H(A)= H(A)B. This increases the
volume of computation over our algorithm by an amount
proportional to n/P. We cannot be more precise because
the parameters which define Kallstrom’s algorithm are
empirically determined, making work counts difficult.
Furthermore, there are no rigorous bounds on the errors
as they propagate during the repeated use of the previ-
ously given squaring formula.

By using quadrature rules, another approach to the
estimation (1.1)«(1.4) can be derived. In particular, Levis
has proposed using Simpson’s rule for the computation of
Q(4) [6]. This involves the computation of

(e*™) Q. (e,

where Nh=A. Because the error bound for this method
involves a term of the form

k=0,---,N (even)

(AlA4])*
N4

it appears that for a given accuracy tolerance, much more
computation is required of this method than ours. (The
interested reader should compare [6, (19)] with (3.10).)
Armstrong and Caglayan [1] have proposed a Taylor
series approach involvigg term-by-term integration of the
series for H (1y), Q (1), M (1), and W (1) followed by
repeated application of the doubling formulas (3.3)<3.7).
It 1s hard to compare our algorithm with theirs, for
although they give error bounds for the computed ver-
sions of H (1), Q(to), M(t,), and W(1,), they do not
analyze how these errors propagate during the repeated
doubling. Nevertheless, vie suspect that their algorithm is
quite efficient. Compared to ours, it requires about a third
less storage. However, it is known that scaling and squar-
ing algorithms with diagonal Padé approximants require

2

about half the work as their Taylor series counterparts for
a given accuracy [7). Thus we would guess that our
algorithm would be quicker. Of course, a detailed com-
putational study should be done to ascertain this. We
leave this as a topic for future investigation,

ACKNOWLEDGMENT

The author wishes to thank E. §. Armstrong for describ-
ing the problem discussed in this paper. He also wishes to
thank The Institute of Computer Applications in Science
and Engineering, Hampton, VA, for making those discus-
sions possible.

REFERENCES

[1] E. S. Armstrong and A. K. Caglayan, “An algorithm for the
weighting matrices in the sampled-data optimal linear regulator
roblem,” NASA Langley Res. Cir., Hampton, VA, NASA Tech.
ote NASA TN D-8372,71976.

(2] G. Dahlquist and A. Bjork, Numerical Methods. Englewood Cliffs,
NJ: Prentice-Hall, 1974,

[3] P. Dorato and A. Levis, “Optimal linear regulators: The discrete
time cas?e,” IEEE Trans. Automat. Contr, vol. AC-16, pp. 613-620,
Dec. 1971.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL, AC-23, NO. 3, JUNE 1978

[4] J.C. Johnson and C. L. Phillips, “An algorithm for the computation
of the integral of the state transition matrix,” JEEE Trans, Automat.
Contr., vol. AC-16, pp. 204-205, 1971.

[5] C. Kallstrom, “Computing Exp (4) and [Exp(As)ds,” Div. of
Automat. Contr., Lund Inst. Technol,, Lund, Sweden, Rep. 7309,
1973.

[6] A. H. Levis, “Some computational aspects of the matrix exponen-
tal,” IEEE Trans. Automat. Contr., vol. AC-14, pp. 410411, 1969,

[7] C. B. Moler and C. Van Loan, “Nineteen dubious ways (o compute
the exponential of a matrix,” SIAM Rev., to be published.

[8] C. Van Loan, “The sensitivity of the matrix exponential,” STAM J.
Numer. Analysis, vol. 14, p. 971-981, 1977.

[9] R. C. Ward, ”Numericaf} computation of the matrix exponential

with accuracy estimate,” SIAM J. Numer. Analysis, vol. 14, pp.
600610, 1977.

Charles F. Van Loan was born in Orange, NJ, in
1947. He received the B.S. degree, the M.A.
degree, and the Ph.D degree, all in mathematics,
and all from the University of Michigan, Ann
Arbor, in 1969, 1970, and 1973, respectively.

In 1974 and 1975 he was a Postdoctoral Re-
search Fellow in the Department of Mathemat-
ics at Manchester University, Manchester, Eng-
land. Since 1975, he has been an Assistant Pro-
fessor of Computer Science at Cornell Univer-
sity, Ithica, NY. His research interests include
numerical analysis, matrix computations, and the history of computing,

Dr. Van Loan is a member of SIAM.

