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Abstract. If the complex Schur decomposition is used to solve a real linear system, then the
computed solution generally has a complex component because of roundoff error. We show that
the real part of the computed solution that is obtained in this way solves a nearby real linear
system. Thus, it is “numerically safe” to obtain real solutions to real linear systems via the complex
Schur decomposition. This result is useful in certain Kronecker product situations where fast linear
equation solving is made possible by reducing the involved matrices to their complex Schur form.
This is critical because in these applications one cannot work with the real Schur form without
greatly increasing the volume of work.
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1. Introduction. The Schur decomposition states that if A ∈ IRn×n, then there
exists a unitary Q ∈ Cn×n so that QHAQ = T is upper triangular. The eigenvalues
that appear along the diagonal of T can be arbitrarily ordered. See [3, p.313].

This decomposition, coupled with back-substitution and matrix-vector multipli-
cation, can be used to solve a real linear system Ax = b. Indeed, since QHb =
(QHAQ)(QHx) = T (QHx) we have

Algorithm SchurSolve

Step 1. Compute the Schur decomposition QHAQ = T .
Step 2. Form c = QHb.
Step 3. Solve Ty = c by back-substitution.
Step 4. Set x = Qy.

Ordinarily, it is preferred to work with the LU factorization because it is much
cheaper. However, there are settings involving Kronecker products when this is not
the case. For example, the Sylvester equation

FX + XGT = B F ∈ IRm×m, G ∈ IRn×n, B ∈ IRm×n

can be reshaped as Ax = b where A = In ⊗ F + G ⊗ Im, x = vec(X), and b =
vec(B). (Here, vec(·) makes a column vector out of a matrix by stacking its columns.)
The LU factorization of A involves O(m3n3) flops. But if we compute the Schur
decompositions QH

F
FQF = R and QH

G
GQG = S and set Q = QF ⊗QG, then QHAQ =

In⊗R + S⊗Im is the Schur decomposition of A and SchurSolve requires O(n3+m3)
flops if the Kronecker structure is exploited. See [3, p.367].

A problem with SchurSolve is that complex arithmetic arises whenever A has
complex eigenvalues. This increases the volume of work. Moreover, the computed
solution vector x will inevitably have a complex component because of roundoff error.
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These problems can be avoided by working with the real Schur decomposition. In
this factorization we find a real orthogonal Q so that QT AQ = T is upper quasi-
triangular, i.e., block triangular with 1-by-1 and 2-by-2 diagonal blocks. Because T
is “almost” triangular, the SchurSolve philosophy essentially applies, except that a
quasi-triangular system is solved in Step 3 of SchurSolve, rather than a (complex)
triangular system.

Therefore, an algorithm to solve a linear system using the real Schur decompo-
sition appears to involve a simple modification of SchurSolve. However, there are
situations where the real Schur decomposition is much more expensive to compute
than the (complex) Schur decomposition. Consider (again) the Sylvester equation
problem. If we have computed the real Schur decompositions QT

F
FQF = R and

QT
G
GQG = S and set Q = QF ⊗ QG, then QT AQ = In ⊗ R + S ⊗ Im is not the real

Schur decomposition of A. Attempting to compute the canonical form would destroy
the Kronecker structure and would greatly increase the volume of work. Fortunately,
there is a way of handling the subdiagonal blocks of In ⊗ R + S ⊗ Im using clever
permutations so that the overall procedure remains O(m3 + n3). (See [3, p.367].)

However, in [4] we describe another Kronecker product situation where the per-
mutation “device” does not work – specifically, the shifted Kronecker product system

(

A(p) ⊗ · · · ⊗ A(1) − λIN

)

x = b λ ∈ IR, b ∈ IRN , N = n1 · · ·np ,(1.1)

where A(i) ∈ IRni×ni for i = 1, . . . , p. After computing the real Schur decomposi-
tions of the A(i), a fast recursive procedure exists to solve for x if the A(i) have real
eigenvalues. However, if the A(i) have complex eigenvalues, the resulting p-fold Kro-
necker product of quasi-triangular matrices has a complicated and very problematic
block structure below the diagonal, thus increasing the volume of work needed by
the recursive procedure. This impasse brings us back to SchurSolve and the main
contribution of this paper. In particular, we examine the properties of the real part
of the computed solution x̂.

The analysis to determine if a computed solution of a system solves a nearby sys-
tem of the same form is illustrative of recent work in the general area of “structured”
perturbations and error analysis. For example, in [5, 6] the conditioning of structured
linear systems is examined where the structure includes symmetric, Toeplitz, circu-
lant, and Hankel matrices. In addition, [1] analyzes the stability of algorithms for
solutions of symmetric indefinite systems. In our paper, we show that the real part
of the computed solution solves a nearby real system, a type of structured pertur-
bation. We are not the first to examine complex algorithms for real problems. For
example, [2] compares the condition of a complex eigenvalue of a real matrix under
real and complex perturbations in order to analyze the accuracy of real algorithms
versus complex algorithms. Our work is in this spirit, expanding what we know about
structured perturbations for the case when “structure” means real data.

In §2 we show that SchurSolve produces a complex solution that solves a nearby,
but complex, linear system. This result is not new but is included for the sake of
completeness. We then proceed to prove a perturbation theorem in §3. It shows that
when a real linear system is subjected to complex perturbations, then the real part
of the solution to the perturbed system solves a nearby real linear system. This is
followed by a brief summary in §4.

Throughout this paper we use the 2-norm. The 2-norm condition of a matrix M
is denoted by κ(M). The unit roundoff is designated by u. We repeatedly use the
fact that if M ∈ Cm×n, then both ‖ Re(M) ‖ and ‖ Im(M) ‖ are bounded by ‖ M ‖.
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2. Backward Error Analysis. We show that if x̂ is the solution produced by
SchurSolve when floating point arithmetic is used, then

(A + ∆A) x̂ = b + ∆b(2.1)

‖ ∆A ‖ ≤ δA‖ A ‖(2.2)

‖ ∆b ‖ ≤ δb‖ b ‖(2.3)

where the δ’s are modest multiples of the unit roundoff u. To present an uncluttered
but sufficiently rigorous analysis, we adopt the convention that all the δ’s below are
O(u) in magnitude. The floating point result of a matrix calculation is indicated by
fl(·). The floating point properties associated with the Schur decomposition, back
substitution, and other basic computations can be found in [3].

In Step 1 the computed Schur decomposition of A ∈ IRn×n produces a “nearly”
unitary Q̂ ∈ Cn×n. That is, there is an exactly unitary Q ∈ Cn×n such that

Q = Q̂ + ∆Q ‖ ∆Q ‖ ≤ δ1 .(2.4)

The computed Schur form T̂ satisfies

T̂ = QH(A + H)Q ‖ H ‖ ≤ δ2‖ A ‖ ,(2.5)

where H ∈ Cn×n. Accounting for the roundoff error in Step 2, there exists ∆b ∈ Cn

such that

ĉ = fl(Q̂Hb) = QH(b + ∆b) ‖ ∆b ‖ ≤ δb‖ b ‖(2.6)

while in Step 3 the computed solution to the triangular system satisfies

(T̂ + G)ŷ = ĉ ‖ G ‖ ≤ δ3‖ T̂ ‖ ≤ δ4‖ A ‖ .(2.7)

In the last step the computed solution x̂ can be related to ŷ as follows:

x̂ = fl(Q̂ŷ) = Q(ŷ + g) ‖ g ‖ ≤ δ5‖ ŷ ‖ ≤ δ6‖ x̂ ‖ .(2.8)

Now let us combine these results. From (2.6) and (2.7) we have

(T̂ + G)ŷ = QH(b + ∆b)

and so by (2.5) and (2.8)

b + ∆b = Q
(

T̂ + G
)

QHQŷ =
(

A + H + QGQH
)

(x̂ − Qg) .

If M = A + H + QGQH , then

b + ∆b = M(x̂ − Qg) =

(

M −
MQgx̂H

x̂H x̂

)

x̂

=

(

A + H + QGQH −
MQgx̂H

x̂H x̂

)

x̂.

and so if we define

∆A = H + QGQH −
MQgx̂H

x̂H x̂
(2.9)
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then (A + ∆A) x̂ = b + ∆b, i.e., x̂ solves a perturbed system. From (2.6) we know
that ∆b satisfies (2.3). Thus, the verification of (2.1)-(2.3) is complete once we show
that ‖ ∆A ‖ is sufficiently small. Towards that end we note that

‖ M ‖ = ‖ A + H + QGQH ‖ ≤ ‖ A ‖ + ‖ H ‖ + ‖ G ‖

≤ (1 + δ2 + δ4)‖ A ‖ = (1 + δ7)‖ A ‖.

It follows from (2.5), (2.7), (2.8) and (2.9) that

‖ ∆A ‖ ≤ ‖ H ‖ + ‖ G ‖ + ‖ M ‖
‖ g ‖

‖ x̂ ‖

≤ δ2‖ A ‖ + δ4‖ A ‖ + δ6(1 + δ7)‖ A ‖

The inequality (2.2) is established by setting δA = δ2 + δ4 + δ6(1 + δ7).

3. A Perturbation Theorem. In this section we prove a result that will enable
us to say something very favorable about the real part of the computed SchurSolve

solution.

Theorem 3.1. Suppose 0 < ǫ ≤ 1/6 and that A ∈ IRn×n and b ∈ IRn with ǫ ·
κ(A) ≤ 1/2. If

(A + E)z = b + f(3.1)

where

E = E1 + iE2 , E1, E2 ∈ IRn×n , ‖ E ‖ ≤ ǫ‖ A ‖

f = f1 + if2 , f1, f2 ∈ IRn, ‖ f ‖ ≤ ǫ‖ b ‖

z = z1 + iz2 , z1, z2 ∈ IRn,

then there exists a real matrix Ẽ ∈ IRn×n such that
(

A + Ẽ
)

z1 = b + f1(3.2)

and

‖ Ẽ ‖ ≤ 4ǫ‖ A ‖(3.3)

‖ f1 ‖ ≤ ǫ‖ b ‖ .(3.4)

Proof. Since

‖ f1 ‖ ≤ ‖ f1 + if2 ‖ = ‖ f ‖ ≤ ǫ‖ b ‖,

the inequality (3.4) holds. Note that if b = 0 then ‖ f ‖ = 0 and so ‖ f1 ‖ = 0.
Expanding (3.1) we get

(A + E1 + iE2)(z1 + iz2) = b + f1 + if2

from which follows

(A + E1)z1 − E2z2 = b + f1(3.5)

(A + E1)z2 + E2z1 = f2 .(3.6)
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If b = 0 and z1 = 0, then any such Ẽ such that ‖ Ẽ ‖ ≤ 4ǫ‖ A ‖ completes the proof.
If z1 6= 0, equation (3.5) can be rewritten as

(

A + E1 −
E2z2z

T
1

zT
1 z1

)

z1 = b + f1

and so (3.2) holds with

Ẽ = E1 −
E2z2z

T
1

zT
1 z1

.(3.7)

Now to establish (3.3), we start by taking norms in (3.7):

‖ Ẽ ‖ ≤ ‖ E1 ‖ + ‖ E2 ‖
‖ z2 ‖

‖ z1 ‖
≤ ǫ‖ A ‖

(

1 +
‖ z2 ‖

‖ z1 ‖

)

.(3.8)

Looking at (3.3), we must confirm that ‖ z2 ‖ is not too much bigger than ‖ z1 ‖. From
(3.6) we have

z2 = (A + E1)
−1 (f2 − E2z1) = (I + A−1E1)

−1A−1 (f2 − E2z1)

and so

‖ z2 ‖ ≤ ‖ (I + A−1E1)
−1 ‖‖ A−1 ‖ (‖ f2 ‖ + ‖ E2 ‖‖ z1 ‖) .

The assumption ǫ · κ(A) < 1/2 implies

‖ (I + A−1E1)
−1 ‖ ≤

1

1 − ‖ A−1E1 ‖
≤

1

1 − ǫ · ‖ A ‖‖ A−1 ‖
≤ 2

and thus

‖ z2 ‖ ≤ 2ǫ‖ A−1 ‖ (‖ b ‖ + ‖ A ‖‖ z1 ‖) .(3.9)

By rearranging (3.5) we see that b = (A + E1)z1 − E2z2 − f1 and therefore

‖ b ‖ ≤ (‖ A ‖ + ‖ E1 ‖)‖ z1 ‖ + ‖ E2 ‖‖ z2 ‖ + ‖ f1 ‖

≤ (1 + ǫ) ‖ A ‖‖ z1 ‖ + ǫ ‖ A ‖‖ z2 ‖ + ǫ‖ b ‖

≤
1 + ǫ

1 − ǫ
‖ A ‖‖ z1 ‖ +

ǫ

1 − ǫ
‖ A ‖‖ z2 ‖ .

By substituting this inequality into (3.10) and using the assumption that ǫ ≤ 1/6 we
get

‖ z2 ‖ ≤ 2ǫ ‖ A−1 ‖

(

1 + ǫ

1 − ǫ
‖ A ‖‖ z1 ‖ +

ǫ

1 − ǫ
‖ A ‖‖ z2 ‖ + ‖ A ‖‖ z1 ‖

)

= 2ǫκ(A)

(

2

1 − ǫ
‖ z1 ‖ +

ǫ

1 − ǫ
‖ z2 ‖

)

≤

(

2

1 − ǫ
‖ z1 ‖ +

ǫ

1 − ǫ
‖ z2 ‖

)

≤
2

1 − 2ǫ
‖ z1 ‖ ≤ 3‖ z1 ‖ .
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The inequality (3.3) follows from this and (3.9).
The proof will be complete after we address whether z1 can be zero. By way

of contradiction, assume z1 = 0. Then (3.5) and (3.6) become −E2z2 = b + f1 and
(A + E1)z2 = f2, respectively. So

b = −f1 − E2z2

= −f1 − E2(A + E1)
−1f2.

This implies that

‖ b ‖ ≤ ‖ f1 ‖ + ‖ E2 ‖‖ (A + E1)
−1 ‖‖ f2 ‖

≤ ǫ‖ b ‖ + 2ǫ‖ A ‖‖ A−1 ‖(ǫ‖ b ‖)

≤ 2ǫ‖ b ‖

which means that 1 ≤ 2ǫ, a contradiction. Since z1 is nonzero, the proof is now
complete.

In §2 we showed that SchurSolve produces a computed solution x̂ that exactly
solves a (complex) linear system that is “within roundoff” of the original. Thus,

‖ x̂ − x ‖

‖ x ‖
≈ uκ(A) .

Since ‖ Re(x̂) − x ‖ ≤ ‖ x̂ − x ‖ it follows that

‖ Re(x̂) − x ‖

‖ x ‖
≈ uκ(A)

which is what we would expect from a stable linear equation solving process. But
we can say more in light of Theorem 3.1. The following Corollary to Theorem 3.1
shows that using the complex Schur decomposition to solve a real problem results in
a computed solution whose real part solves a nearby real system.

Corollary 3.2. Suppose A ∈ IRn×n and b ∈ IRn, and x̂ is the computed solution

to Ax = b using SchurSolve. In addition suppose that ǫ = max(δA, δb) ≤ 1/6. Then

there exists ∆A ∈ IRn×n and δb ∈ IRn such that

(A + ∆A)Re(x̂) = b + δb(3.10)

where

‖ ∆A ‖ ≤ δA‖ A ‖(3.11)

‖ δB ‖ ≤ δb‖ b ‖.(3.12)

4. Summary. We have illustrated certain situations where the complex Schur
decomposition is preferred to using the real Schur decomposition when solving a real
system. Thus, we show that it is numerically safe to obtain solutions to the real
system by introducing complex arithmetic. In particular, Theorem 3.1 and Corollary
3.2 show that the real part of the computed solution obtained using SchurSolve solves
a nearby real linear system.
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