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THE SENSITIVITY OF THE MATRIX EXPONENTIAL*

CHARLES VAN LOAN+

Abstract. In this paper we examine how the matrix exponential e ** is affected by perturbations in

A. Elementary techniques using log norms and the Jordan and Schur factorizations indicate that e’ is

least sensitive when A is normal. Through the formulation of an exponential condition number, more

_ insight is gained into the complicated connecnon between the condition of the eigensystem of A and
the sensitivity of ™'

1. Introduction. The exponential of an n X n matrix A is defined by e =
Yo o (At)*/k! where t =0. The importance of this matrix function in applied
mathematics is derived from the fact that it is the unique solution to the initial
value problem AX(t) = (d/dt)X(t), X(0) = I. Many methods exist for computing
the matrix exponential [8]. A rigorous assessment of these algorithms demands an
understanding of the sensitivity of e’ because one cannot fault an algorithm for
rendering an inaccurate e if for that particular A, the exponential problem was
inherently ““ill- conditioned” In this paper we hope to contribute to the under-
standing of how e’ is affected by perturbations in A.

Our basic approach is to investigate upper bounds for ¢ (¢) where

”e(A+E)t_ At“

lle ™l

When A and E cofnmute; the bouhding of ¢(¢) is trivial since

(1.1) ()=

eAHEN M = oA (B — )= eM(UE) Y (Et)*/(k +1)!

k _=()
and thus

(1.2) AE =EA>¢(t) =|E||te™".

If A and E fail to commute, then e %" 3 ¢* ¢® and the analysis of ¢ (¢)

becomes considerably harder. It proves convenient to work with the following
identity which appears in Bellman [1]:

t
A (1— A+E
(13) e(A+E)r=eAt+J eA(r s_)Ee( + ’Sds.
. o .

Manipulation of this equation gives

“ ” Alr—s) (A+E)s
1.4 = ds.
(14 RIOE T [

To proceed further, we must be able to bound the norm of a matrix exponential.
Some of the ways this can be done are described in § 2. These results are then
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applied to (1.4) in § 3 giving upper bounds for ¢ (¢). The bounds indicate that e ** is
least sensitive when A is normal and thus has a perfectly conditioned eigensystem.
However, the results in § 4 do not answer the important question of whether
poorly conditioned eigensystems imply sensitivity of the exponential.

In an attempt to more fully characterize e ** sensitivity, the Fréchet derivative
proves useful. Recall that when it exists, the Fréchet derivative of a map F(A)
from C"*"to C"™" is another map D(F(A)): C"™" -» C"™" satisfying

F(A+E)=F(A)+D(F(A))E +o(|E]).

If we substitute

s

A+E) A A(s— A+E
e BT  =¢ ’+I e TVEe AT E  gr
(¢]

into (1.3) we find

eATEN = pAr JreA(I_S)Ee_As +0(”E”)
0

Thus, the Fréchet derivative, D(e™’), of the map F(A)=e™" is given by

D(e™*)E =j e TIE e ds.

0

The norm of the operator D (e™) effectively quantifies the rate of change of e™
with respect to A. This precise measure of sensitivity can be incorporated in an
“exponential condition number”” and is the subject of our discussionin §4. -
' We now summarize our notation. Let C"*" denote the set of complex n X n
matrices. If A = (a;)€C"", then

A*'—_(dji),
A(A)={A|det (A —AL) =0},
| lA]|=max {|A[|]A?er(A*A)
x(A)=[AlAT] (0er(A)),
a(A)=max{Re (A)|]A eA(A)}.

We have chosen to work with the 2-norm for convenience. Most of the results we
present apply with little or no modification when other norms are used.

2. Bounding e™". In this section we summarize and compare various ways in
which [le*|| can be bounded.
(a) Power series. By takingnormsine™ =Y,"_, (At)*/k ! we trivially obtain

(2.1) fle™ ]| < e,
(b) Log norms. Dahlquist [2] has shown that if
n(A)=max {ulu €A ((A*+A)/2)},

13

then

(2:2) , le* s
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The scalar w(A) is the log norm of A with respect to the 2-norm. A general
discussion of log norms may be found in Strom [10]. Because
) A= YBY":>e"’ =Ye”Y™'
we have the followmg corollary to (2.2):
(2.3) A=YBY 'Sle*|=«(Y)e**"

(c) Jordan canonical form. Recall the Jordan decomposition theorem which
states that if A € C"™", then there exists an invertible X € C"™" such that

(2.4) X'AX =T (M)® DI, (A,) =T
where
Ae 1 0
(2.5) A B e S R
0 - SY

The matrix X is not unique but we shall always assume that it is chosen such that-
x (X) is minimized.

Itiswell known{7] that if the Jordan canomcal form (JCF)of A is specnﬁed by
(2.4) and (2.5) then

2.6) e =X[e"® - D)X
where
_ 1ot 2 - /) ‘
' 1 ¢
(27) e.lkl = eAkl \ s r=mg— i.
L 0 [ -

Using the fact that | B||<q max |b;|for B € C* itis easy to show from (2.7) that

e’k ||= my|e*] 52X t’/j!

By taking norms in (2.6) and defining m =max {m,, - - -, m,} we obtain
(2.8) I]e4'|[<mK(X)e°‘A)'0 max_ t/r'

(d) Schur decomposition bound. The Schur decomposition states that there

exists a unitary Q € C"™" such that
(2.9) Q*AQ=D+N
where

D =diag (A;),

Nr:(nij)s n,—,—=(), l;]
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Notice thatA(A)={A, - : -, A.}. If we substitute D for A and N for E in (1.3) we
get ’

'
e(D+N)‘=€Dl+J' eD(x—-rl)Ne(D+N)tldt1.
0

(D+N)t

Using this formula to expand e ! we obtain

t
.e(D+N)r — eDt +J'
0

eD“—‘l)NeDll dtl+J'

IS .
Du— D —
I ePUTIIN PO RIN o PN g iy
0 J0

Clearly, a repetition of this process gives

n—1
e@HNN_ Dt Y A(B)+R,(2)
k=1

where
1 et fe—1
Ak(t)=J'J' f ePCTINPUTEIN L NePdyy - - - diy
0 JO (1]
and
t ll . l"_, R X
R,,(t)=f f I ePUTIN - NPt TN g PN g Ly
- 0 JO 0 -

Now the matrix [e®“"""N] - - - [eP“~—"*N]is zero because it is the product of n,
n X n strictly upper triangular matrices and thus, R, (¢) = 0. Hence,

" n—1 ¢ fe—1 :
(2.10) PN =P 1+ ¥ f f ePUTON - NePxdty, - - dty.
0 0

k=1
By taking norms in this and noting that [le || = e*“***(s = 0) the following result is
obtained:

) n—1 Nt 2
(2.11) fle*|=e*" Y [Nl .
' k<o k!

(e) Other bounds. For completeness we mention some other ways that
bounds for |le”‘|| can be obtained. By using the fact that
| A At) h
= lim (12
e im p

k>0
Kato {5] has shown that if ‘
B=a(A)
and if for all sufficiently large k
I -A) " [=cly=BI™,  Re(»)>8,
then

e l=ce”.
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In a sense, this result replaces the problem of bounding [le ‘|| with that of bounding
powers of the inverse of (yI —A). We will not pursue the analysis of [|(y] — A ) ||
because the bounds one gets are similar to the ones we already have.

Gantmacher [4] has derived some interesting bounds relating to the “‘matric-
ant” of the system A(#)X(t)=(d/dt)X(t). If we specialize his results to the
constant coefficient problem we obtain

lfi,“ ésii +(ent& - 1)
where A = (a;) € C*™", 4 = max |a,|, and e’ = (f;). From this it can be shown that
”6Al”§ 1 +(enni _ 1) — enn’i.

This result isn’t much different from (2.1) because 4 =||A[|=nd.
We conclude this section with an example to illustrate some of the bounds

given above. If

_[~1+6 4 e
A_( 0 —1—6) 8=10"

then (2.1), (2.8), (2.11), (2.2), and (2.3) give respectively
@ e,
(b) Jle*|=4x10°%-e" "2,
© leMi=@+4n) eCLrer
d) e |meirersn

(&) lle™||=4e ™12 (Y =diag (1, 4)).

B
c

Table 1 compares these bounds for selected values of ¢.

TaBLE 1
Power Jordan Schur Log Norm Log Norm
A .
' fle ™ @ (b) © ) (e

0 1.0E+00 - 1.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00

5 1.3E-01 1.5SE+09 2.7TE+04 1.4E-01 1.5SE+02 3.3E-01
10 1.8E—03 2.5E+18 1.8E+02 1.9E-03 . 2.2E+04 2.7E-02
15 1.8E-05 STE+27 1.2E+00 1.9E-05 3.3E+06 22E-03
20 1.6E—-07 9.0E+36 8.2E-03 1.7E-07 4.8E+08 1.8E—-04
25 1.3E-09  14E+46 5.6E-05 1.4E~09 7.2E+10 1.4E-05
30 1.IE-11 22E+54 3.7E-07 1.1IE-11 1.LIE+13 1.2E-06

We see from Table 1 that some of the upper bounds may fail to decay along with
e™. As is well known, the asymptotic behavior of e** depends upon the sign of

a(A):
lime® =0oa(A)<0.

>0
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Hence, the Jordan and Schur bounds (2.8) and (2.11) decay precisely when e
decays while the power series bound (2.1) grows regardless of the sign of a(A).
The log norm bound (2.2) may or may not exhibit the proper limiting behavior.
This is because it is possible for i (A ) to be positive even though a (A) is negative
as the above example shows. However, it can be shown that if @ (A ) <0, then it is
always possible to choose Y so that u(YAY™')<0. The bound (e) depicts this.
The example also shows the possible advantage of the Schur bound to the
Jordan bound when A has an ill-conditioned eigensystem (i.e. «(X) large).

However, there are examples where (2.8) is sharper than (2.11). In general, the

effectiveness of one bound relative to another depends upon A and ¢. However,

. when A is normal, then a{(A)=u(A)in (2.2),m =x(X)=1in(2.8),and N =0in
(2.11) thus implying that le ‘|| = e**”". Since we have [le ‘|| =|e*| for allA e A (A),
e iz e=“" implying that

@12 A*A = AA*S [N =e"

When A is not normal, it is possible fof |le /|| to grow initially even though a(A)is -

negative. In this case the factor mk (X) maXos;=m-1 t'/j1 in (2.8) and the factor
ZZ :)"Nt” /ktin (2.11) are necessary to accomodate the “hump in the graph of

' Whether or not fle* ‘[ grows at all depends upon the sign of w(A):

suplle*|[= 1&p(4)=0.

=0
This result follows from (2.2) and the fact that p.(A )isthe denvatlve of f (t) = ”e A'”
at t=0.

3. Perturbation bounds. In this section we ostensibly substitute the results of
the previous section into (1.4). To simplify this processit is convenient to establish
the following lemma.

Lemma 1. If M(¢) is monotone increasing on [0, %) and le® | =M(t) e® forall
t =0, then

“e(A +EN __ A1”

#(0) =" S M) exp [(8 = (A) [EIM ()1

Proof. A well known result from semigroup theory (see Kato [5, p. 495))
states that if |]e"‘||<c e® for all s €[0, ¢], then

e EX|=ce®relEds s elo, tj.
By using the monotonicity of M(¢) we thus have

t ! . t
J‘ ”eAu---s)” ”e(A+E)s” ds §J‘ M(t—s) eB(l—S)M(t)e(B+M(I)”E||)s ds -
(4] 0 :

< tM(t)’ B +M(1)ME”)I
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Hence, from (1.4) we have

EIL [ sicosy oo
B0 =gy | e Yl ds

= IL(J)JM([)E e(B+M(r)IIEII)t
e

from which the Lemma follows. [J

It is now.a simple matter to apply the results of the previous section to obtain
upper bounds for ¢ (¢).

THEOREM 1. (See Levis [6] for a similar result.)

(3.1) B(t) = t|E|| eI +IED:

Proof. By virtue of (2.1) we can apply Lemma 1 with M(¢)=1 and 8 =
lAfl. O

THEOREM 2. _
(3.2) () S H|E]| e@ = yHIED:
Proof. By using (2..2) we can set M(t)=1 and 8 = u(A) and invoke Lemma
0 .
THEOREM 3. If the Jordan decomposition of A is given by (2.4) and (2.5), then
(3.3) ¢<t><tl|EHM,<t>2e“"””E"‘
where M_,(t) = mu(X) MaxXo=;=m-1 v/

Proof. M,(t) is monotone increasing and from (2.8), lle™||=M,(t) e

Lemma 1 is thus applicable with M(¢) = M;(t) and B =a(A). U
THEOREM 4. If the Schur decomposition of A is given by (2.9) then

alA)

- (34 & () =t|E[Ms (1) eMs Ik

where Ms(t) = YiZb INt| /1= : :
: Proof. From (2.11), [le™||=Ms(t) e**** and thus the theorem follows by
setting M(¢) = Mg(t) and B =a(A)in Lemma 1. [
By using (2.12), the following result can be obtained as a corollary to any of
Theorems 2, 3, or 4.

3.5) A*A = AA*S ¢ () =] V.

We remind the reader that the upper bounds appearing in (3.1)—(3.4) are just
that—upper bounds. They are not necessarily accurate measures of the sensitivity
of e™'. However, because these bounds are smaller when A is normal, they suggest
that there is a connection between the normality of A and the sensitivity of e’
We hope to shed some light on this connection in the next section.

In the mean time, we conclude this section by mentioning an entirely different
approach-to the problem of bounding ¢ (). This approach utilizes the definition

1 . -
e™ =—,§ e (zl-A) " dz
271 r
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which may be found in MacDuffee [7]. Here I' is a smooth closed curve encircling
the spectrum A (A) of A. If I' also encloses A (A + E), then

¢ 1 1 zt - -

eATEN _gA =——,—§ e*(zZI-A-E)'E(zI-A) ' dz
27ri r

One can take norms and proceed to derive an upper bound for ¢ (). An analysis of

this type may be found in Fair and Luke [3]. We shall not pursue the matter

further, however, because the results are no better than the ones already obtained.

4. The exponential condition of a matrix. In [9] Rice gave a general theory of
condition. With this theory it is possible to measure the sensitivity of a map F from
metric space X to metric space Y at a point A € X. In this section we investigate
the sensitivity of e’ by applying Rice’s definitions to F(A) =e™’

Before we begin, it is instructive to look at the idea of condition in a more
familiar setting. In the matrix inversion problem (A > A™'), k(A ) =] A ]JA Y is
defined as the “condition of a matrix with respect to inversion”. That «(A)
measures the sensitivity of A ™" can be seen from the following inequality:

A+E)"' A" _IEIl _ «(A) 1
@D S T e S B e
It is always possible to choose E such that the above upper bound is attained.
Thus, if k(A) is large, it is possible for a small change in A to induce a relatively
large change in A", It is in this sense that x (A ) measures the sensitivity of the
map A->A""

Returning to the e** problem, we now formulate a relevant condition
number consistent with Rice’s theory.

DeriNITION. The exponential condition of a matrix A at time t is defined by

v(A,t)= (lslirtl) vs(A,t)

where
” (A+EN __ Az”

vl 1) sl Ol ]

Geometrically, r = 8lle*||vs (A, 1) is the radius of the smallest sphere in C**"
which is centered at ¢”** and encloses the image of the set {B|||A — B||=5|A[}
under the mapping B - ™. When small relative changes in A produce relatively
large alterations in e™, vs(A, 1) is correspondingly large.

Our investigation of the condition number v (A, t) begins with the following
theorem.

THEOREM 5. If D(e™) denotes the Fréchet derivative of F(A)=e™ then

IDE™Al

VA D=

where

I
J' e E e ds.
0

D)= Sup




e
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Proof. As we noted in the introduction,
e(A+E)r_eAt — D(eAr)E +0(”E“)

where
D(e™)E = J e Ee™ ds.
o .

Thus,

. D(e™)E +o(|E|)
14 A, =] At
(4,9 520 IEISa1Al Slle™|l

[nD(eA')Eu AL, otlAD)

:l. At At
520 ,.El?;t.mu SIA [e™ afe™]
|

= sup |D(e™)Ell:"aix A
IElI=1 | le™|I

™)~
COROLLARY 1.
v(A, t)zt|A|l forallt=0.
Proof.

f g d"“ngy JAlL O

v(A )=

COROLLARY 2. If A is normal then v(A, t)=t||A].

Proof. In view of the previous corollary, all we must show is that when A is
normal, v(A,t)=t[|A]. But this result follows easily by taking norms in the
expression for v(A, f) and then usmg (2.12):

Al
el

! A
=L ea(A)(l —s) a(A)sd IL(A”)’_t”A” D

u(A,né{O e~ "] ds

These corollaries tell us that when A is normal, the condition number v (A, t)
is as small as possible. It is rather more difficult to identify those A for which
v(A, t) »t|JA]. This is in contrast to the matrix inversion problem where the
ill-conditioned matrices can be neatly characterized through the singular value
decomposition.

Nevertheless, we can identify a class of problems for Wthh v(A,t) is -
inordinately large. If A is an n X n strictly upper triangular matrix, then

n—1 (At)k
k=0 k! ’

At _

and thus, for any matrix E,

t n—1n- j k
J eA(lvs)EeAs dS — Zl ! AIEA ti+k+l
o j=0 k=0 (j+k+1)!
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Hence, if [El|=1and A" 'EA""'#0,

= Gt =0wial

For such matrices, v(A, t) is large in the sense that it grows as t"||A | instead of as
t|A | when A is normal. As a specifie example suppose A = (a;;) € C"™" is defined

by
<1, i <j,
a; = .
0,- otherwise.

R 0 W 3 == J e Ee™ ds
- 0

In Table 2 we present some lower bounds for v(A, 1) for the case n =12. These
results were obtained by setting E in the above to be e.e1 where e, is the kth
column of the n X n identity.

TABLE 2

Lower Bound
forv(A, 1)

0.0x10°
9.7x 10"
3.5x10°
3.8x10°
2.2x10°

NOONWO

1

{n=12)

Of course, in this examplé A has a defective c_igens_ystém (it has only one
eigenvector). However, since v(A, 1) is a continuous function of A, we know that
there are nondefective matrices near to. A w1th comparably large exponential
condition numbers.

We want to conclude this section by establishing a result analogous to (4.1).
To do this we need to define the following functions:

(A, t)=51§1'§1§t v(A,s),

oA 0= e~ e ds.

The function #(A, t) can be regarded as an exponential condition number of.
A over the interval [0, £]. We alsoremark that 6(A, t) is monotone increasing and.
that obviously 8(A, ) =¢. (Incidentally, (A, ¢)=t if and only if A =Al+ 5 where
S*¥=-85)
THEOREM 6. If (A, t)”E||<1 then
et S e _IEN  sAn - -
fle ™ _HAII L-[Ef6(A

Proof. Fr(;m (1.3) -

(4.2)

u

u
(A+E A Alu-$)p As ; — ~E
e _)u_e ll:-f e {u s)Ee de+J’ eL\lu ”E(e(A F):__eAv)ds
(4]

]
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and thus
" :”e(A+E)u_eAu”<”J‘(l;eA(u—s)EeASdS”
d)( ) ”eAu” = “eA“”
+EL | e nef“n”e—“e—;"“—e_—” is
<H . ‘ —As As
S pa [P A HEL el s) do.

Let ¢, €[0, t] be such that M = maXoz,= @ (s). By setting #, =u in the above
inequality we thus obtain
[E]

M_S_mv(A, 1) +E[MO(A, t,).

Since p(A, ;) =v(A, t) and (A, t;)<8(A, t) we have

_lEl 24,0

=M= T
é(1) Al 1-6(A, D]E]l

When A is normal we may replace (A, t) with v(A, t) in (4.2) and so once
again we observe smaller bounds for the normal matrix case.

5. Conclusion. We have seen that the matrix exponential problem is rela-
tively well-conditioned when A is a normal matrix and more poorly conditioned
when A has a defective eigensystem. Perhaps some refinement of the analysis
would yield a more precise connection between the eigenstructure of A and the
sensitivity of e’
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