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40 ABSTRACT

The interaction between the signal processing and matrix computation areas is
explored by examining some subspace dimension estimation problems that arise
in a pair of direction—of—arrival algorithms: MUSIC and ESPRIT. We show
that the intelligent handling of these nuinerical problems requires a successful
intermingling of perturbation theory, sensible problem formulation, and reliance
upon unitary matrix methods. *

4.1 INTRODUCTION

Signal processing is an application area that has profited by recent research
developments in matrix computations. In this paper we examine the synergism
between these two fields as suggested by the following diagram:

Per turbation
Theory

Algorithmic Problem
Developme nt Formulat ion

As a vehicle for studying these interactions between computing,
mathematics, and engineering we have chosen to examine selected portions of
the MUSIC and ESPRIT methods for Direction—of—Arrival (DOA) estimation.
The basic problem in DOA estimation is to compute the location of d
unknown signals given the output of n sensors. Various assumptions about the
signals, the noise, and the array geometry must, of course, be made. We
only focus on the interesting linear algebra asssociated with particular
implementations of the two algorithms.

*This work is panialiy supported by ONR contract N00014—83-K-640 and
NSF contract DCR 86-2310.
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In both the MUSIC and ESPRIT procedures the number of signal
sources d is estimated by computing the multiplicity of certain eigenvalues.
Rank/dimension/multiplicity calculations in the presence of roundoff error and
fuzzy data are notoriously tricky and require a good bit of advanced numerical
linear algebra.  This makes the MUSIC and ESPRIT algorithms ideal for
illustrating the more "philosophical” connections betwen matrix computations and
signal processing. '

The order of presentation is as follows. First, we make some general
remarks about perturbation theory and how it can be used in the assessment of
a numerical procedure. For the sake of simplicity, we wuse Gaussian
elimination as an example and discuss the importance of the "nearness to
singularity” concept. Unitary matrix methods are then shown to be crucial to
the intelligent handling of various rank determination problems. The singular
value, CS, and Schur decompositions are stressed. After this "trip" into
numerical linear algebra we focus on the MUSIC and ESPRIT computations
and discuss aspects of their reliable implementation.

Our coverage of these DOA estimation methods is by no means
conclusive. There are a few new results but many interesting MUSIC/ESPRIT
research questions remain. And again, we are merely using these techniques
to dramatize the value of "unitary matrix methodology” in signal processing.

4.2 PERTURBATION THEORY AND ALGORITHM ASSESSMENT

Developing an effective algorithm for a problem and understanding the
associated perturbation theory go hand—in—hand in scientific computation. We
review various stability/perturbation concepts in the simple setting of linear
equation solving. The quality of a linear equation solver cannot be assessed
without an understanding of Ax = b sensitivity. How does x change if the
elements of A and b are perturbed? An elementary perturbation theory (c.f.
Golub and Van Loan (1983, p. 24ff)) tells us that if (A + AA)(x + Ax) =
(b + Ab) and both ||AA2H/||Aﬁ2 and ||Ab||2/||b||2 are O(g) with € << 1, then

H) ' | Ax ”2 v € Ky(A)
=T, 2

Here x)(A) = [All, ||A'_1 ll, is the 2-norm condition of A with respect to
inversion. It is easy to show that KZ(A) > 1 (always) and that as A gets

"close" to being singular, A_'1 and KZ(A) blow up. The heuristic (H) says
that O(g) changes in the data A and b usually induce O(e-lcz(A)) changes in

the solution x.

_ This result can be used to analyze the floating—point performance of
Gaussian elimination with pivoting. In particular, if a system Ax = b is
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A
solved by this method, then the computed solution x exactly solves a "nearby"
problem in the sense that

A
(E) A+Ex = b IEl, = u [|All,

where u is the machine precision. This shows that the method is stable, i.e.,
the algorithm does not compound the underlying mathematical sensitivity of the
N :

problem. This does not imply that x is accurate for if we interpret (E) using
(H) then the best thing we can say about Q‘s relative emror is that
||Q - x||2/||x[|2 ~ u Ky(A). A stable lincar equation solver such as Gaussian
elimination with pivoting cannot be faulted for producing inaccurate results if
the matrix A has a large condition number relative to the machine precision u.

For many of the basic problems in linear algebra, the
perturbation/condition number theory has been worked out and provides a lot of
practical guidance -in the assessment of algorithms and computed results. See
Goléxb and Van Loan (1983), Stewart (1973), Stewart (1977), and Van Loan
(1987).

43 RANK DETERMINATION AND THE SINGULAR VALUE
DECOMPOSITION

In the linear equation problem a central issue concerns nearness to singularity.
More generally we have the problem of estlmatmg the dimension of rectangular
matrix - range, i.e., rank. From the perspecuve of pure mathemaucs, the notion
of matnx rank is very crisp:

If Ae C™ and m > n, then A has rank n if and only if it has
n . independent columns. ‘

Full column rank is a yes—no, 0—1 proposition. Either a matrix has it
or it does not. Unfortunately, fuzzy data and inexact arithmetic complicate the
practical treatment of rank. Special tools are needed and one of the most
useful in this regard is the singular value decomposition (SVD).

THEOREM 1 (SVD)

If A € cmxn (m > n) then there exist unitary U & cmxm
and V € C™ guch that UHAV = 2 = diag(6; ... ©)
where 6y 20y 2 .. 20 2> 0. The O, are called the

singular values. The columns of U and V are referred to as
the corresponding left and- right singular vectors.

PROOF
See Golub and Van Loan (1983)
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Ql. How close is a matrix to one of lower rank?
Al If A has singular values
O 2 .. cr>cr+1=...=cn=0

then rank(A) = r and

min |IA - B|l, = 6.
rank(B) < r 2 r+l

In particular, if A e ™ s nonsingular then o, is the
distance to the set of singular matrices.  Thus, 1/1<2(A) =

oo, = o / ||A||2 is a relative measure of neamess to
singularity.

Q2. What is the range and null space of a matrix?

A2, If U = [u1 youes um] and V = [v1 yaes vn] are

column partitionings of the left and right singular vector

matrices and rank(A) = r then Null(A) = span{vr_’_1 rores vn}

and Range(A) = span{u1 yeaes ul_}

Q3. How close are two k—dimensional subspaces of ct 2
A3, Suppose the n—by—k matrices Y = [y1 yovens yk] and
Z = [z1 e zk] have orthonormal columns and that
S1 = Range(Y) and 82 = Range(Z). If G, 2 .. 2 O are

the singular values of YHZ then

dist(S,,S,) = min ly — 2|5 = I 1—()'2
12 yeSl, zeS2 2 1

Izl =1

Q4. How close are two matrices to having a common
null vector?

51

The SVD provides quantitative answers to a number of important questions that
arise in practical signal processing work.
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A4, If A and B are mxn matrices and 6p 2 .. 2 0

are the singular values of

o~ [2]

then there exist matrices E, and Ep satisfying IIE ally
”EB”2 <0, with the property that

NullA + E,) n NullB + Eg) # {0}

Proofs of these and other SVD properties can be found in
Golub and Van Loan (1983).

44 COMPUTING THE SVD

There are a number of ways to compute the SVD. The most important for
us is the Golub—Reinsch (1970) procedure which is a derivative of the
symmetric QR algorithm. It stably exploits the connection between the SVD

of A e C™" and the n—-by-—n Hermitian eigenvalue decomposition
UH(AHA)U = ZHZ Implementations may be found in the software packages

LINPACK and EISPACK. In either instance the computed {\J and <\/ are
"unitary” to machine precision u meaning that

H

AHA
O =1yl « 19

A

| U V-1l =~ u
One can also show that the computed singular values are the exact
singular values of a matrix A + AA where [AA]l, = u”A||2. From this

A
result it is possible to show that the computed singular values O satisfy

A
oy, — ol = u-o k = Iin

This implies that the SVD is guaranteed to detect near rank—deficiency
in practice. That is, if A 1is close to rank deficient then Gn/O'l and its

computed analog 3 n/Sl would be small in an order of magnitude sense.

Other methods can be used for SVD computations. If A is sparse
then the Lanczos algorithm may be of interest. (See Golub, Luk, and Overton
(1981).) In multiprocessor environments the block Jacobi method has exhibited
some potential. (See Bischof (1986a, 1986b) and Van Loan (1986).) If just
the smallest singular value and associated singular vectors are required, then
inverse iteration can be effective. (See Van Loan (1987).)
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Throughout this paper we tacitly assume that all SVD computations are
performed with the LINPACK implementation of the Golub—Reinsch algorithm.

45 UNITARY MATRIX METHODS

The SVD algorithm is but one member of the unitary matrix method family.
As we show in subsequent sections, the intelligent handling of numerical rank

usually involves use of these methods in conjunction with the SVD.

summarize them for later reference.

0))

@

(€))

@

QR FACTORIZATION

mxm
C

If A e C™ then there exists a unitary Q € such

that QHA = R is upper triangular. This is effectively
Gram—Schmidt orthogonalization. If A = [al,...,an] has rank

n and Q = [ql,...,qm] then span{al,...,ak} = span{ql,...,qk},
k = 1in

SCHUR DECOMPOSITION

If A e C™ then there exists a unitary Q € C™™ such that

QHA Q = T is upper triangular. The diagonal of T is
made up of A's eigenvalues. If Q = [ql,...,qn] then

span{ql,...,qk} is an invariant subspace associated with the
eigenvalues tll""’tkk'

HERMITIAN SCHUR DECOMPOSITION

If A e C™" js Hermitian then there exists a unitary
Qe C™ such that QA Q = D = diag (Aph). If
Q= [a;,» q,] is a column partitioning then Aq = 19K
k=1:n.

GENERALIZED SCHUR DECOMPOSITION

If AC e CTuXI (m1_>_ n) and BD € CmgXn (mz > n) then
there exist unitary QU,V, and Z of appropriate dimension
such that the matrices T A = UHAQ and TB = VHBQ are

lower triangular and the matrices Te = UHCZ and

We
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T, = VIIDZ are upper triangular. S
D = pper triangular. Since
QMafle - 8Dz = 1,51, - ATgMTy it follows  that
this matrix is singular whenever A = oY,/ Bisi where the o,
Py v, and B, are the diagonals of T,, Tp Tc and T
respectively.
(S) CS DECOMPOSITION
If
0= | ™
Q| m
n
satisfies QHQ =1 and m,; and m, are each larger than n,

n 1
then there exist unitary U, e cXmy U2 e C™2XM2 | and

V e C™® gsuch that
H

U, 0 Q 1Y c
0 U, Q, = [ S }
where
C = diag( cos(el) yeues cos(en) )
S =

diag( sin(el) yores sin(en) )

The QR factorization is implemented in LINPACK. The Schur and Hermitian
Schur decompositions are part of EISPACK as is the generalized Schur
decomposition for the special case A = B =1 " ie, the problem Cx = ADx.

‘An algorithm for the generalized Schur decomposition is discussed in
Van Loan (1975). The CS decomposition is described in Davis and Kahan
(1970), Stewart (1977), Paige and Saunders (1981), Stewart (1983), and Van
Loan (1985). Algorithms are given in the last two references. Note that it
amounts to a pair of SVDs.

4.6 THREE EXAMPLES OF PRACTICAL RANK/SUBSPACE DIMENSION

DETERMINATION

The CS and generalized Schur decompositions turn out to be quite important
in our discussion of the MUSIC and ESPRIT methods. Before we pursue this,
we step through some simpler practical problems that illustrate the value of
unitary matrix methods in subspace dimension estimation.
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@ EIGENVALUE MULTIPLICITY

It is often necessary to deduce the multiplicity of a computed
eigenvalue. Suppose A is 2-by—2 and that a unitary matrix Q is found with
the property that

QHA+EQ = T =
O A

A1
IE[l =~ ullA]
2

where u is the machine precision. This says that the computed eigenvalues
}‘1 and 12 are the exact eigenvalues of a matrix near to A. (The eigenvalue

routines in EISPACK permit one to make such statements.) Under what
conditions may we assume that the original A has a repeated eigenvalue? A
possible criterion is

|7‘1 - A < ufAf
However, it is not hard to show that if |k1 — k2| = g << 1, then
_ 2
o,(A —XII) = 0.
It then follows from SVD theory that ll is a multiple eigenvalue of a

matrix A + AA with [|AA[, = 0(82). Thus, A could be a lot closer to a

defective matrix than the mere inspection of the computed eigenvalues reveals.
A more reasonable criterion for eigenvalue multiplicity in the n = 2 case
would be

2
Ay — A7 < ullAfl

The role of the SVD in eigenvalue multiplicity determination is
discussed in Golub and Wilkinson (1976) and Kagstrom and Ruhe (1980).

® RANK DEFICIENT LEAST SQUARES SOLUTION

It can be shown that if UBAV = 3 is the SVD of A with
U = [ul,...,um] and V = [vl,...,vn], then

T
s = ) (o /o v, r = rank(A)
k=1

is the minimum 2-norm solution of the least squares problem:

min ||Ax—b||2Aemen,beCm,m2n

i, R, ,'J
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The associated minimum residual is then given by

H
PLg = ||AxLS - b||2 = | lug »or 0 JD ||2

In general, computed singular values are never exactly zero and so we need
A
some procedure for computing an estimate r of the rank r. One possibility is
A
to let r be the largest integer so that '

O, 2 €0
r

where € is some small parameter that may depend upon the machine precision
and/or the accuracy of the data. With this criterion,

A
r

A T A A
g = ) (@ boY Vi
k=1
can be regarded as a reasonable approximation to the true X g Here, the

"hat" notation is used to designate computed quantities. ~Whether or not this
is an appropriate way to address a near rank deficient least squares problem
depends upon the application. However, with the SVD of A available, the

A
ramifications of an individual r choice can be readily explored.

© SYSTEM CONTROLLABILITY |

Suppose we are given the system

D) X = Ax() + u(®-b x(©) = x,

where A ¢ R™™ b e R", x o € R Is it possible to find a control function

u(t) such that x(T) = X where Xp € R" is some desired "state" that we

wish the system to be in at time T > 0 ?  Clearly, this may not be
possible. For example, if b = 0 then it is impossible to "control" the
x—vector as required. @ More generally, if the above problem is to have a
solution then b must not be deficient in certain directions that can be defined
in terms of A's eigensystem. Here are two of the many ways that the
"controllability” of (S) can be characterized:

The system (S) is controllable iff W, = [b, Ab, A, ..., AM Ny s
nonsingular. '
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t
The system (S) is controllable iff W, = f eAlbple
0

T
Atdt

is nonsingular.
These are "0-1", yes—no characterizations. Our intuition tells us that if either
W1 or W2 are nearly singular, then (S) must somehow be "hard" to control.

The situation is thus ripe for singular value analysis. The smallest singular
value of either W, or W, may be taken as a measure of how close the

system (S) is to being uncontrollable. The use of SVD and related techniques
in computational control theory has led to a healthier engineering perspective.
Tools now exist for measuring things like neamess to uncontrollability that can
assist in the design of robust systems. The spirit of numerical  linear algebra’s
role in control theory is very well illustrated in Paige (1981).

4.7 THE MUSIC PROBLEM

The MUSIC procedure is due to Schmidt (1979, 1981, 1986). We assume
that the vector x € Clof received waveforms satisfies

X = Af+nx

where A € Cnxd is a function of the arrival angles and array -element

locations, f € Cd is the vector of incident signals, and n_ € C® is the noise.
If

S1 = E(xxH.) (signal+noise covariance)
82 = E(nxan) (noise covariance)
P = E(ffH) (incident signal covariance)

then it is easy to see that

_ H
S1 = APA™" + S2

The idea behind MUSIC is that under reasonable assumptions we can
characterize the number of signals d in terms of the generalized eigenvalues of
§, - XSZ. :

THEOREM 2

Let S, € C™ and P ¢ C9 be Hermitian positive definite

matrices and assume S1 = APAH + S, where A ¢ C" xd

2
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has rank d. Then A
polynomial p(A) = det(S,

1 is the smallest zero of the
XSZ) and it has multiplicity n—d.

PROOF
If Slz = 7\.822 with 0 # z € C" then
Msz = M, + aPAF):z = 2 s
H H H
Thus, A = 1 + z (APA )z / z Szz. It follows that A = 1

ieft AHz = 0. Since dimNulltAHA)) = n—d it follows that
A = 1 has multiplicity n—d.

After the number of signals d is computed in MUSIC, the DOA's are
found by solving a nonlinear minimization problem that requires orthonormal
vectors z d+1  Zn such that

o) span{z; ... Zn—d} ={ x| S;x = )‘minszx }

In practice we must estimate the covariance matrices S1 and S2‘ To this end
we assume that a "signal-plus—noise” matrix AS and a "noise alone" matrix
AN have been collected such that

ASHAS ~ Ex-«) = apaP 4 E(nxan) ~ APAH + A HA

N N
The generalized eigenvalue computations now become generalized singular value
computations. In particular, we must compute an orthonormal set {zd 175 n}
such that

: _ H, _ . H
o) span{zd+1,...,zn} = {x]AS Asz ~ xminAN ANz}

- . _ H H

where A min 1S the smallest root of p(A) = de_t(AS AS - XAN AN).
Recognize (M) as an approximation to (M). The "~" is necessary because
ASHAS ~ S, and ANHAN ® S, and A min Tught not be repeated. Before

we show how to cope successfully with these approximations, it is instructive
to examine what may be called an "eigenvector approach” to (M).

4.8 MUSIC AND THE GENERALIZED SINGULAR VALUE PROBLEM
Generalized singular value problems of the form

H H
AS Asx = 7\.AN ANx
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have a number of nice properties that we state without proof.

THEOREM 3

If Ag € Cm (my 2 n) and Ay € C2XM (m, > n) then

nxn

there exists a nonsingular X € C such that
H , H, .
X (AS AS)X = dlag(oc1 yorey QL n) = DS onkZO
and
xHa HA )X = diag(B B) =D B, 20
N ANA T dag0) s By = Vg k=
PROOF

See Golub and Van Loan (1983, p.314)

The quantities J o / Bk are called the generalized singular values of the
pair {AS,AN} and the columns of X the associated generalized singular
vectors. Note that if X = [x1 T 4 n] is a column paritioning, then

B AAOX, — 0 (AnAX, = 0 k=1:n
ks Ag%k T %IAN ANk

Let's assume that all the Bk are nonzero. It follows that if )"k = (OLk/Bk)2
then (Aq'Ag ~ MA

NHAN)x = 0. One approach to (M) would be to
proceed as follows: :

(@ Find X and order the columns so that the )‘k = OLk/Bk range
from large to small.

(b) Determine d such that }‘d > ln+ £ 2 ;‘d+1 sl 2 )‘n 2 0 for

some small tolerance €.
©) Compute the QR decomposition ZR = [xd 41 e X n]. The

columns of Z form the desired orthonormal basis.

The "standard" methods for computing X are all flawed and are instructive to
look at. Again we assume that A has full rank which guarantees nonzero B.
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METHOD 1

1. S, = A I_IA ;0 S, + A HA /¥ Form cross—products:
" 91 T As s 0 %2 N “N P :
2. 8, = LLH /* L = Cholesky lower triangle
3. Solve: LW = S, ; LC = WH mc=rls L H

H~~ _ oA * ‘o Ho _

4 QCQ = DS = dlag(ak) /* Compute C's eigensystem, Q 'Q = 1
5. Solve: LHX = Q /< D=1
: : N n

This method is of dubious quality in that if AN is nearly rank deficient then

C will be highly contaminated with error. This makes it impossible to compute
the small eigenvalues accurately. These are precisely the eigenvalues of
interest in MUSIC.

METHOD 2

1. §, = A HA : S4 - A HA /¥Form cross—products:
© 01 s s ¢ V2 N 2N P :
2. 82 = U2DU21—I , D= diag(kl) /* Hermitian Schur decomposition
3.y - 2 c - Yy M YOS,y = 1
4. QUcqQ = di x s e Hy.
. Q = 1ag(oz1 yeees an) /* Compute C's eigensystem, Q Q=1
50X =YQ ; /"‘DN=In

This is similar to Method 1 except that ill-conditioning in AN is immediately
identified because the eigensystem of 82 is obtained. C will again be very
poorly determined if 82 is nearly rank deficient.

METHOD 3
H .
1. U2 ANV2= dlag(ck) /* SVD

2. Y « V2 diag(l/(:1 yees llon)
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3. Ag ~ AgY m YHs y = 1
7S S 2
4. uHav, =D /% SVD
R S\ |
5 X - YV /D =DID; Dy =1
: 1 S > N n

The only difference between this and Methods 1 and 2 is that the cross
products ASHAS and ANHAN are avoided. It is well-known that a

significant loss of information can occur in numerical cross products. That is
why the method of normal equations is often unsatisfactory when solving least
square problems. That is why the singular values of a matrix A are not

obtained by computing the eigenvalues of AHA. See Golub and Van Loan
(1983, pp. 143-289).

The point in presenting these three methods is to see how vulnerable
the MUSIC computations are to rank deficiency.  Unfortunately, near rank
deficiency in AN is not unusval. It is sometimes possible to circumvent this

| by interchanging the roles of AS and AN in the above and hoping that the
columns of AS are strongly independent. Instead of pursuing this line we
present a method that doesn't care so much about near rank deficiency in the

data.
49 A COMPLETELY UNITARY APPROACH TO MUSIC

The following approach to problem (MY is proposed in Speiser and Van Loan
(1984).

METHOD 4

1. Compute the QR factorization
A

@
- | o

where Q; and Q2 have the same size as As and AN respectively and

N

Re C™ js upper triangular.  Assume that R is nonsingular, ie., that
Null(Ag) n Null(Ap) = { 0 }.

2. Compute the CS Decomposition

HEER

A
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where Ul’ U2, and V are unitary, C = diag(cos(ek)), and S = diag(sin(ek))

with 0 < 8, < --- €8 < 2 It follows that if X = RV then

H

XH(ASHAS - uZANHAN)X = cHe - asHs and so the generalized singular

values are specified by He = ctn(ek).

A
3. Define d by c, >€ +¢c_ 2¢, 2 .-+ c_ 20 where ¢ > 0 is a
n d+1 n
small positive tolerance. Here, o = cos(ek).

4. Compute the QR factorization of the product ZT = RHV where Z

nxn

[zl yoees zn] is unitary and T € C

Xx = Rl = viRy ! = @Iv)T - (@) = z1H and TH i
lower triangular, it follows that span{z, ..., z } = span{x, ,..x n}.
d+1 d+1

is upper triangular. Since

n

A
Note that both d and the basis {z, ey Z n} are found without any
d+1
inversions or cross—products, the computations that undermine the reliability of
Methods 1-3. Moreover, Method 4 is not prone to the sensitivity of the
eigenvectors {x, ey X n}. It is possible for an eigenspace to be
d+1
well-conditioned even though the eigenvectors that define it are not. This is
a common theme in many applications that require a basis for an eigenspace.
Orthonormal bases are usually preferable to eigenvector bases from the
numerical point of view. This is why the Schur decomposition is preferable
to the Jordan decomposition when doing invariant subspace computation.

We conclude with a result about what Method 4 actually computes in
A
light of the tolerance that is used to define d.

THEOREM 4

The vectors {z, yores zn} produced by Method 4 exactly
d+1
span the minimum singular value subspace for a problem

ASHKS - MNHKN where

2
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PROOF

Define C = diag(cos(@k)) and S§ = diag(sin(@k)) where
] i < d 6 = 0 i d
k = Gk if k £ d and k = 9 18 k > d Set

Ag = UICVHR and K = U2§VHR. Since
- B H
Ay — Ag = UI(C —C) VYR
and
. _ H
Ay — Ay = U2(§ —-S)V'R
it follows that
A A € -0
S TS ) = VAR|| < g|R|l,
A Ay S -9

2

Thus, if MUSIC is implemented using Method 4 it solves a "nearby problem"
exactly.

410 THE ESPRIT PROBLEM

ESPRIT avoids the nonlinear minimization in MUSIC. It does this by
comparing output x and y from a pair of sensor arrays (X and Y), one a
translate of the other. Details may be found in Paulraj, Roy, and Kailath
(1986) and Roy, Paulraj, and Kailath (1986). A comparison of the MUSIC
and ESPRIT procedures can be found in Roy, Paulraj, and Kailath (1987).

In ESPRIT the output of the two arrays is modelled as follows:
x(t) = A st) + nx(t)

y(t) Ads(t) + ny(t)

X
s(t) € Cdxd is the vector of source signals, and @ 1is a diagonal unitary
matrix whose diagonal entries are easy functions of the DOAs. Under certain
assumptions we have

where (it can be shown), A € " Xd, n_ and ny are the noise vectors,

Syx = Ewx) = AsaH + o1
Syy = Ew™ = aosoaM i o%
Syv = ExyH = asolal

XY
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In ESPRIT, the computation of @® is based upon the following result.

THEOREM 5

Suppose A € Cnxd has rank d, S € Cdxd is Hermitian

positive definite, and @ ¢ C¥4 1 5. = asaH 4+ oK

and SYY + A(DS(DHAH + (I)zI then <I>2 is their smallest

eigenvalue and in either case it has multiplicity n—d.
Likewise if V = [vl yeeey V n] is unitary with

SXXvk = (I)?‘vk k = d+l:n
then AHV = [BI_I O] where B € CdXd and thus,

BsBH+o?1 4 0

H
vBs . v =
XX
0 I,
and
BosolBH+o1 0
vis v = d
YY 0 o1
n—d
If Sy = ASOHAM then
. ssolgH ¢
Vs v =
0 0

There are d complex numbers Xl"“’)”d for which
rank(Syyc — 1) — AS,) = d-1

and these are precisely the A that make BsaH _ apsoHpH
= BSA - A0%BY singular.
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PROOF

If Syxv = Av with vll, = 1, then & = vFiasaH + oZnyy

= ¢ + (AHyHs@Aly). It follows that o is the smallest
eigenvalue of SXX and that it has multiplicity n—d =

dimNull(A™). 1 SyxV = 6% then v e Null(AM®). Thus,

if V = [vl,...,vn] e C™0 g unitary with span{vd+1,...,vn} =

Null(AH), then AHV has the form specified in the hypothesis.

The rest of the proof is straight forward.

In ESPRIT, @ is diagonal and so we may take @ = diag(kl,....,kd) where A

= A,k forces rank ((Syy — 021) - ?"SXY) = d-1

If the matrices SXX ’SYY , and SXY are known exactly then there

are several ways to compute ®:

METHOD El

” s . ~
1. Compute the Hermitian Schur decomposition of SXX : VvV SXXV = D.

Since A = 02 is an eigenvalue of multiplicity n—d we may assume
diag(c)) O d
VvV =
XX 0 o1 | nd

d n—d
IfvVv-= [vl,...,vn] it fol.lows that span{vd+l,...,vn} = Null(A™).

vHs

2. Compute W = VHSXYV which must have the form

H Wy 0 d
Vv SXXV =
0 0 n—d
d n—d

3. Compute kl,...kd such that det(diag(oﬁ - 02 ) — kall) = 0 for k=1
and set @ = diag(kl,...,kd).
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METHOD E2

1. Compute the Schur decomposition of SXY : QHSXYQ = T. Since this
matrix has a null space of dimension n—d we can chose Q such that

T 0, d
0 n—d
d nd

Note that if Q = [ql,...,qn] then span{qd+1,...,qn} = Null(AH).

2. Compute QHSXXQ = W which must have the form

Fs.o - w, 0 |d
XX 0 o2l | nd
d n—d

3. Compute A;,..Ay such that det(W,; — o) — AT;)) = 0, k=lud.
Set & = diag(ll,...,ld)

METHOD E3

Essentially the same as Method El, but with Syy replacing SXX'

Thus, the approach taken in all these methods is to factor out the common
null space Null(AH) and solve the remaining d—by—d generalized eigenproblem.

In practice, a great deal of care must be exercised because we will
only have approximations to SXX , SYY and SXY‘ Indeed, if we collect m

snapshots and form the matrices

Ay = () Ktpext ) 1T e ¢
then
Ay = (@) [yp..yty) 1T e C™
H, H, . H,
then AX AX ~ SXX , AY AY o SYY , AX AY ~ SXY . The trouble

now is that we must now factor an approximate nullspace out of the
approximate problem

H H
AyTAy - o’D — My Ay
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Generalized eigenvalue problems of the form A — AB where A and B have
nearly intersecting nullspaces  (the [ESPRIT situation) are notoriously
ill—conditioned and great care must be exercised.

411 A SINGULAR VALUE APPROACH

This corresponds to Method El. Note that if
H =
xVx = X%

UXA

diag(oy )

is the SVD of AX and

v

.2
Op > e+ 0y 2 O 2

[e) =g .
ax dr1X nX = “minX

where € is a small tolerance, then the corresponding columns of VX are an

approximate basis for Null(AH):

H
span{v wVo v~ NullA™)
drx X

This is because AXHAX * Syy = ASAH 4+ o, Likewise, if
v AV, = = diag(o, )
y AyVy = Zy = diag kY
is the SVD of AY and

> ...

v
Q

[¢) > €+ 0 2 O
ay Y d+1,Y mY

then

H.
span{v woVo vl ¥ Null(A™)
d+,y Y

Unfortunately, these two singular vector approximations to Null(AH) may differ,
even in their choice of d. A way around this difficulty that assigns "equal
weight" to the X and Y data is to compute the intersections of the subspaces

span{v' woV )} N span{v sV vl
drx X dery Y




v
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for various values of d and settle on that value that gives the largest possible
dimension. Subspace intersections can be computed using the SVD, see Golub
and Van Loan (1983,p.430.). Moreover, if we have

A
v Hy v = | Y V2| d
T S -4
21 Y22 | ™
A A
d nd
and ||V ,]lgp = 8 , then span{v wsV, v} and span{v eV vl
- 127F drx X dr1y Y
are "within &" of being the same subspace. This follows from CS§
decomposition theory. Here, || - ||z  denotes the sum—of-squares norm.
Note how easy it is to compute ||V ,llz as a function of d. This could be
used in an intelligent way to compute the critical basis for Null(AH).

Once we have unitary V = [vl,...,vn] with span{v, ,.,v.} =
d+1 n

Null(AH) and as an estimate 32 of 0'2, say 32 = o, ,Xz’ then our problem
transforms as follows

H . H H A H H _
vH a Hu u Hay - 1) — o u A vo=

X

H H

sHB 21 Ejp | | B C Fp,
Eyy  Exp Fyy Fp

Here, B and C are the upper d-by—d portions of Uy A,V and UyPALV
respectively and the E.. and Fij are small in norm. How small depends upon
the quality of the approximations span{v a1 n}. There remains the problem
of solving the d—by—d eigenproblem

defBB - o?1) — ABHC] = det® + oD@ — o) — ABHC] = 0

where B is Hermitian matrix that satisfies B2 = BB, This can be found

- H, _ H
from the SVD B = UBZ‘BVB : Just set B = VBZ‘BVB \

To avoid cross products and inverses, the above determinantal equation
could be solved using the technique in Van Loan (1975) that computes the
generalized Schur decomposition described earlier. In general,the computed A
will not be on the unit circle as they should be in theory. Thus, it is
plausible to set @ = diag(arg()»k)).
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Although this procedure relies on unitary matrices throughout, we have
been unable to show that this implementation of ESPRIT computes the exact
DOAs of a "nearby” problem.

4.12 A GENERALIZED SCHUR APPROACH

We next outline a unitary matrix approach to the ESPRIT problem that
corresponds to Method E2.

1. Compute unitary Q and V such that

Ha

H
Q AYV

H
V7A

]
-]

]

are upper triangular. Note that VHAXHAYV =TS = R e C™" s the Schur

decomposition of AXHAY and so V can be chosen to order the eigenvalues
from largest to smallest in absolute value.

It is possible to do this without forming AXHAY using the algorithm
in Van Loan (1975). Determine 3 so that

Itanl = ISaatanl > Ir | +€=[s_ t | + €2 |s .t |
33 33 33 nn nnnn 3+1,3+1 3+1,3+1

where € is a small tolerance. Note that if V = [vl,... \Y n] then

span{v ,..v ) = Null(AP).
d+1

2. If UH(AXV) is upper triangular, then it has the form

A
W 0 d
H 11
U'(AyY) o
X 0 0'2 I n—ﬁ
3. Compute the generalized eigenvalues of the problem

(Wll + ol (Wll — o) — A S(1:d,1:d)- T(1:d,1:d)

using the algorithm in Van Loan (1975) and set @

diag(arg(A))-

Here W11 is a Hermitian matrix that satisfies WI% HW

Wir Wir
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As with the singular value approach, we are not able to show that this
implementation of EPRIT solves a nearby problem. Thus, the stability
properties of ESPRIT are unclear to us although good unitary methods exist
for the computations.

4.13 CONCLUSIONS

We have shown how the difficult subspace dimension estimation problems in
MUSIC and ESPRIT can be handled. In the case of MUSIC, we are able to
show that the computed DOAs are exact for "nearby data”. This shows that
the method is stable.

ESPRIT is conceptually much simpler,but involves a trickier eigenvalue
computation. More research is necessary to examine how the ESPRIT DOAs

are effected by the choice of d and the computed basis for Null(AH). In the
mean time, simulations suggest that ESPRIT is pretty reliable, prompting us to
conjecture that there is a favourable perturbation analysis of the method that
awaits discovery.

4.14 REFERENCES

1. C. Bischof (1986a), "A parallel ordering for the block Jacobi method
: on a hypercube architecture”, Comell Computer Science Technical
Report TR 86-740. .

2. C. Bischof (1986b), "Computing the singular value decomposition on a
distributed system of vector processors”, Cornell Computer Science
Report TR 86-798.

3. R. Brent, F. Luk, and C. Van Loan (1985), "Computing the singular
value decomposition using mesh—connected processors”, J. of VLSI and
Computer Systems, 1, 242-270.

4. C. Davis and W.Kahan (1970), "The rotation of eigenvectors by a
perturbation III", SIAM J. NUMER. ANAL., 7,1—46.

5. J. Dongarra, C.B. Moler, J.R. Bunch, and GW. Stewart (1979),
LINPACK User's Guide, SIAM Publications, Philadelphia.

6. G.H. Golub and C. Reinsch (1970), "Singular value decomposition and
least squares”, NUMER. MATH., 14, 403—420.

7. G.H. Golub, F.T. Luk, and M. Overton (1981), "A block Lanczos
method for computing the singular values and corresponding singular
vectors of a matrix", ACM TRANS. MATH. SOFT., 7, 149-169.

8. G.H. Golub and C. Van Loan (1983), MATRIX COMPUTATIONS,
Johns Hopkins University Press, Baltimore, Md.

9. G.H. Golub and J. H. Wilkinson (1976), "Hl—conditioned eigensystems
and _t6he computation of the Jordan Canonical Form", SIAM Review, 18,
578-619.




Matrix Computations and Signal Processing 71

10.

11.

12.

13.

14.

15.

16.

17.

18.

19,

20.

21.

22,

23.

24,

B. Kagsrom and A. Ruhe (1980), "An algorithm for the numerical
computation of the Jordan normal form of a complex matrix", ACM.
Transactions on Mathematical Software, 6, 398—419,

C.C. Paige (1981), "Properties of Numerical algorithms related to
computing controllability”, /EEE Trans. Auto. Cont., AC—26, 130-138.

C.C. Paige and M.A. Saunders (1981), “Towards a generalized singular
value decomposition”, SIAM J. NUMER. ANAL., 18, 398-405.

A. Paulraj, R. Roy, and T. Kailath (1986a), "A subspace rotation
signal parameter estimation", Proc. of the IEEE, 1044-1045.

R.Roy, A. Paulraj and T. Kailath (1986), "ESPRIT— a subspace
rotation approach to estimation of cisoids in noise", IEEE Trans.
Acoustics, Speech and Signal Processing, ASSP—34(4).

R. Roy, A. Paulraj, and T. Kailath (1987), "Comparative performance
of ESPRIT and MUSIC for Direction—of—Arrival Estimation", Proc., Int'l
Conference on Acoustics, Speech and Signal Processing, Dallas, TX,,
2344-2347.

R.O. Schmidt (1979), "Multiple emitter location and signal parameter
estimation”,  Proc. RADC Spectrum Estimation Workshop, Griffiths
AFB, NY.

R.O, Schmidt (1981), A signal subspace approach to multiple emitter
location and spectral estimation, Ph.D. dissertation, Dept. of Electrical
Engineering,Stanford.

R.O. Schmidt (1986), "Multiple emitter location and signal parameter
estimation”, IEEE Trans. on Antennas and Propagation, AP-34,
276-280.

J. Speiser and C. Van Loan (1984), "Signal processing computations
using the generalized singular value decomposition”, Proc. of SPIE, Vol
495, SPIE International Symposium, San Diego, August, 1984.

G.W. Stewart (1973), "Error and perturbation bounds for subspaces
associated with certain eigenvalue problems”, . SIAM Review, 15,
727-764.

G.W. Stewart (1977), "On perturbation of pseudo—inverses, projections,
linear least squares problems.” SIAM Review, 19, 634—662.

G.W. Stewart (1983), "An algorithm for computing the CS for a
partitioned orthonormal matrix", NUMER. MATH., 40, 297-306.

C. Van Loan (1975), "A general matrix eigenvalue problem", SIAM J.
NUMER. ANAL., 12, 819-834.

C. Van Loan (1976), "Generalizing the singular value decomposition”,
SIAM J. NUMER. ANAL., 13, 76-83.




72

25.

26.

27.

28.

Selected Topics in Signal Processing

C. Van Loan (1984), "Analysis of some Matrix Problems using the CS
Decomposition”, Comnell Computer Science Technical Report TR
84-603.

C. Van Loan (1985), "Computing the CS and generalized singular
value decompositions”, NUMERISCHE MATHEMATIK, 46, 479—491.

C. Van Loan (1986), "Computing the singular value decomposition on
a r1ing of array processors”, in LARGE SCALE EIGENVALUE
PROBLEMS, J. Cullum and R. Willoughby (eds), Elsevier, 51—66.

C. Van Loan (1987), "On estimating the condition of eigenvalues and
eigenvectors”, Lin. Alg. & Applic.; 88/89, 715-732.




