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ON THE METHOD OF WEIGHTING FOR EQUALITY-CONSTRAINED
LEAST-SQUARES PROBLEMS*

CHARLES VAN LOANfY

" Abstract. The generalized singular value decomposition is used to analyze the problem of minimizing
| Ax — b||, subject to the constraint Bx =d. A by-product of the analysis is a new iterative procedure that
can be used to improve an approximate solution obtained via the method of weights. All that is required
to implement the procedure is a single QR factorization. These developments turn out to be of interest
when A and B are sparse and for the case when systolic architectures are used to carry out the computations.

1. Introduction. The problem we consider is how to find a vector x € R" that solves
the “LSE” problem
min "Ax - b”Z’
Bx=d

(1.1)
where Ac R™"* (mzn), be R™, Be R?*" (p=n) and d € R?. We will assume that
(1.2) rank (B)=p

and that the null spaces of A and B intersect only trivially:
(1.3) N(A)NN(B)={0} <« rank [(B)] =,

This condition ensures that (1.1) has a unique solution which we designate by x; .
Important settings where the LSE problem arises include constrained surface
fitting, constrained optimization, geodetic least-squares adjustment, and beam-forming.
Several methods for solving the LSE problem are discussed in Lawson and Hanson
[17, Chaps. 20-22]. In one approach QR factorizations are used to compute the
projections of x; sz onto N(B) and its orthogonal complement N(B)*:

ALGORITHM 1.1.
(a) Compute an orthogonal Q such that
Rg| »p
2]
Q 0 n—p
is upper triangular.
(b) Solve the p X p system R3y,=d and set x, = Q,y,; where

Q=[Q, Q:]
p n-p

(c) Compute an orthogonal U such that

Ryl n-p
UT(AQ,) =
(aon=["] 2
is upper triangular.

(d) Solve R,y,= U] (b— Ax,) and set x,= Q,y, where

' u=[y, U ]

n—p m-—n+p
(e) xLse=x;+x,.
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paper was supported by the Office of Naval Research under contract N00014-83-K-0640.
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This algorithm is particularly simple to implement using LINPACK subroutines [7].
In MATLAB [18] it requires five lines of code.

Unfortunately, Algorithm 1.1 is not viable when A is large and sparse, a situation
that occurs with some frequency. The trouble lies with the fill-in that can be expected
during the formation of the product AQ,. If B is sparse then recent sparse null space
techniques could be used to generate a sparse Q,; see [15], [20]. However, the sparsity
of AQ, is unpredictable with such a process.

Another shortcoming of Algorithm 1.1 surfaces when one seeks to implement it
on systolic arrays tailored to perform fast QR factorizations. In an important beam
forming problem, one must solve the LSE problem for many different B matrices. (A
is fixed.) Ideally, one would like to “pipeline” the solution process in Algorithm 1.1
to achieve maximum concurrency. Unfortunately, this turns out to be 1mp0551b1e since
the QR factorization of each AQ, must be calculated from scratch.

This prompts us to solve the LSE problem by the well-known method of weights.
In this approach a positive weight 1 is chosen and the unconstrained least squares

problem

pB\: Md)

( A )" ( b

is solved. The assumption (1.3) ensures that this is a full rank least-squares problem
thereby having a unique solution which we designate by x(u). It is well known that
lim, .. x(x) = x,se. Perhaps the easiest way to see this is to observe that if
[0 o B[] [4
(1.5) 0 I, Al|lr]=]b]
BT AT o]jlx] L0

(1.4) min
2

then x = x g While

r-/..l,_ZII, 0 Biln d
(1.6) 0 L. Allr]=|b
| BT AT 0]]:z 0

implies z = x(u). Equation (1.5) arises by applying Lagrange multipliers to (1.1) while
(1.6) can be derived by considering the normal equations associated with (1.4). Clearly,
as u gets large these two systems approach one another. Thus, x(u) =z - x = X5 as
the weight u tends to infinity.

The method of weights is attractive for its simplicity. We merely compute the QR
factorization

wB R}L)
1.7 =
(17) (%)) -a(®
and solve the nonsingular n X n upper triangular system

Rax(wr =7 (4] )

where

_[Ql(/"’) Qx(1)]

m+p-n

is orthogonal. Standard LINPACK [7] routines can be used for this purpose. If A and
B are both sparse, then the George-Heath sparse least-squares algorithm can be
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invoked; see [10]. In the systolic array setting, the standard QR arrays proposed in
[9] and [16] are applicable.

The accuracy of x(u) is of obvious concern with the weighting approach. An
exact expression for the error using the generalized singular value decomposition is
given in § 2. Unfortunately, a large weight may be necessary to render an acceptable
x(p) and this can cause severe numerical problems as we illustrate in § 3. In § 4 we
present an iterative procedure that can be used to improve a “small weight” x(u).
Some numerical results and implementation details are discussed in § 5.

2. Theoretical analysis of x;5e and x(ge). The best way to analyze the method of
weighting is through the generalized singular value decomposition. This decomposition
is discussed in [19] and [24]; see [23] and [26] for computational issues. We establish
a specially normalized version of the decomposition that simplifies our analysis of the
LSE problem and the method of weighting for solving it.

THeEOREM 2.1. IfAe R™™" (m=n) and B e R?™" (rank (B) = p) satisfy (1.3), then
there exist

U=[u, " ,un]e.R™™ (orthogonal),

V=[v,,"-,0,]e R”*?  (orthogonal),

X =[x, " +,x,]eR™™  (nonsingular),
such that
(2.1) UTAX =D, =diag(ay, -, a,),
(22) - V'BX = Dy =diag (B, - -, B,).

Ifo, = 0,Z - - - = 0, are the singular values of the matrix () then without loss of generality
we may assume that

(2.3) IXMl.=1,
(2.4) 1X7H, =01/,
(2.5) O=oy=: =, <au = SQ,Sapn='""=a,=0,
(2.6) Bz 2B, 0,
(2.7) al+pi=g2 (i=1,---,p).
Proof. Let

A 1Y ;- T
(B) = (gz) diag (o4, -+, 0,)Z

be the singular value decomposition (SVD) of () with QIQ,+QTQ,=1,00=" -

ag, 2—0 and Z Z—I,,. Let

be the CS decomposition of Q, and Q, where Ue R™*™, Ve R”*?, and We R"™" are
each orthogonal and where

v

C =diag(cy, "+, c,)e R™™", ¢=0,
S =diag (s;,- - -, 5,) € RP™",

1]
s
|
Cn
N
I
v
,“9)
v
=3
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satisfy CTC+S8"S=1,. (The SVD and the CS decomposition are discussed in [11].)
Our theorem follows by setting D, =0,C, D =0,S, and

X=a-,,Zdiag(—1—,---,—->W.
g, Ty

Note that (1.3) guarantees that o, is positive, [
Note that (1.2) implies 8, > 0. We define the generalized singular values to be the
quotients

(2.8) i = a;/ B; (i=1,-+-,p)
From (2.5) and (2.6) it follows that

(2.9) O=pi=" =y <pgs1 =" = lhp.
Moreover, we have

(2.10) Ax; = oy, (i=1,:++,n),
(2.11) Bx,=Buv,  (i=1,---,p).

Thus, N(A) =span {x, - -, Xg}.
Theorem 2.1 can be used to effectively diagonalize the LSE problem. In particular,
by setting

b= UTb=<uTb,- “,umb)7,

d=VTd=(vld,---,07d)7,
x=Xy=X()’1, e syn)T’

we find that (1.1) transforms to

(LSE) min, | Day~blz.

It is not hard to show that

T T TINT
d v,d Uy b u,b
YLse™ Y > »"
Bl Bp ap+1 28

solves (LSE’). In light of the normalization (2.5) we have

v/d 1
(2.12) XLse= XYLsg = Z —x; +— Z (ui b)x;.
i=1 B: Oy i= p+1
It should also be noted that a solution to the unconstrained LS problem min | Ax — b{f,
is given by
2 oulb 1
(2.13) Xig= Y —x;+— Z (ulb)x,.

i=q+1 Q; n i=p+1

Using (2.12), (2.13) and recalling (2.10), we have

(2.14) rs=b- Ast—Z (uTb)“x"' Z (“Tb)uu

i=n+1

p
(2.15) nse=b—Axise=rs+ L pu,

i=q+1
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where
(2.16) pi=ulb—upld (i=1,---,p).
Note that
' p
(2.17) A=Y pi=|ruselz—lrsl3
i=1

measures how much the minimum residual increases as a result of the constraint Bx = d.
The generalized singular value decomposition can also be used to obtain a useful
expression for x(u). Note that x(u) satisfies the normal equation

(2.18) (ATA+p’B"B)x(p)=ATb+u’B7d.

Analogous to how we obtained (LSE'), this equation transforms to
(DADa+u’D3Da)y(p)=D3b+u’Did

where x(p)= Xy(u). It is easy to deduce from this diagonal system that

? aulb+p’Bold 1 &
2.19 W)=Y ——5—>—x;+— Tb)x,.
( ) (/1') igl a,?+,u,2ﬂ,? o, i=§‘+1 (u )x

Subtracting (2.12) from this expression and doing a little algebra we obtain the following
expansion for the error:

p 2 )
(2.20) e(p)=x(p)—xsg= X _zlul_z'&xi-
=g+l Wi RT
Note that the error is confined to the subspace span {x,.,, * - -, x,} and that it obviously
tends to zero as the weight tends to infinity.
As part of a general analysis that we shall perform in § 4, we show that

A1
fle(p) —xpsell = z——.
2p By
This suggests that if 8, is small (or equivalently p, is large) then a large weight may
be necessary. As we discuss in the next section, this can cause numerical difficulties.
However, it should be noted from (2.12) that x; ¢ will be sensitive to perturbation in
this case and so we can expect difficulties no matter what method we use to compute

XLSE-

3. Difficulties associated with a large weight. It is well known that care must be
exercised when Householder matrices are used to compute the QR factorization of a
matrix whose rows vary greatly in norm, e.g., the matrix in (1.4). Powell and Reid [21]
examined this problem in conjunction with the Businger-Golub algorithm described
in [6] and advise incorporation of row interchanges, much as in Gaussian elimination.
Specifically, they recommend that the kth column be searched and its largest entry
pivoted to the (k, k) position before the kth Householder matrix is applied.

Note that near-domination of the pivot elements will result if we apply the
Businger-Golub algorithm to (“F) but not if we apply it to the matrix in

(s~

which is mathematically equivalent to (1.4). To appreciate the difference between the

(3.1) min

2
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B-over-A and the A-over-B approaches to the LSE problem, consider the example

1 2 1
A=(3 4), b=<1), B=(1 -1), d=(2).

This problem is well-conditioned and has exact solution 55(39, —19)”. In Table 1 we
record the magnitude of {|x(u)—x s/, for both approaches as a function of u.

TABLE 1

10' | 10 | 10° [ 107 | 10° | 10" | 10" } 10" | 10V

B-over-A error | 1072 | 1077|107} 107*%1107**| 1077 (1077 | 10717 ] 107V
A-over-Berror {1072 | 1077 (107" {107 [107'°{ 10”7 |107° {107* {1072

Computations were performed using VAX double-precision arithmetic in the
MATLAB environment. Let machep be the machine precision, in our case 107", The
divergence of performance between the two approaches in the vicinity of u=
(machep) /2 is fairly typical. We observed this to be the case even in ill-conditioned
examples. Although the B-over-A approach is always preferable from the numerical
standpoint, it is sometimes difficult to set up (1.4) with the constraint equations on
top. For example, the minimization of fill-in may force us to choose some alternative
row-ordering. However, some interesting thoughts about how to preserve both sparsity
and stability are given in [4].

Another inconvenience thrust upon us if we must employ a large weight is the
need for column interchanges when computing the QR factorization of (“). An example
suggested by our colleague Per-Ake Wedin makes this clear. Suppose

1 1 1 1
Aw 1 3 1 . 2 ’
1 -1 1 3
1 1 1 | 4
1 1 1 [7
B"_1 1 —1]’ d"_4]'

This example is well-conditioned and x; s = 2(46, —2, 12)”. In Table 2 we tabulate the
error in x(u) for various values of u. The cases when column pivoting is used and
when it is not are recorded.

TABLE 2
10 10° 10° 107 10° 10" 10" | 10'
With column pivoting , |{ 1072 | 107 [ 107'® { 107" | 107'¢ | 107'¢ | 107'¢ | 107'¢
No column pivoting 102 | 1077 [ 107" | 107" {107 | 1077 | 107° | 107

Trouble arises without column pivoting because the first two columns of the matrix
(%2) are nearly dependent for large u. Consequently, the (2,2) element of the upper
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triangular matrix R, in (1.7) approaches zero. These difficulties are circumvented when
column interchanges are performed.

From the examples in this section we conclude that both row and column ordering
can be critical when the weighting method is used to solve the LSE problem. This
limits its usefulness for sparse problems and complicates its implementation on systolic
architectures because the QR arrays that have thus far been proposed do not have
column pivoting capability. See Gentleman and Kung [8] and Heller and Ipsen [13]
for example.

4. An improvement scheme for x(u). We now show how the solution x(u) can be
improved using only the QR factorization of (*). This will give us the opportunity
_h to “get by’ with reasonably small weights thereby circumventing the problems alluded
to in the previous section. The key idea behind our procedure is to correct solutions
to (1.6) by exploiting (1.5).

ALGORITHM 4.1.
Choose p and compute the solution x(u) to (1.4).

Set
xB=x(p),
r(l) = b_Ax(/-L)a
AW = p2(d - Bx(p)).
For k=1,2, -
Compute the residual associated with (1.5):
s lda] [o o BJA®
8 |=|b|-{0 I, A||rY|
891 (o] [BT AT o]|x®
Solve the (1.6) system
w2, 0 B|{AA®] 8
0 I, A||Ar®|=|8|.
BT AT o|lAx® | |8
Set
AKFD = () A (R,
1 OOy O]
ll xF+D = x (B Ax (),
d It is not at all obvious that tﬁe x* converge to x;gg. Nor is it obvious how one would

actually solve for the corrections AL, Ar'®), and Ax™. These issues will be addressed
once we make some ‘'simplifications based on the following theorem.
THEOREM 4.1. For all k in Algorithm 4.1, 89 =0 and 8 =0.
Proof. Since
dl [e2, 0o B|Y
bl=| 0 I, A|[r]
0 BT AT 0j|x®
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we have 85" =0 and 8" = 0. Now suppose for some k = 1 that 6}’ = 0 and 8{’ = 0. Since

5007 6 BAx®
8D =8|~ | ArO+ AAx®
8§v] Lo TAL®+ATAFP

the theorem will follow if we can show that
ArP+ AAxF =0
and
BTAA M+ ATAF® =0,
But these two results hold because by the induction hypothesis we have

w2, 0  B{[AA®T] [8(¥
0 I, AllAar® |={ 0 (. a
BT AT oflAx® 0

Observing from (1.6) that Ax™* solves the problem

(D=(7")

we see that Algorithm 4.1 transforms to

4.1) min

s
2

ALGORITHM 4.2.
Choose u and compute the solution x(u) to (1.4).
Set xM=x(u)
For k=1,2,---

59 = d — Bx®.

uB (k) _ <ﬂ5(1k)>
< A )Ax 0

xHD = x4 Ax ),

=min.
2

Solve

It is important to stress that only a single QR factorization is necessary to carry out
the iteration. In particular, once we have the QR factorization

(‘;B) ~[O:(w), Q;(u)](lz,.>,

then
d
R.x(u)= Ql(u)T(Mb )
and
R,Ax®=Q (u)T<”8§k)>
13 1 0 .

We are now set to analyze the convergence properties of Algorithm 4.2. We first

establish an explicit expression for the error in x*.
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THEOREM 4.2. The vectors x'* in Algorithm 4.2 satisfy

xM = x; 56+ e(u, k)

where

Eopi wi )k
4.2 k)= - "
(4.2) e(u, k) i=§+1 ai<#2+#? X;

Proof. From (2.20) it is clear that the theorem holds for k= 1. We use induction
to establish the result for general k. Since

e(p, k+1)=x%D—x o = e(u, k) +Ax"
and from the normal equations for (4.1) we have
(ATA+u*B™B)Ax™® = u2BT8{) = 4u?BT(d — Bx*))
= w?B(d ~ Bxyg) + B(xusg = x V)]

= —.u'z-BT;Be(IJ'! k)’
it follows that

e(u, k+1)=[I1-u*(ATA+u*B"B)"'B"Ble(u, k).

Using the generalized singular value decomposition of A and B (see § 2) we have

2
[I-uATA+u’B7B) ™' BTBlx, = —-—x,
[T

fori=g+1,- -, p. Assuming that the theorem holds for k it follows that it holds for
k+1 since

: P . 2 \*
e(u, k+1)=[I-pu*(ATA+u*B"™B)'B"B] Y &< A 2) X;. 0
i=q+1 Qi \M~ T ph;
With this result we can establish bounds on the error in x*) as well as on the
associated residuals b — Ax*’ and d — Bx®.
COROLLARY 4.3. Letm, = u2/(u’+ u?) where u, is the largest generalized singular
value of the pair (A, B) and let A be defined by (2.17). The vectors x'*) generated by
Algorithm 4.2 satisfy

A
(4.3) "x(k) _xLSE"2 § — mk_1 N
2uB, "
K| < A
(4.4) ld—Bx™|, = 2
A _
(4.5) 0=|b-Axisel.—[|b —Ax(k)||2 = 'z'zl-"pmﬁ g
Proof. From (4.2) it follows that
P M Fv% ko
(4.6 e(u, k)= —( )( ) X;.
) (,u, ) i=§+1 Bi 'u”?+#2 ,‘-"x?"'l-l'2

Inequality (4.3) now follows by taking norms in (4.6), invoking the definition of m,
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and using the facts

[lxges -+ -5 X1 =1,
l_gél; i;:l’..- p
Bi By o
and
p 1
pitu®” 2p

Inequality (4.5) likewise follows by taking norms in the expression

p . 2\ k-t
d—Bx®=—-Be(u k)=— ¥ p— (—"—) v
i=q+1pl,ll-?‘*',llv2 ,Uv%'*',“z

and remembering that the v; are mutually orthogonal. Finally, note that

k
b—Ax sg=b—Ax"+ Ae(u, k) =b— AxF + z p,( pi 2) u;.
i<qr1 \pitp
The upper bound in (4.5) is readily obtamed by taking norms. The lower bound follows
upon comparison of

b- AxLSE“Z (uTb)“-+ Z (uTb)u+ Z pil;

i= i=n+1 i=q+1

which can be derived from (2.14) and (2.15), and the expression

2 k
b—Ax"=b— Ax g~ Z p,( ] 2) . 0
i=q+1 oy +Mv
Before passing on to the next section we address a concern of the referee about
the behavior of Algorithm 4.2 when the constraint equation Bx=d is incompatible.
Suppose rank (B) =t < p but that we still have N(A) N N(B) = {0}. This implies that
in the GSVD of A and B everything is the same as before except that

(2.2) VTBX =diag (B1,- -, B,0," -+, 0)€ RP*™".
p—t
The vector
' Td 1 n
(212) Xse= Y o x+— ¥ (ulb)x
i=1 ﬁ On i=t+1

is the unique minimum of || Ax — b||, subject to the constraint that || Bx — d ||, is minimum.
By repeating the above analysis, which amounts to just replacing p with ¢, it is easy
to confirm that x* converges to x5 defined by (2.12").

5. Numerical results and implementation details. The preceding analysis shows
that in principle Algorithm 4.2 converges for any nonzero u. However, the size of u is
of great practical importance. To illustrate this point, we applied Algorithm 4.2 to a
problem in which w;=5,000. The relative error in x'* for various values of u is
tabulated in Table 3.

Note that the iteration cannot substantially improve the accuracy of x(u) unless
m, = u>/(u2+u?) is somewhat less than unity.

As a rule of thumb, we suggest implementing Algorithm 4.2 with the weight u set
to (machep)~"/2 Larger values may be successful but will depend upon the row and
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TABLE 3
M k=1 k=2 k=3 k=4 k=5
10° 10° 10° 10° 10° 10°
10* 107" 1072 1073 1073 1074
10° 1073 107¢ 1078 107! 10714
108 107° 10714 10714 10714 107

column ordering imposed by the QR factorization scheme that is invoked as we
discussed in § 3.

Finally, we mention that we cannot expect greater accuracy in the computed LSE
solution than the condition of the underlying problem warrants. A detailed sensitivity
analysis of x; g using the theory of weighted pseudo-inverses is given in [8]. The results
in this reference confirm what (2.12) suggests: x; ¢ is sensitive to perturbation if 8,
and/or &, is small. Note that the error bounds for x*’ that we developed in § 4 get
worse as B, gets small. This prompts usto conjecture that the improvement iteration
converges slowly only on ill-conditioned LSE problems.

The conditioning issue is important from the standpoint of developing an intelligent
termination criteria for Algorithm 4.2. Let & be a predetermined tolerance. We have
found that the stopping criteria

.1 lld — Bx™||, = 8]| Bllo || xll

works quite well in practice. Proceeding heuristically, (5.1) coupled with (4.4) implies
that

A _
Zmﬁ 1= 8 Blloofl x5,

and so

1
“x(k) —Xpspll=~6— |jB||°o||x(")||2.
By

Thus, ill-conditioning evidenced by a small 8, is taken into accéunt by our method
of termination.

We hasten to add that ill-conditioning in the LSE problem due to a small o,
surfaces when the corrections Ax) are calculated. If @, is small then the matrix R,
in (1.7) will tend to be ill-conditioned thereby contaminating Ax‘*’ with errors of order
machep/ o7 (Recall that in nonzero residual problems, the square of the condition is
involved in the error bound; see Golub and Wilkinson [13].) Hence, the accuracy of
the computed x* depends upon both of the factors 1/ B, and 1/0%.

Note that in a problem with 0=p,« B,_, the correction

2 k
Ax(")=— i &——'u (—-’u'z X
i=q+1 & I"’i+/“l’2 I-‘«?"‘/J«z '

is increasingly in the direction of x,. Thus we obtain the heuristic

ax®)> _ pp
JAx®E V), p2+pu?

2
Cr=
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and the estimate

= [Cklﬂv
? «/l—ci

As an illustration of the effect of terminating on the relative size of |d — Bx/,, we
applied the method to the problem

[0.2498  0.8873 07710  0.91957] [0.40527]
0.8233  0.6996 0.2996 0.6763 0.9185
A | 00545 08812 06295 03206 10,0437
03511  0.0937 02540 0.9563 |’ 0.4819 |’
0.6485 0.6165 0.1797  0.2535 0.2640
[0.6564 0.6907 0.2486 03397 0.4148
_[0.0044 0.0112 0.0086 0.0096 _ [0.2693
_[0.2308 0.5847 0.4503 0.5022}’ _|:0.6326]

In this example, B, =107° and o, =102 The results are tabulated in Table 4 for the
case p =105

TABLE 4
L =By | gy |
I Blloolix*'ll Il ?
2 107" 1073 10*
3 10713 107¢ 104
4 10713 1077 104
5 10" 107° 10*
6 107"° 107" 10*

We close with several remarks concerned with the implementation of the algorithm.
The referee has suggested that it may be advisable to initially reduce A to upper
triangular form via the QR factorization. In particular, if we compute an orthogonal

Q such that
' R n
Q"(A b)=[ f]

0 m—n

n 1

then we can apply Algorithm 4.2 with (A b) replaced by (R s). The matrix Q need not
be saved. The point of this reduction is that the matrix Q, is then of order n+ p rather
than m+ p—a dimension reduction that could be critical in large problems. Another
fringe benefit of this maneuver is that A is “concentrated” into R before the (possibly
contaminating) effects of u are felt.

Focussing further on the large sparse case, we mention that Algorithm 4.2 can be
implemented without storing the orthogonal matrix Q,. This follows because the
correction vectors Ax* satisfy the normal equation

(5.2) (ATA+ u’B"B)Ax™ = 4 2BT8(
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and thus
(5.3) RIR,Ax™M = pu2BTs¥.

Consequently, Ax™® can be found by solving a pair of triangular systems. (Of course,
Q.. is needed to compute x’ =x(u), but it can be multiplied into the right-hand side
(%4 as it is generated.)

We refer to (5.2) as a “semi-normal equation” because the factor R, is stably
determined via orthogonalization. (In “‘ordinary” normal equations, one would find
R, by performing the Cholesky factorization of ATA+ u2B7B.) Unfortunately, the
usual pitfalls of normal equations plague semi-normal equations unless a follow-up
step of iterative improvement is executed. This is detailed in Bjorck [1]. Applying his
recommendations to our situation, we should compute Ax‘® as follows:

RIR, Az® =p?BT6{,

r(k) = (#’:) - (#AB)Az(k),

of uB\T
R:R#Aw(“)=("; ) r,

Ax® = AzF) + Ap®

It can be shown that even in single precision, the Ax® produced in this fashion is as
good as can be expected.

Acknowledgments. The author is indebted to Ake Bjorck and the referee for their
numerous valuable suggestions. !
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