Computational and Combinatorial Methods in Systems Theory
.C.I Byrnes and A. Lindquist (editors)

THE BLOCK JACOBI METHOD FOR COMPUTING THE SINGULAR
VALUE DECOMPOSITION

Charles F. Van Loan

Department of Computer Science
Cornell University
Ithaca, New York 14853

Jacobi techniques for computing the singular value and
symmetric eigenvalue decompositions have achieved re-

cent prominance because of interest in parallel comp-
utation. They are ideally suited for certain multiproces-
sor systems whose processors are connected in nearest-
neighbor fashion. If the processors are powerful enough
then block Jacobi procedures are attractive because they
render a more favorable ratio of computation to communica-
tion. We examine two block Jacobi procedures that differ
in how the 2-by-2 subproblems are solved,

1. INTRODUCTION

. mxn
The singular value decomposition (SVD) of a matrix A e R (m 2 n) has
' many important applications. In the SVD we seek real orthogonal U (m~by-m) and
real orthogonal V (n-by-n) such that

T _ as
UAV = dlag(ol,...,on)
See Golub and Van Loan (1983). In this paper we analyze a family of methods for
computing the SVD that are block generalizations of the parallel Jacobi scheme
discussed in Brent, Luk, and Van Loan (1985).

Jacobi procedures proceed by making A increasingly diagonal by solving a
judiciously chosen sequence of 2-by-2 SVD subproblems. Suppose A 1is square and
let off(A) denote the Frobenious norm of A's off-diagonal elements, i.e.,

off(A) = sqrt (z Iaijlz)
i#]

For a given dimension let J(i,j,0) denote a Jacobi rotation of 6 degrees in the
(i,3) plane, e.g.,

1 0 0 0
1(2,4,0) - 0 cos(@) 0 sin(Q)

0 0 1 0

0 ~sin(®) 0 cos (@)

Forsythe and Henrici (1960) essentially proposed the following Jacobi SVD proced-
ure for square matricesi

Algorithm 1.1

Given A (nxn) and eps > 0 , the following algorithm computes n-by-n ortho-
gonal U and V such that off (UTAV) < eps || A ”F . A is overwritten with UTAV .

© Elsevier Science Publishers B.V. (North-Holland), 1986 245

246 C.F. Van Loan

I

1

Do While(off(A) > eps “ A ”F)
For i = 1 to n-1

For j = i+l ton
Compute cosine sine pairs (Cl’sl) and (CZ’SZ) s0

1 Sl B % [TP S 0 4
Set J, = J(i,j,0,)and J, = J(i,j,0,) and compute
1 1 2 2
the updates
T
L L L A 1= JlAJ2 3 U 1= UJl ;5 Vo= VJZ
There are several ways to solve the 2-by-2 subproblems. See Brent, Luk, and Van
Loan (1985).

An important feature of any Jacobi procedure is the order in which the
off-diagonal entries are zeroed. Algorithm 1.1 incorporates the "cyclic-by-row"
ordering in that the off-diagonal entries are zeroed in row-by-row fashion. Note
that zeroed entries do not stay zero--they generally become nonzero as a result
of subsequent rotations. However, it can be shown that

T, 2 2 2 2
off(JlAJz) = off(A) aij - aji
and thus, A becomes '"more diagonal" after each update. A single pass through the
body of the While Loop above is. called a "sweep'. The algorithm usually terminates
in 6-10 sweeps for typical values of n and eps, e.g., n=100, eps =10-12 |

Jacobi methods, particularly for the symmetric eigenproblem have a very long
history. See Jacobi (1846), Henrici(1958), Hansen (1962), and Schonhage (1964).
In subsequent sections we develop a block variant of Algorithm 1.l that is at-
tractive in certain multiprocessor environments. Block Jacobi methods were first
analyzed in Hansen (1960). The general form of the block algorithm is given in §2
together with a relevant convergence result. In §3 we discuss the parallel order-
ing. By zeroing the off-diagonal elements according to the parallel ordering a
significant amount of concurrency can be introduced. In §4 we discuss two ways
that the 2-by-2 block subproblems can be solved and other practical issues as-—
sociated with the block Jacobi approach.

2. A BLOCK JACOBI SVD PROCEDURE

A block version of Algorithm 1.1 is easy to specify with suitable notation.
Assume that n = kp and that we partition A (n-by-n) as follows:

-
Alp By 0t Ay
Ay Ay wee Ay)
P . . o (A,, e RP¥P)
1]
’ . °
L4 o >
LA A vt Ak

The case of nonsquare blocks will be covered in §4. Denote the j-th block columns

of A, U, and V by Aj . Uj , and Vj . Note that these are n-by-p matrices and

Block Jacobi Method for the SVD 247

and that A = [Al seens Ak] s U= [Ul,...,Uk], and V = [Vl,...,V If

k] '

is orthogonal then we let J(i,j,Q) = (Z.,.) denote the k-by-k block matrix with

p-by-p blocks that is the identity every%ﬂere except Z,, = Q y Z.. =Q s Z,
_) ii 11 ij 12 ji
= Q21 s and Z;. = QZZ"

13 B
With this notation we have the following procedure:

Algorithm 2.2.

Given A (n~by-n), the partitioning (2.1), and eps » 0 , the following
algorithm computes n-by-n orthogonal matrices U and V such that

of £(UTAV) s eps ||AllL

A 1is overwritten by UTAV .

U:=1
V=1 :

Do While (off(A) ¥ epsllA“F)
For i =1 to k-1

For j = i+l to k

Compute the SVD UgAOVb = 9 where
A -~ Aii Aij
0
A, . A,
ji i3
Set Jl = J(i,j,Uo) and J2 = J(i,j@Vo) and perform the
o - L updates A := JrfAJZ » U = UJl s and V:=VJ2

One pass through the While Loop here 1s referred to as a "block sweep'". Corres-
ponding to the sc¢alar case, A becomes "more diagonal" after each update. Indeed,
it is not hard to show that

(12

T 2 _ 2 2
off(J[AT,) = off(A)“ - HAinF - A -

2 2
41 Off(Aii) - °ff(Ajj)
To set the stage for subsequent analysis, we refine Algorithm 2.1 in several
ways. First, we take steps to guarantee termination. This can be done by incor-
porating a threshold. Threshold Jacobl procedures are well~known in the scalar
case for the symmetric gigenvalue problem. In that setting the zeroing of aij is
skipped if Ia .l < 1 where T 1s the (usually small) threshold parameter. The
size of T may be fixed or it may vary from sweep to sweep. See Rutishauser (1966).
In the block situation we pass over the (i,j) subproblem if

2

2.2) WL = sarel faglly + lag iy

is small according to the current value of T .

Block Jacobi Method for the SVD 247

and that A = [Al""" Ak] , U = [Ul,...,Uk], and V = [V ..,Vk] . If

1"

L
)

is orthogonal then we let J(i,j,Q) = (Z,,) denote the k-by-k block matrix with

p-by-p blocks that is the identity every‘%ﬂere except Z,, =Q s Z2,. = Q s 4,
_ ; ii 11 ij 12 ji

= Q21 , and ij = sz B

With this notation we have the following procedure:

Algorithm 2.2.

Given A (n-by-n), the partitioning (2.1), and eps » 0 , the following
algorithm computes n-by-n orthogonal matrices U and V such that

off(UTAV) < eps Il A HF
A is overwritten by UTAV .
ile (off(A) ¥ eps IIAHF)

i
For i =1 to k-1
For j = i+l to k

T -
Compute the SVD UOA0 V0 = 9 where
A - Aii Aij
0
A, . A,
Jji i3
Set J_1 = J(i,j,UO) and J2 = J(i,j',VO) and perform the
L - L updates A := J'i:AJ2 , U := UJ1 , and V:=VJ2

One pass through the While Loop here is referred to as a "block sweep'. Corres-
ponding to the scalar case, A becomes "more diagonal" after each update. Indeed,
it is not hard to show that

NE -, 12

T 2 2
off(J;AT,) = off(A)° - || A llg jiIIF

2 2
- off(Aii) - off(Ajj)

To set the stage for subsequent analysis, we refine Algorithm 2.1 in several
ways. First, we take steps to guarantee termination. This can be done by incor-
porating a threshold. Threshold Jacobl procedures are well-known in the scalar

case for the symmetric eigénvalue problem. In that setting the zeroing of a,. is

skipped if Iai.| < 7 where T is the (usually small) threshold parameter. The
size of 7 may be fixed or it may vary from sweep to sweep. See Rutishauser (1966).
In the block situation we pass over the (i,j) subproblem if

P 2 2
(2-2) H(a,i,j) = sqrt[” Aij ”F + “ Aji HF

is small according to the current value of 1 .

248 C.F. Van Loan

The threshold parameter must be suitably related to the termination criteria'
if convergence is to be ensured and here we wish to make another modification of
Algorithm 2.1. Instead of quitting when off(A) is small enough, we use its block
analogue:

2 \ 2

oFF(®)" =) a0z
e 3

i#]

By terminating when OFF(A) is small the final matrix A will be nearly block diag-~
onal. The diagonalization process is then completed by computing the SVD's of the
diagonal blocks (in parallel).

In Algorithm 2.1 the 2-by~2 block subproblems are exactly diagonalized. As
we are about to point out, complete diagonalization of the subproblems is unnecesg-
sary and so we merely insist that if we compute

. ii Bij T ii Aij
(2.3) -1 v
0 N 0
ji 33 ji i3
then
2 2 2 . N2
(2.4) I BinF, +]]BjillF S 0%uA,i,9)

for some fixed 68 < 1 .Recommended values for © are discussed in §4.

The last feature of Algorithm 2.1 that we wish to relax concerns the order-
ing. Instead of just considering the row-cyclic order, we wish to consider the
general ordering

(2.5) _ 3p) s (Gosdy) senns (G630 r = k(k-1)/2
where im < jm form =1 to r . Overall we obtain

Algorithm 2.2 |
Given A (n-by-n) , eps > 0 , 0 £ 8 < 1 , partitioning (2.1), ordering (2.5), }
and a threshold 1 satisfying 3

A

T eps|| A IIF / k,

the following algorithm computes orthogonal U and V such that

OFF(UTAV) = eps || & HF

O<a

(OFF(A) > eps| A ||
m=1 to k(k-1)/2
(L3 = (03
If u(A,i,i) 2 T
then

I
I

o While 7
For

Compute orthogonal Uo and VO such that (2.4) holds.

Let Jl = J(i,j,UO) and J2 = J(i,j,VO) and compute the

updates A := JT AJ2 ,» U = UJl » V = VJ1 .

- aliliﬁ%;_;

next two sections. These include (a) parallel implementation, (b) the precise pro-
cedure for solving the 2p-by-2p subproblem, (c) the application of the resulting
orthogonal transformations, (d) what to do if A is rectangular, and (e) the
value of 6 . However, before we take up these very practical matters we confirm
that the preceeding algorithm converges.
Theorem 2.1

Algorithm 2.2 terminates after a finite number of block sweeps.
Proof

If no subproblems are solved during a particular block sweep then we have

u(A,i,j) <1t for all i and j that satisfy 1 £ 1 < j £ k . Thus,

orFW)? = § u(a, 1,12 5 k(k-1)x°/2 s eps” || A[lZ
i<j

and termination is achieved.
On the other hand, if subproblem (i,j) is solved during a block sweep it is
easy to show using the definition (2.2) that the updated matrix satisfies

(2.4) OFF(J']I_'AJZ)2 OFF(A)2 - u(A,i,j)2+ u(JTAJZ, i,i)2

OFF(A)2 - (1 - ez)u(A,i,j)2 .

A

But if subproblem (i,j) is solved then T £ u(A,i,j) and so from (2.4) we have

oFF(3]a1)% s arF)? - 21 - 0D
Thus, after s block sweéps OFF of the original A 1is diminished by
s Tsqrt(l - 92)

It follows that the condition OFF(A) < eps || A ”F must eventually be satisfied.

Q.E.D.

See Hansen (1960) for further results pertaining to the convergence of block
Jacobi procedures. .

3. BLOCK JACOBI SVD WITH PARALLEL ORDERING

The key to speeding up Algorithm 2.2 is to solve nonconflicting subproblems
concurrently. For example, if k = 8 then the (1,2), (3,4), (5,6), and (7,8)
subproblems are nonconflicting in that with 4 processors we could solve the 4
subproblems and perform the necessary updates of A , U, and V at the same
time. For general k we may proceed as follows:

Algorithm 3.1

Suppose A = {Al seens Ak] , U= [Ul,...,Uk] ,and V = [Vl""’vk] where
each block column is n-by-p. Assume that k -is even and that we have N = k/2 pro-
cessors P] sreny PN and that Pi contains block columns 2i-1 and 2i of A , U,

and V . If Pi carries out the following algorithm for i = 1 to N, then

Block Jacobi Method for the SVD 249

There are several details associated with Algorithm 2.2 that we pursue in the

250 C.F. Van Loan

A= [3(L,2Q0(1) - -+ Ik-1,k,0@)17A [v(1,2,v(1)" * - J(k-1,k,V(N))]

U := U diag(U(1) ,..., U(N))
V = V diag(V(1) ,..., V(}))

where U(i) and V(i) are the 2p-by-2p orthogonal matrices that solve subproblem
(21-1,21).

Solve subproblem (2i-1,2i) as in Algorithm 2.2. Let U(1) and V(i) be the
resulting orthogonal matrices.

[Agiy > Bgg b 3= Thyy g 5 A 1VD
[Upg1 » Upg 1 3= [y q 5 Upy 10D

v Voo 1= [y g sV, 1 V(D)

2i-1 > "2i

Transmit U(i) to every other processor.
Collect U(L) ,eev, U(i-1) , UCEHL) ,.v.s UN) .

[AZi__l > AZi] = diag(U(l) "3eeay U(N)) [AZi 3 A2i__1]

Note that some coordination is required among the processors.

We now show how the repeated application of Algorithm 3.1 can diagonalize A
if the block columns are redistributed among the processors in between applications]
of the procedure, To illustrate, we return to our example where A is 8-by-8 as k!
a block matrix (k = 8). Partition the set of 28 off-diagonal index pairs into
seven "'rotation sets" as follows:

.. (1,2) (3,8) (5,6) (7,8)
II. (1,4) (2,6) (3,8) 5.7
III. (1,6) (4,8 (2,7) (3,5)
Iv. (1,8) (6,7) (4,5) (2,3)
v. 1,7) (5,8 (3,6) (2,8
VI. (1,5) (3,7) (2.8 (4,6
VII (1,3) (2,5 (47 (6,8)

The four SVD problems specified by each rotation set are nonconflicting. Read left
to right, top to bottom, the above is an instance of the "parallel ordering”. It
is easy to derive by imagining a chess tournament among 8 players in which each
player plays every other player exactly once. In between rounds (rotation sets)
the players (block columns) move to adjacent tables (processors) in musical chair
fashion:

1 3 5 7
Round I : 5 4 6 8
1 2 3 5
Round II : 4 6 8 7
1 4 2 3
Round III: 6 8 7 5 etc.

In the matrix setting we start off with A residing in processors P1 seens P4 as
follows:

4

Block Jacobi Method for the SVD 251
Py Py Py P,
Ay Ay A3 Ay Ais A A7 Ag
A1 Ay Ayz Ay Ays Ao Ay7 Ao
A3) A3 Ayy Ay, Ay5 Ag6 A37 Ay
A1 Ay Az Ay Aus Aug A7 Aug
A5y A5y A5y Agy As5 Asg A57 Asg
Ag1 262 Bg3 Agy Aes Age Ag7 Aes
A1 A A73 Ay A5 Ag6 A7 A
Ag1 Ag2 Ag3 Agy Ags Agg Ag7 Agg

Subproblems (1,2) , (3,4) , (5,6) , and (7,8) are then solved via Algorithm 3.1.
To get-ready for subproblems (1,4) , (2,6) , (3,8) , and (5,7) we reapportion A
among the processors as follows:

P P P P

1 2 3 4

Ay Ay A1y A A3 Mg A5 Ay
Ag1 Pug Ao B4 A3 M4 Aus Ay
A1 Ay Aoy Byg Ay3 Ay Ays Ay
A1 Loy Ae2 Ae6 Ae3 Ags Aes Ag7
A3 Ay A3y A3 Ayy Agg A5 Ay
Agy gy Agy Age Ag3 Agg Ags Agy
A5 Asy A5y Asg Agy Asg Ass Asy
A1 Ay A0 476 A3 A A75 Ay

Notice that solving the current (1,2) , (3,4) , (5,6) , and (7,8) problems is

mathematically equivalent to solving subproblems (1,4) , (2,6) , (3,8) , and (5,7)
of the unpermuted A.

Next, we apply Algorithm 3.1 and shuffle the resulting.matrix in exactly the
same way. We're then set to process the third rotation set (chess tournament round),
i.e., subproblems (1,6) , (4,8) , (2,7) , and (3,5) , etc. In the N processor sit-
uation the shuffling 1s most easily described through the n-by-n (n = kp) permuta-
tion matrix

P=[E]_’EZ;’EZ’EG’E:'!’EB’.."Ek—S’Ek’Ek—s’Ek—ll

where the Ei are block columns of the n-by-n identity:

OXp =
" 1 Ei € R , 1 = kp
In particular, after each application of Algorithm 3.1 block columns 2i-1 and 21 of
the matrix P AP are stored in processor Pi . Overall we have

In = [E1 » E2 5eees E

Algorithm 3.2
Suppose A

[A1 seeesy Ak l,u=1| U1 seens Uk] s and V = [V1 seees Vo 1

V = I. Assume that each block column has dimension n-by-p and

are given with U

that processor Pi contains block columns 2i-~1 and 2i of A , U, and V for 1 = 1 to

252 C.F. Van Loan

N = k/2 . Given eps > O the following algorithm computes orthogonal U and V such
that OFF(UAV) < eps| A Il

Do While (OFF(A) > eps]| AI‘F)
For rotation set = 1 to N=1
Apply Algorithm 3.1 a

Perform the updates A := PTAP , U :=UP , and V := VP vwhere P i %hi’

is given by (3.1). Note that this involves shuffling A , U,

and V among the processors.

With this breezy development of the parallel block Jacobi SVD algorithm we are j
ready to look at some important practical details. 3

4. PRACTICAL DETAILS AND EXPERIENCE

Applying the Orthogonal Transformations

Most of the computational effort in Algorithm 3.1 is spent calculating pro-
ducts of the formZC and CTZ where Z is a 2p-by-2p orthogonal matrix and C is 2p-
by-n. The obvious method for doing this requires 4np flops. However, there is an
interesting alternative that begins by computing the Householder upper triangular-
ization of Z:

Hypep ** HyZ = R
Since the upper triangular matrix R is also orthogonal, we must have R = diag(*l).
To compute ZC, for example, we sequentially apply the Householder matrices:

C :=RC
For i = 1 to 2p-1
L C :=H,C
i

1f we just count flops this “Householder™ approach requires 2(4np2 + 8p3)/3 flops
and is thus more economical whenever p < n/4. (This is often the case in multi-
processor enviromménts as it implies k > 4 .) Moreover, representing Z as a J
product of Householders requires half the space of the conventional representation.
This allows for a reduction in the communication costs associated with the trans- 3
mission of an orthogonal matrix from one processor to another. Thus, the House- 1
holder alternative has certain advantages as it does in conventional settings.
(See Golub and Van Loan (1983, pp.41-42).)

Solving the Subproblems

In the typical subproblem we are presented with a submatrix 5

A AR 1

AO - 'f
A1 Ay] P .

P P '

and must choose UO and VO such that

Block Jacobi Method for the SVD 253
B B
_ _ 11 12
YotoVo T B0 T
21 22
satisfies
2 2 2 2 2 2 .y 2
4.1 H B12 ”F + ” B21 “F s o HA12 HF +“ A21 ”F] = 8" u(a,i,3)

for some 8 < 1, (See Theorem 2.1.) We study two distinct approaches to this prob-
lem.

Method 1. Partial SVD via Row Cyclic Jacobi
Use the row-cyclic Jacobi procedure (Algorithm 1.1) to compute U, and V
such that (4.1) holds. That is, keep sweeping until A0 is Sufficientgy close
to 2-by-2 block diagonal form.
Cost = SOp3 flops/per sweep
Method 2. Golub-Reinsch SVD with Bidiagonal Pause

Recall that the Golub-Reinsch algorithm begins with a bidiagonalization of
the matrix., After p steps of this initial reduction we have

x x 00 00000
0 x x 0 0 0 0O
0 0 x x 0 0 0O
T 0 0 0 x b 0 0 O
UB A0 VB = 0000 x x x X (p=4)
0 0 0 0 x x x x
0 0 0 0 x x x X
0 0 0 O X X X
where UB = H1 +++» H and VB = G1 o Gp are products of Householder matrices.

Note that the (p,ptl) entry prevents the reduced matrix from being block diagonal.
This 'suggests that if

b} < 0 u(Aa,i,j)

then B0 is sufficiently close to block diagonal form and we set U0 = UB and

V0 = VB . If b is too large then we proceed to the iterative portion of the Gol-

ub-Reinsch algorithm terminating as soon as the current (p,ptl) entry is small
enough. 3
18p if the bidiagonal pause is successful

Cost = 80p3 otherwise

Method 1 is appealing because it can exploit the fact that the subproblems are in-
creasingly block diagonal as the iteration progresses. On the other hand, Method 2
is attractive because it is cheaper whenever the bidiagonal pause is successful or
whenever two or more sweeps are needed by Method 1. Furthermore, Method 2 can han-
dle rectangular problems more gracefully as we now show.

-

254 C.F. Van Loan

Handling Rectangular Problems

Up to this point we have assumed that A 1s a square block matrix with
square blocks. It is possible to relax these restrictions. To illustrate, suppose
that each block is 4-by-2. The subproblems thus have dimension 8-by-4. If Method 2
is applied and the full SVD computed then we obtain

a 0 0 o
0 a, 0 0
o 0 Og 0
o 0 o0 %,
o 0 0 o
0o o o0 o
o 0 o0 o
o 0 o0 o0

Note that the structure of the reduced matrix conflicts with the aim of block di-
agonalization--the (1,2) block is nonzero. However, there is a simple solution:
interchange rows 4 and 5 with rows 6 and 7. In general, straightforward row and
column interchanges following the SVD computation are sufficient to make Method 2
work on problems having rectangular blocks., (The blocks need not have the same
dimension as they did in our example.)

The same techniques work for Method 1, except that the rectangular subprob-
plems must be made square by adding zero columns (or rows) before the Jacobi al-
gorithm is applied. This manuever is discussed in Brent, Luk, and Van Loan (1985)
and is somewhat costly. To be precise, let L and. S be the larger and smaller of
the subproblem dimension. . The Jacobi approach involves 0(L3) work while the
Golub-Reinsch procedure requires 0(L2S) flops.

Experimental Observations

To gain perspective on.the various options sketched above we ran numerous
examples on a VAX 780 in the MATLAB environment. (Machine precision ¥ 10-16.) We
report on one typical 24-by-24 example which we solved using various values of 6,
k, and p . In this examplel|| A][, % 15 and we terminate as soon as OFF(A) g 10-15.

To begin with, the asymptotic rate of convergence is quadratic. Consider the
k=6, p =4 situation with Method 2. Tabulating OFF(A) we find

15

Sweep e =10 8 = .25 8 = .50 8 = .75
1 97.x 100 | a1 x10b | a12x 100] .14 x 10t
2 22 x 100 | .28 x 100 | .41 x 101 | .61 x 10°
3 19 x 100 | 36 x10° | .10 x 10° | .13 x 10°
4 B2x 1070 | a8 x 100 27 x 107! | .67 x 107!
5 36x108] 70x100] .23 x107% | .40 x 107%
6 conv comnv 24 x 1071] 72 % 10720
7 conv conv conv conv

In general, we find that the number of block sweeps is a mildly increasing func-

tion of 8. Indeed, we have found that the number of block sweeps is usually mini-
mal so long as. © ¢ (0,.25] . Here we report on the number of block sweeps that are
necessary for various k, p, and 8. (Again, Method 2 was used.)

Biock Jacobi Method for the SVD 255

kK p =101 @ = .25 8 = .50 0 =.75
3 8 4 4 5 5
4 6 5 5 6 7
6 4 6 6 7 7
8 3 6 6 8 8
12 2 6 7 8 10

Another obvious fact is revealed by the table: the number of sweeps increases with
k. It is conjectured that the number of block sweeps increases as the logarithm of
k.

We mention that when Method 2 is used to solve the subproblems then the num-~
ber of times that the bidiagonal pause is successful rapidly decreases as the it-
eration proceeds. For example, in the (k,p,0) = (4,6,.5) situation, the bidiagonal
pause was successful 83% of the time during the first block sweep, 16% of the time
during the second block sweep, and never again thereafter.

Although the results that we have thus far reported on have all been with
Method 2, they essentially apply when the subproblems are solved using Method 1,
the Jacobi approach. Thus, how one solves the subproblem doesn't really matter
from the standpoint of block sweeps. Moreover, for 8 = .25 we find that two sweeps
in Method 1 almost always suffice to solve the subproblem. Based on flop counts
we see from above that the two methods are equally efficient. Method 1, being
simpler to implement, may be preferable in situautions when program memory in the
processors is limited.

Acknowledgement

The author wishes to thank Clare Chu for discussing the computations pre-
sented in this paper.

References

[1] Brent, R, F, Luk, and C. Van Loan, Computation of the singular value decom-
position using mesh-connected processors, J. VLSI and Computer Systems, 1,
(1985), .242~270.

[2] Forsythe, G. and P. Henrici, The cyclic Jacobi method for computing the prin~
cipal values of 'a complex matrix, Trans. Amer. Math. Soc., 94 (1960), 1-23.

[3] Golub, G.H. and C. Van Loan, Matrix Computations, (Johns Hopkins University
Press, 1983).

[4] Hansen, E.R. , On Jacobi methods and block Jacobi methods for computing matrix
eigenvalues, Ph.D. thesis, Stanford University, 1960.

[5] Hansen, E.R., On quasi-cyclic Jacobi methods, ACM, 9(1962), 118-135.

[6] Henrici, P., On the speed of convergence of cyclic and quasicyclic Jacobi
‘methods for computing the eigenvalues of Hermitian matrices, SIAM J, Applied
Math., 6 (1958} , 144-162.

[7]1 Jacobi, C.., Uber ein leiches vehfahren die in der theorie der sacular
storungen vorkommendern gleichungen numerisch aufzulosen, Crelle's Journal,
30 (1846), 51-94. '

[8] Rutishauser, H., The Jacobi method for real symmetric matrices, Numer.Math.,
16 (1966), 205-223,

[9] Schonhage, A, On the quadratic convergence of the Jacobl process, Numer. Math.,

6 (1964), 410-412.

Computational and Combinatorial Methods in Systems Theory
C.I. Byrnes and A. Lindquist (editors)
© Elsevier Science Publishers B.V. (North-Holland), 1986 257

STABILITY CRITERIA FOR INTERVAL MATRICES

Xu Daoyi

Mianyang Teachers' College
Mianyang, Sichuan,
China

This paper presents several easy-to-check criteria
for the stability and complete unstability of in-
terval matrices, and extends the results obtained
by Heinen (1984) and Xu (1985).

INTRODUCTION

In 1966, Moore gave the concept of interval matrices, and described
in detail various computations possible with interval matrices. An
nxn interval matrix N(P,Q) is a set of real matrices

N(P,Q)=(A=(aij):pijsaijsqij’ i,j=1 ’2,' L ,n)

(Neinen,1984). The set N(P,Q) is called stable if every AeN(P,Q) is -
stable. And the set N(P,Q) is called completely unstable if every
AeN(P,Q) is unstable. These are important properties since the equi-
librium state of the linear dynamical system

X(t)=ax(t) X(t,)=X, (1)

is absolutely stable if and only if A is stable. In situations where A
is known only to the extent of AeN(P,Q) (due to component tolerances,
measurement errors,etc.),one can guarantee the stability of (1) only
by knowing that N(P,Q) is stable. In 1983, Bialas gave the necessary
and sufficient condition for the stabllity of interval matrices, but
this condition is inconvenient (Neinen,1984) and false (Barmish et al,
1984). Recently Heinen (1984) and Xu (1985) presented respectively the
simple sufficient conditions for the stability of interval matrices.
This paper extends further their results and gives the criteria for
completely unstable of interval matrices.

MAIN RESULTS /
Theorem 1 (Xu,1985). ILet the matrix M=(mij) be defined as
m; ;=4 ;<09 miquaxqpijbhijp (i%3) (2)

j=1,...,n.

or i,
m; $=29; <0y my smax{lp; ;+py3hlay y*ay;P) (1%3) (3)

If Agr which are the leading principal minors of order k of the ma-
trix M, satisfy

(-1)kAk>0 k=142y¢.en) (4)

258 Xu Daoyi

then the set N(P,Q) is stable.
The conditions (2) and (4) in Theorem 1 concentrate all results by
Heinen (1984). Utilizing scalar Iyapunov function, we shall extend
further these results.

Consider the linear system (1), for te(t,st;) assume X(t)=0. Iet a

Iyapunov function of the system (1) be ji
v, §1d§1)x (t), \'

where dj(_1)(:L=1 s-ee9n) are some positive numbers and xi(t) is the ith

component of X(t). We calculate the derivative V, along the solution
of the system (1) as

n
"])_:—1d(1)x.=:d

1

(1), (1) (1)
i 855 45 %5

i=1 J J
= g1, -
V s- d-13"'16‘;1 61 1
and J1(t-to)
v, <V, e s Where V1o‘v1(to)'
Hence for arbitrary teft ,»t,) we have
~§ (t=t)
Ik(t)<ce ' °

n V
where IIX(t)ll— 7 1%y (t) and 01—m is constant.

For 2 segment of the solution X(t) in some other time varying interval,
we can by a linear transformation change the segment to positive and
repeat the process. For example, assume that the solution X(t) of (1)
has k negative components for 1:6[1:1 ’t2] y let

xi<0 i—1'1,...,rk; xi;O i’a-1,.... "y
where 1sr1<r2<o-- r<n. and 1<isn. And let

geessesy I

T=3186(1renssTrmd M rensd sm151 panay)
be an nxn diagonal matrix, then TX(t)=0 for tef(t,,t,) and satisfy

TX(t)=(TAT™ ")TX(%). (5)

) n
Iet ’I.‘X=(x$2),x£2),...,xr(IZ))T, taking V2=j§d§_2)x§2) (d§2)>0,i=1 yeeesnl)s
we obtain as before
Jz(t"to)
"x”—"TX" CZe

where TAT) 13—(13i) replaces A of (1), C, is constant and

- zqnaxﬁdmd(z) - by -

for telt, 27y

