
PRODUCT TRIANGULAR SYSTEMS WITH SHIFT∗

CARLA D. MORAVITZ MARTIN† AND CHARLES F. VAN LOAN‡

SIAM J. MATRIX ANAL. APPL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 24, No. 1, pp. 292–301

Abstract. Systems of the form (R(1) · · ·R(p) − λI)x = b, where each R(i) is an n-by-n upper
triangular matrix, can be solved in O(pn3) flops if the matrix of coefficients is explicitly formed.
We develop a new method for this system that circumvents the explicit product and requires only
O(pn2) flops to execute. The error bounds for the new algorithm are essentially the same as the
error bounds for the explicit method. The new algorithm extends readily to the situation when R(1)

is upper quasi-triangular.

Key words. back-substitution, matrix products

AMS subject classification. 65F05

PII. S0895479801396051

1. Introduction. Suppose the matrices R(1), R(2), . . . , R(p) ∈ R
n×n are all up-

per triangular and that we want to solve

(R(1) · · ·R(p) − λI)x = b,(1.1)

where λ ∈ R, b ∈ R
n, and the matrix of coefficients is nonsingular. This problem

arises in various product eigenvalue problems (A(1) · · ·A(p))x = λx. (See [2].) In these
settings the A-matrices are reduced to triangular form without the explicit formation
of the product. The computation of eigenvectors by back-substitution involves the
solution of a product triangular system with shift.

One way to solve (1.1) is to form the upper triangular matrix (R(1) · · ·R(p)− λI)
and then use back-substitution. We refer to this as the explicit method and note that
it is an O(pn3) procedure because of the matrix-matrix multiplications. In this paper
we develop an implicit method that carefully engages selected parts of the coefficient
matrix during the back-substitution process. The implicit algorithm requires only
O(pn2) flops and has the same backward error properties as the explicit method. Our
contribution therefore adds to the set of product-free matrix algorithms that have
recently been developed for problems that involve matrix products. See [1] for an
overview of this important paradigm and [4] for an example.

To illustrate the main idea without getting bogged down in details we first work
through the p = 2 case. We then discuss the general algorithm, including a simple
extension that can handle the case when R(1) is upper quasi-triangular. An error
analysis and some reaffirming numerical results complete the paper.

2. The p = 2 case. Consider the situation when the product in (1.1) involves
just two matrices. Assume that S, T ∈ R

n×n are upper triangular and that the system

(ST − λI)x = b, λ ∈ R, b ∈ R
n,

∗Received by the editors October 3, 2001; accepted for publication (in revised form) by I. C. F.
Ipsen February 15, 2002; published electronically July 9, 2002. This work was supported by NSF
grant CCR-9901988.

http://www.siam.org/journals/simax/24-1/39605.html
†Center for Applied Mathematics, Cornell University, 657 Rhodes Hall, Ithaca, NY 14853-7510

(carlam@cam.cornell.edu).
‡Department of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-7510

(cv@cs.cornell.edu).

292

PRODUCT TRIANGULAR SYSTEMS WITH SHIFT 293

is nonsingular. Suppose 1 ≤ k ≤ n− 1. Define

S+ = S(n− k:n, n− k:n),

T+ = T (n− k:n, n− k:n),

x+ = x(n− k:n),

b+ = b(n− k:n)

and observe that

(S+T+ − λIk+1)x+ = b+

is just the trailing (k + 1)-by-(k + 1) portion of (ST − λI)x = b. It has the form([
σ uT

0 Sc

] [
τ vT

0 Tc

]
−
[

λ 0
0 λIk

])[
γ
xc

]
=

[
β
bc

]
,

where σ, τ, γ, β ∈ R, u, v, xc, bc ∈ R
k, and Sc, Tc ∈ R

k×k. The two rows in this equation
tell us that

(ScTc − λIk)xc = bc(2.1)

and

γ =
β − σvTxc − uTTcxc

στ − λ
.(2.2)

The efficiency of “ordinary” back-substitution relies on the fact that at the start of
step k the vector xc is available and that the scalar γ can be obtained in O(k) flops.
However, in our product system if we literally use (2.2) to compute γ, then O(k2)
flops are required because of the matrix-vector product Tcxc. Unless this computation
can be rearranged we are headed for an overall algorithm that needs O(n3) flops.

Fortunately there is a way to do this through a simple recursion that can be used
to compute w+ = T+x+ (the “next” w) from wc = Tcxc (the “current” w). Since

w+ = T+x+ =

[
τ vT

0 Tc

][
γ

xc

]
=

[
τγ + vTxc

wc

]
it follows that we need only compute the scalar ω ≡ τγ + vTxc to get w+ from wc.
Thus, we can carry out each of the transitions xc → x+ and wc → w+ in O(k) flops,
and this renders the following overall procedure.

Implicit Method (p = 2).
xc ← bn/(S(n, n)T (n, n)− λ)

wc ← T (n, n)xc

for k = 1:n− 1

σ ← S(n− k, n− k); u ← S(n− k, n− k + 1:n)T

τ ← T (n− k, n− k); v ← T (n− k, n− k + 1:n)T

γ ← (β − σ(vTxc)− uTwc)/(στ − λ)

ω ← τγ + vTxc

xc ←
[

γ
xc

]
; wc ←

[
ω
wc

]
end

x← xc

294 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

In step k there are two length-k inner products, i.e., vTxc and uTwc. Thus, the
algorithm requires a total of 2n2 flops.

3. The general case. We now extend the above algorithm to the case when the
coefficient matrix involves the product of p upper triangular matrices:(

R(1) · · ·R(p) − λI
)
x = b.(3.1)

Suppose 1 ≤ k ≤ n− 1. Define

R
(i)
+ = R(i)(n− k:n, n− k:n), i = 1:p,

x+ = x(n− k:n),

b+ = b(n− k:n)

and observe that (
R

(1)
+ · · ·R(p)

+ − λIk+1

)
x+ = b+

is just the trailing (k + 1)-by-(k + 1) portion of (3.1). It has the form([
σ1 uT

1

0 R
(1)
c

]
· · ·
[

σp uT
p

0 R
(p)
c

]
−
[

λ 0

0 λIk

])[
γ

xc

]
=

[
β

bc

]
,(3.2)

where σi, γ, β ∈ R, ui, xc, bc ∈ R
k, and R

(i)
c ∈ R

k×k for i = 1:p. In order to develop the
necessary recursions for the back-substitution process we need to look more carefully
at the product of the partitioned triangular matrices in this equation. It is easy to
show by induction on p that

[
σ1 uT

1

0 R
(1)
c

]
· · ·
[

σp uT
p

0 R
(p)
c

]
=

 σ1 · · ·σp

p∑
j=1

(σ1 · · ·σj−1)uT
j R

(j+1)
c · · ·R(p)

c

0 R
(1)
c · · ·R(p)

c

.
By substituting this into (3.2) we conclude that

(R(1)
c · · ·R(p)

c − λIk)xc = bc(3.3)

and

γ =
β − ∑p

j=1(σ1 · · ·σj−1) uT
j w

(j)
c

σ1 · · ·σp − λ
,(3.4)

where w
(p)
c = xc and w

(j)
c = R

(j+1)
c · · ·R(p)

c xc for j = p−1: −1:1. In order to effect
an O(k) transition from xc to x+ we need to develop O(k) update recipes for the
w-vectors. In particular, we need a fast method for computing

w
(j)
+ = R

(j+1)
+ · · ·R(p)

+ x+, j = 1:p− 1,(3.5)

assuming that we are in possession of w
(1)
c , . . . , w

(p)
c . Since the matrices

R
(i)
+ =

[
σi uT

i

0 R
(i)
c

]
, i = j+1:p,

PRODUCT TRIANGULAR SYSTEMS WITH SHIFT 295

are upper triangular it follows that each w
(j)
+ has the form

w
(j)
+ =

[
ωj

w
(j)
c

]
,

and so we just need a quick way to compute the scalars ω1, . . . , ωp. Since w
(p)
+ = x+

we have [
ωp

w
(p)
c

]
=

[
γ

xc

]
,

and so ωp = γ. Simple formulae for ωp−1, . . . , ω1 can be derived from (3.5). This

equation tells us that w
(j)
+ = R

(j+1)
+ w

(j+1)
+ , i.e.,[

ωj

w
(j)
c

]
=

[
σj+1 uT

j+1

0 R
(j+1)
c

][
ωj+1

w
(j+1)
c

]
.

Thus,

ωj = σj+1ωj+1 + uT
j+1w

(j+1)
c

for j = p−1:−1:1. Combining all this we obtain the following procedure.
Implicit Method (General p).
xc ← bn/(R(1)(n, n) · · ·R(p)(n, n)− λ)

w
(p)
c = xc

w
(j)
c ← R

(j+1)
c (n, n)w

(j+1)
c (j = p−1:−1:1)

for k = 1:n− 1

σj ← R(j)(n− k, n− k) (j = 1:p)

uj ← R(j)(n− k, n− k + 1:n)T (j = 1:p)

β ← b(n− k)

γ =

β −
p∑

j=1

(σ1 · · ·σj−1) uT
j w(j)

c

/ (σ1 · · ·σp − λ)

if k < n− 1

ωp ← γ; w
(p)
c ← xc

ωj ← σj+1ωj+1 + uT
j+1w

(j+1)
c (j = p−1:−1:1)

w
(j)
c ←

[
ωj

w
(j)
c

]
(j = 1:p)

end

xc ←
[

γ
xc

]
end

x← xc

There are p length-k inner products to compute in step k, i.e., uT
j w

(j)
c , j = 1:p. Thus,

the overall algorithm requires pn2 flops.

296 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

4. The quasi-triangular case. In the eigenvector application mentioned in the
introduction it is sometimes the case that R(1) is upper quasi-triangular, i.e., block
upper triangular with 1-by-1 and 2-by-2 blocks along the diagonal. The 2-by-2 bumps
correspond to complex conjugate eigenvalue pairs.

The implicit algorithm generalizes in a straightforward way to handle this situa-
tion. To see how to carry out a step that corresponds to a 2-by-2 bump we rewrite
(3.2) as follows:([

S1 UT
1

0 R
(1)
c

]
· · ·
[

Sp UT
p

0 R
(p)
c

]
−
[

λI2 0

0 λIk

])[
γ

xc

]
=

[
β

bc

]
,(4.1)

where Si ∈ R
2×2, Ui ∈ R

(n−k)×2, R
(i)
c ∈ R

k×k, β ∈ R
2, bc ∈ R

k, and xc ∈ R
k are given.

Our goal is to compute efficiently γ ∈ R
2. Following the corresponding discussion in

section 3 it can be shown that

[
S1 UT

1

0 R
(1)
c

]
· · ·
[

Sp UT
p

0 R
(p)
c

]
=

 S1 · · ·Sp

p∑
j=1

(S1 · · ·Sj−1)UT
j R(j+1)

c · · ·R(p)
c

0 R
(1)
c · · ·R(p)

c

.
From this it follows that (R

(1)
c · · ·R(p)

c − λIk)xc = bc and

(S1 · · ·Sp − λI2) γ = β −
p∑

j=1

(S1 · · ·Sj−1) UT
j w(j)

c ,(4.2)

where w
(p)
c = xc and

w(j)
c = R(j+1)

c · · ·R(p)
c xc, j = p−1:−1:1.(4.3)

Thus, the next two components of x, i.e., γ = x(n−k−1:n−k), are found by solving
(4.2), a 2-by-2 linear system. The update of the w-vectors is analogous to the update

derived in section 3 for the triangular case. Since w
(p)
+ = x+ we have

w
(p)
+ ≡

[
ωp

w
(p)
c

]
=

[
γ

xc

]
,

and so ωp = γ. From (4.3) w
(j)
+ = R

(j+1)
+ w

(j+1)
+ , i.e.,[

ωj

w
(j)
c

]
=

[
Sj+1 UT

j+1

0 R
(j+1)
c

][
ωj+1

w
(j+1)
c

]
,

and so the vectors ωj ∈ R
2 can be found via

ωj = Sj+1ωj+1 + UT
j+1w

(j+1)
c

for j = p−1:−1:1. Thus, the transition from {xc, w
(1)
c , . . . , w

(p)
c } to {x+, w

(1)
+ , . . . , w

(p)
+ }

involves O(k) flops even if a 2-by-2 bump is encountered.

PRODUCT TRIANGULAR SYSTEMS WITH SHIFT 297

5. Backward error analysis. We show that backward error analyses for the
explicit and implicit methods are essentially the same. The goal is not to derive the
“best possible” results but simply to substantiate observed numerical behavior. In
particular, we show that both the explicit and implicit methods produce a computed
solution x̂ that solves a “nearby” system

(R(1) · · ·R(p) − λI + E)x̂ = b,(5.1)

where the perturbation matrix E satisfies

‖ E ‖ = O
(
u
(‖R(1) ‖ · · · ‖R(p) ‖ + |λ|))(5.2)

with u being the unit roundoff and ‖ · ‖ designating (say) the 2-norm.
For simplicity we assume that R(1) is upper triangular. The analysis for the

quasi-triangular case is similar and basically yields the same results.
Consider the explicit method first. It begins with the computation of the matrix

of coefficients A = R(1) · · ·R(p) − λI:

A1 = R(1)

for j = 2:p

Aj = fl(Aj−1R
(j))

end

Â = fl(Ap − λI)

Here, fl(x op y) is the floating point version of x op y, where x and y are floating
point scalars, vectors, or matrices and “op” is some legitimate operation between
them. Applying standard floating point error results that can be found in [2] or [3],
it can be shown that

Aj = Aj−1R
(j) + Ej , ‖ Ej ‖ = O

(
u ‖Aj−1 ‖ ‖R(j) ‖)(5.3)

for j = 2:p. Taking into account the roundoff error associated with the λ-shift gives

Â = Ap − λI + F1, ‖ F1 ‖ = O (u (‖Ap ‖+ |λ|)) ,(5.4)

and so by a simple inductive argument we find that

Â = R(1) · · ·R(p) − λI + F1 +

p∑
j=2

EjR
(j+1) · · ·R(p).

At this point back-substitution is applied to Âx = b and produces an x̂ that satisfies

(Â + F2)x̂ = b, ‖ F2 ‖ = O
(
u‖ Â ‖

)
.(5.5)

Combining all of these results, it is not hard to show that (5.1) holds with

E = F1 +

p∑
j=2

EjR
(j+1) · · ·R(p) + F2.

Taking norms in this equation and simplifying the right-hand side with (5.3), (5.4),
and (5.5) confirms (5.2).

298 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

To show that (5.1) and (5.2) apply to the implicit method, we proceed by induc-
tion on n. The n = 1 case holds because the x̂ produced by the implicit method is
identical to the x̂ that is produced by the explicit method.

Assume that 1 ≤ k ≤ n − 1. Using the notation of section 3 and “hats” to
designate computed quantities, the induction argument is complete if we can show
that

(
R

(1)
+ · · ·R(p)

+ − λIk+1 + E+

)
x̂+ = b+(5.6)

with

‖ E+ ‖ = O
(
u
(
‖R(1)

+ ‖ · · · ‖R(p)
+ ‖ + |λ|

))
,(5.7)

given that (
R(1)

c · · ·R(p)
c − λIk + Ec

)
x̂c = bc(5.8)

with

‖ Ec ‖ = O
(
u
(
‖R(1)

c ‖ · · · ‖R(p)
c ‖ + |λ|

))
.(5.9)

To that end partition (5.6)

E+ =

[
ε eT

0 Ec

]

conformably with (3.2).
From (5.6) we see that our task is to show that γ̂ satisfies([

σ1 uT
1

0 R
(1)
c

]
· · ·
[

σp uT
p

0 R
(p)
c

]
−
[

λ 0

0 λIk

]
+

[
ε eT

0 Ec

])[
γ̂

x̂c

]

=

 σ1 · · ·σp − λ + ε

p∑
j=1

(σ1 · · ·σj−1)uT
j R

(j+1)
c · · ·R(p)

c + eT

0 R
(1)
c · · ·R(p)

c − λIk + Ec


 γ̂

x̂c

 =

 β

bc


(5.10)

with

|ε| = O
(
u
(
‖R(1)

+ ‖ · · · ‖R(p)
+ ‖ + |λ|

))
(5.11)

and

‖ e ‖ = O
(
u
(
‖R(1)

+ ‖ · · · ‖R(p)
+ ‖ + |λ|

))
.(5.12)

Using elementary properties of the 2-norm, it can be shown that (5.7) follows from
(5.9), (5.11), and (5.12).

PRODUCT TRIANGULAR SYSTEMS WITH SHIFT 299

Before we set out to verify (5.11) and (5.12) we establish a handy tilde notation

that can be used to indicate accuracy to machine precision. If M is a matrix, then M̃
is an approximation that satisfies ‖M − M̃ ‖/‖M ‖ = O (u). The notation is a useful
way to account for the rounding errors in floating point matrix-vector multiplication.
Indeed, if M is a floating point matrix and v is a floating point vector, then fl (Mv) =

M̃v.
When we account for all the rounding errors associated with the evaluation of the

right-hand side in (3.4) we find that

γ̂ =

β −
p∑

j=1

(
(σ1 · · ·σj−1)(1 + µj)ũ

T
j ŵ

(j)
c

)
σ1 · · ·σp(1 + δ1) − λ(1 + δ2)

,(5.13)

where |δi| = O (u) for i = 1, 2 and |µj | = O (u) for i = 1:p. We shall establish below
that the computed wc vectors satisfy

ŵ(j)
c = (R(j+1)

c + F (j+1)
c) · · · (R(p)

c + F (p)
c)x̂c, ‖ F (j)

c ‖ = O
(
u‖R(j)

c ‖
)

(5.14)

for j = 1:p. This says that

ŵ(j)
c =

(
R(j+1)

c · · ·R(p)
c + G(j)

)
x̂c,(5.15)

where ‖G(j) ‖ = O(u‖R(j+1)
c ‖ · · · ‖R(p)

c ‖). By rearranging (5.13) and substituting
(5.15) we get

β = (σ1 · · ·σp(1 + δ1)− λ(1 + δ2)) γ̂

+

 p∑
j=1

(σ1 · · ·σj−1)(1 + µj)ũ
T
j

(
R(j+1)

c · · ·R(p)
c + G(j)

) x̂c

= (σ1 · · ·σp − λ + ε) γ̂ +

 p∑
j=1

(σ1 · · ·σj−1)uT
j

(
R(j+1)

c · · ·R(p)
c

)
+ eT

 x̂c,

which completely specify ε ∈ R and e ∈ R
k. It follows that (5.10) holds for this choice

of ε and e. Moreover, (5.11) and (5.12) are both satisfied.
The last thing we must do is verify (5.14) for j = 1:p. This result is certainly

correct if k = 1 since ŵc = fl(r
(j+1)
nn · · · r(p)

nn). Assume that it holds for general k. Our
task is to show that

ŵ
(j)
+ =

[
ω̂j

ŵ
(j)
c

]
= (R

(j+1)
+ + F

(j+1)
+) · · · (R(p)

+ + F
(p)
+)x̂+,(5.16)

where

‖ F (j)
+ ‖ = O

(
u‖R(j)

+ ‖
)
, j = p:− 1:1.(5.17)

In looking at the specification of the implicit algorithm in section 3, we see that (5.16)
holds if j = p since

ŵ
(p)
+ =

[
γ̂
x̂c

]
= x̂+.

300 CARLA D. MORAVITZ MARTIN AND CHARLES F. VAN LOAN

Assume that (5.16) and (5.17) hold for some general j that satisfies 1 < j ≤ p. From
(5.14) and the definition of ωj we have

ŵ
(j−1)
+ =

[
ω̂j−1

ŵ
(j−1)
c

]
=

[
fl(σjω̂j + uT

j ŵ
(j)
c)

(R
(j)
c + F

(j)
c) · · · (R(p)

c + F
(p)
c)x̂c

]
.

Since

fl(σjω̂j + uT
j ŵ

(j)
c) = σjω̂j(1 + τ) + ũT

j ŵ
(j)
c ,

where |τ | = O (u), we have

ŵ
(j−1)
+ =

[
σj(1 + τ) ũT

j

0 (R
(j)
c + F

(j)
c)

][
ω̂j

ŵ
(j)
c

]
= (R

(j)
+ + F

(j)
+)ŵ

(j)
+ ,

where

F
(j)
+ =

[
τσj (ũj − uj)

T

0 F
(j)
c

]
.

It follows that (5.16) and (5.17) hold for j = p:− 1:1.

This completes the verification that both the explicit and implicit methods pro-
duce computed solutions that satisfy (5.1) and (5.2). We mention that if λ = 0, then
we can solve (1.1) via repeated back-substitution. Using standard results about this
process it can be shown that

(R(1) + E(1)) · · · (R(p) + E(p))x̂ = b,

where |E(j)| = O
(
u|R(j)|) for j = 1:p. So although we have shown that the error

bounds for the implicit and explicit methods are essentially the same, neither result
is as strong as that which can be obtained for the λ = 0 case.

6. Numerical results. Matlab implementations of the explicit and implicit
methods are available at http://www.cs.cornell.edu/cv/ and were tested to see if
the preceding inverse error analysis is realistic. Results like (5.1)–(5.2) that claim a
computed solution x̂ satisfies a “nearby” system (A + E)x̂ = b can be affirmed by
comparing the 2-norm of

Ê = (b−Ax̂)x̂T /(x̂T x̂)

with the alleged 2-norm error bound. This is because (A + Ê)x̂ = b and Ê has the
smallest 2-norm of all matrices E that satisfy (A + E)x̂ = b. Indeed,

‖ Ê ‖ =
‖ b−Ax̂ ‖
‖ x̂ ‖ .

In our case A = R(1) · · ·R(p) − λI, and so the issue before us is the size of

φ(x̂) =

(‖ b− (R(1) · · ·R(p) − λI)x̂ ‖/‖ x̂ ‖)(
u
(‖R(1) ‖ · · · ‖R(p) ‖+ |λ|))(6.1)

PRODUCT TRIANGULAR SYSTEMS WITH SHIFT 301

Table 6.1
Lower and upper bounds for ‖ Êimp ‖/‖ Êexp ‖.

p = 2 p = 4 p = 6

n = 50 (.10 , 8.4) (.08 , 14.6) (.06 , 7.6)

n = 100 (.14 , 6.3) (.07 , 5.5) (.06 , 6.6)

n = 150 (.09 , 6.0) (.04 , 5.4) (.16 , 6.6)

n = 200 (.19 , 3.4) (.09 , 8.7) (.06 , 8.6)

when x̂ is the solution obtained via the implicit and explicit methods. Denote these
solutions by x̂imp and x̂exp, respectively. Note that if

Êimp = (b−Ax̂imp)x̂T
imp/(x̂T

impx̂imp),

Êexp = (b−Ax̂exp)x̂T
exp/(x̂T

expx̂exp),

then from (6.1)

φ(x̂imp)

φ(x̂exp)
=
‖ Êimp ‖
‖ Êexp ‖

.

For a particular choice of n and p we experimentally determined a lower bound α and
an upper bound β for this quotient, i.e., α and β so that

α‖ Êexp ‖ ≤ ‖ Êimp ‖ ≤ β‖ Êexp ‖.

In Table 6.1 we report the results. Each cell specifies an estimate of α and β based on
100 randomly generated examples. The results substantiate what the error analysis
of section 5 says. The inverse error analysis for the implicit method is essentially the
same as the inverse error analysis for the explicit method.

REFERENCES

[1] B. De Moor and P. Van Dooren, Generalizations of the singular value and QR decompositions,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 993–1014.

[2] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[3] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[4] C. F. Van Loan, A general matrix eigenvalue algorithm, SIAM J. Numer. Anal., 12 (1975), pp.

817–834.

