
SHIFTED KRONECKER PRODUCT SYSTEMS ∗

CARLA D. MORAVITZ MARTIN † AND CHARLES F. VAN LOAN ‡

Abstract. A fast method for solving a linear system of the form (A(p) ⊗ · · · ⊗ A(1) − λI)x = b

is given where each A(i) is an ni-by-ni matrix. The first step is to convert the problem to triangular
form (T (p)

⊗ · · · ⊗ T (1)
− λI)y = c by computing the (complex) Schur decompositions of the A(i).

This is followed by a recursive back-substitution process that fully exploits the Kronecker structure
and requires just O(N(n1 + · · ·+np)) flops where N = n1 · · ·np. A similar method is employed when
the real Schur Decomposition is used to convert each A(i) to quasi-triangular form. The numerical
properties of these new methods are the same as if we explicitly formed (T (p) ⊗ · · · ⊗T (1) − λI) and
used conventional back-substitution to solve for y.

Key words. Linear Systems, Schur decomposition, Back-substitution, Kronecker products

AMS subject classifications. 15A06, 65F05, 65G50

1. Introduction. Matrix problems with replicated block structure abound in
signal and image processing, semidefinite programming, control theory, and many
other application areas. In these venues fast algorithms have emerged that exploit
the rich algebra of the Kronecker product. Perhaps the best example of this is the
fast Fourier transform which can be described using the “language” of sparse, matrix
factorizations and the Kronecker product. This operation is surfacing more and more
as cheap memory prompts the assembly of huge, multidimensional datasets. When
techniques for problems of low dimension are generalized or “tensored” together to
address a high-dimensional, multilinear problem, then one typically finds a computa-
tional challenge that involves the Kronecker product.

It is in the spirit of bringing the fruits of numerical linear algebra to the realm of
numerical multilinear algebra that we present the current paper. Our goal is to present
a methodology for solving a shifted linear system when the matrix of coefficients is
a Kronecker product. Specifically, the question we address is how to solve a shifted
Kronecker product system of the form

(

A(p) ⊗ · · · ⊗A(1) − λIN

)

x = b b ∈ IRN(1.1)

where A(i) ∈ IRni×ni, i = 1:p are given and N = n1 · · ·np. A reshaped special case

of this problem is the discrete-time Sylvester equation A(1)XA(2)T
− X = B. As

with many matrix equations of this variety, the first step is to convert A(1) and A(2)

to triangular form via the Schur decompoistion. The resulting system can then be
solved via a back-substitution process. Jonsson and Kågström [2] have developed
block recursive methods for these kinds of problems and they are very effective in
high-performance computing environments. The method we present is also recursive
and can be regarded as a generalization of their technique. However, we do not
generate the subproblems by splitting at the block level.

There are other, well known settings where linear equation solving via the Schur,
real Schur, or Hessenberg decompositions is preferred over Gaussian elimination and

∗This work was supported by NSF grant CCR-9901988.
†Mathematics, Cornell University, 227 Malott Hall, Ithaca, NY 14853-7510,

carlam@cam.cornell.edu

‡Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-7510,
cv@cs.cornell.edu

1

2 C. D. MORAVITZ MARTIN and C. F. VAN LOAN

the LU factorization. For example, suppose A ∈ IRN×N, b ∈ IRN , d ∈ IRN and that we
want to explore the behavior of the function

f(λ) = dT (A− λIN)−1b

where λ is a scalar. Note that for each λ we must solve a system of linear equations

(A− λIN)x = b.(1.2)

If one proceeds to use Gaussian elimination, then each f -evaluation requires O(N3)
flops because the underlying LU factorization must be recomputed from scratch for
each λ.

If many f -evaluations are required, then a better approach is to rely on a similarity
transformation such as the Schur or Hessenberg decomposition:

QHAQ = T.(1.3)

Here Q ∈ CN×N is unitary, T ∈ CN×N is upper triangular, quasi-triangular or Hessen-
berg, depending on whether A has complex eigenvalues and depending on whether
the real or complex Schur (or Hessenberg) decomposition is used. Once this O(N3)
“investment” is performed, then

f(λ) = d̃ T (T − λIN)−1b̃ b̃ = QT b, d̃ = QT d

can be evaluated in just O(N2) flops. In practice, one typically invokes the Hessen-
berg decomposition because it is cheaper, or the real Schur decomposition because it
permits the handling of the complex eigenvalue case with real arithmetic.

Applying these ideas to (1.1) we first compute the Schur decompositions

Q(i)HA(i)Q(i) = T (i) i = 1:p,(1.4)

a calculation that requires O(n3
1 + · · ·+ n3

p) flops. If

Q = Q(p) ⊗ · · · ⊗Q(1),

then Q is unitary and

QH
(

A(p) ⊗ · · · ⊗A(1)
)

Q = T (p) ⊗ · · · ⊗ T (1).

Thus, (1.1) transforms to

(

T (p) ⊗ · · · ⊗ T (1) − λIN

)

y = c(1.5)

where y ∈ IRN and c ∈ IRN are defined by

x =
(

Q(p) ⊗ · · · ⊗Q(1)
)

y(1.6)

and

c =
(

Q(p) ⊗ · · · ⊗Q(1)
)H

b.(1.7)

If the Kronecker structure is exploited, then the computations for x and c require
O(N(n1 + · · · + np)) flops. If the complex Schur decomposition is used, then the

SHIFTED KRONECKER PRODUCT SYSTEMS 3

resulting system (1.5) is triangular, and we show that it can also be solved in O(N(n1+
· · ·+ np)) flops. If the real Schur decomposition is used, then the Kronecker product
in (1.5) has a complicated structure. In this case, we invoke the complex Schur
decomposition to deal with the 2-by-2 bumps in each of the T (i). Regardless, the
system (1.5) is an example where introducing complex arithmetic to solve a real
problem is more advantageous. Our main contribution is to show that we can solve
(1.5) “just as fast” where the T (i) are either upper triangular or upper quasi-triangular.
In both cases, complex operations are used to solve the problem.

Thus, with our new method in place, the overall solution process (1.4)-(1.7) re-
quires just O(N(n1 + · · · + np)) flops to execute. To put this in perspective, O(N2)
flops are typically needed for N -by-N triangular system solving and O(N3) flops for
the preliminary factorization. Note that we are assuming that the Schur decompo-
sitions in (1.4) are insignificant. Exceptions occur, for example, when p = 2 and
n1 >> n2.

We stress that it is the presence of the shift λ in (1.5) that creates the problem.
If λ = 0, then we have an easy factorization of the matrix of coefficients. Indeed, if
the T (i) are upper triangular,

(

T (p) ⊗ · · · ⊗ T (1)
)

=

p
∏

i=1

(

Iρi ⊗ T (i) ⊗ Iµi

)

.

where ρi = ni+1 · · ·np and µi = n1 · · ·ni−1 for i = 1:p. A sequence of triangular
system solves can then be used to obtain y:

y ← c
for i = 1:p

y ←
(

Iρi ⊗ T (i) ⊗ Iµi

)−1
y

end

(1.8)

This implementation of back-substitution requires N(n1 + · · ·+ np) flops.

Unfortunately, if λ 6= 0 then we are stranded without a “Kronecker-friendly”
factorization for

(

T (p) ⊗ · · · ⊗ T (1) − λIN

)

. However, we can implement a recursive
back-substitution procedure involving the Schur decomposition so that (1.5) can be
solved as fast as (1.8).

Our presentation is structured as follows. In §2 we review relevant properties of
the Kronecker product. To motivate our general procedure for both the triangular and
quasi-triangular case, we consider the p = 2 case in §3. In section §4 we present the
algorithm for general p using both the complex Schur decomposition and the real Schur
decomposition. Numerical behavior and various performance and implementation
issues are discussed at the end in §5. Finally, the error analysis is presented in the
appendix.

2. Some Properties of the Kronecker Product. We review a few essential
facts about the Kronecker product. Details and proofs can be found in [4].

Matrix computations that involve the Kronecker product require an understand-
ing of the vec and reshape operators. If Z ∈ IRm×n, then the vec operator is defined

4 C. D. MORAVITZ MARTIN and C. F. VAN LOAN

by

vec(Z) =







Z(:, 1)
...

Z(:, n)






∈ IRmn.

In other words, vec(Z) is a vector obtained by stacking the columns of Z.
The reshape operator is a more general way of rearranging the entries in a matrix.

(It is also a built-in Matlab function.) If z ∈ IRmn then Z = reshape(z, m, n) is the
m-by-n matrix defined by

Z(:, j) = z(1 + (j − 1)m:jm) j = 1:n.

For example, if m = 3 and n = 5, then

reshape(z, 3, 5) =





z1 z4 z7 z10 z13

z2 z5 z8 z11 z14

z3 z6 z9 z12 z15



 = Z.

Thus, reshape(z, m, n) makes a matrix out of z by using its components to “fill up”
an m-by-n array in column-major order. We also use reshape to build new matrices
from the components of a given matrix. If Z ∈ IRm1×n1 and m2n2 = m1n1, then
reshape(Z, m2, n2) is the m2-by-n2 matrix reshape(vec(Z), m2, n2).

If F , G, H , and K are matrices and the multiplications FH and GK are defined,
then (F ⊗ G)(H ⊗ K) = FH ⊗ GK. Moreover, (F ⊗ G)−1 = (F−1 ⊗ G−1) and
(F ⊗G)T = FT ⊗GT , assuming in the former case that F and G are nonsingular.

In general, if F ∈ IRm×m and G ∈ IRn×n then F ⊗ G 6= G ⊗ F . However, if we
define the permutation matrix Πn,nm ∈ IRmn×mn by

ΠT
n,nmx =















x(1:n:nm)

x(2:n:nm)
...

x(n− 1:n:nm)















,

then it can be shown that

ΠT
n,nm(F ⊗G)Πn,nm = G⊗ F.

The matrix Πn,nm is called the vec permutation matrix and its action on a vector is
very neatly described in terms of the reshape operation:

y = ΠT
n,mnx ⇔ reshape(y, m, n) = reshape(x, n, m)T(2.1)

y = Πn,mnx ⇔ reshape(y, n, m) = reshape(x, m, n)T(2.2)

Note that y = Π2,52x is the perfect shuffle of the “card deck” x ∈ IR52. We mention
that if x (and y) are complex, then (2.1) and (2.2) apply exactly as they are specified
– the transpose is not replaced by a conjugate transpose.

The vec operator enables us to identify certain matrix-vector products as matrix-
matrix products. In particular, if F ∈ IRm×m, G ∈ IRn×n, and X ∈ IRn×m, then it can
be shown that

Y = GXFT ⇔ vec(Y) = (F ⊗G) vec(X).(2.3)

SHIFTED KRONECKER PRODUCT SYSTEMS 5

For matrix-vector products of the form

y = (Fp ⊗ · · · ⊗ F1)x Fi ∈ IRni×ni(2.4)

it is convenient to make use of the factorization

Fp ⊗ · · · ⊗ F1 = Mp · · ·M1(2.5)

where

Mi = ΠT
ni,N

(

IN/ni
⊗ Fi

)

(2.6)

and N = n1 · · ·np. This result can be found in [4, p.153] where it is exploited
in connection with high-dimensional FFTs. In practice, here is how one typically
computes the vector y in (2.4):

Z ← x
for i = 1:p

Z ← (Fi · reshape(Z, ni, N/ni))
T

end
y ← reshape(Z, N, 1)

(2.7)

The ith pass through the loop requires (2n2
i)(N/ni) = 2Nni flops so the overall

computation involves 2N(n1 + · · ·np) flops.
We mention that a similar process can be used to solve

(Fp ⊗ · · · ⊗ F1) x = d.

From (2.5) and (2.6) it follows that

(Fp ⊗ · · · ⊗ F1)
−1 = F−1

p ⊗ · · · ⊗ F−1
1 = M−1

1 · · ·M−1
p

where

M−1
i =

(

IN/ni
⊗ F−1

i

)

Πni,N

and so we obtain

B ← d
for i = p:− 1:1

B ← F−1
i reshape(B, N/ni, ni)

T

end
x← reshape(B, N, 1)

(2.8)

If the Fi are triangular, then the i-th pass through the loop requires n2
i (N/ni) = Nni

flops.

6 C. D. MORAVITZ MARTIN and C. F. VAN LOAN

3. The p = 2 Case. To motivate the proposed new method for (1.5) for the
triangular and quasi-triangular case, we first consider the special case when p = 2.
That is, for F ∈ IRm×m and G ∈ IRn×n,

(F ⊗G− λI)y = c.(3.1)

Using (2.3), one can rewrite (3.1) as the real discrete-time Sylvester matrix equation

GY FT − λY = C,

where Y = reshape(y, n, m) and C = reshape(c, n, m). As we mentioned earlier,
a block procedure for solving the real discrete-time Sylvester matrix equation is de-
scribed in [2]. In this section, we describe the details of solving (3.1) in a way that
facilitates the presentation of the general, p > 2 algorithm. We begin with a small
particular problem, (F ⊗G− λI3n) y = c, where

F =





f11 f12 f13

0 f22 f23

0 0 f33





and G ∈ IRn×n is upper triangular. The shifted Kronecker system has the form









f11G− λIn f12G f13G

0 f22G− λIn f23G

0 0 f33G− λIn

















y1

y2

y3









=









c1

c2

c3









where yi ∈ IRn and ci ∈ IRn for i = 1:3. Assume that the system is nonsingular. The
first step is to solve the n-by-n triangular system

(f33G− λIn) y3 = c3

for y3. By substituting y3 into the first two equations we obtain

[

f11G− λIn f12G

0 f22G− λIn

][

y1

y2

]

=

[

c̃1

c̃2

]

(3.2)

where c̃i = ci − fi3Gy3, i = 1:2. The vectors y3 and Gy3 require O(n2) flops. This
process is then repeated to render y2, and y1 in turn.

Note from the example that if G is quasi-triangular (or even Hessenberg), then
the systems involving the (fiiG−λIn) still just require O(n2) flops to solve. However,
if F is upper quasi-triangular, then there is a more serious complication. To illustrate
let us examine the system (F ⊗G− λI4n) y = c where

F =









f11 f12 f13 f14

0 f22 f23 f24

0 f32 f33 f34

0 0 0 f44









SHIFTED KRONECKER PRODUCT SYSTEMS 7

and G ∈ IRn×n is upper quasi-triangular. In this case the shifted Kronecker system
has the form













f11G− λIn f12G f13G f14G

0 f22G− λIn f23G f24G

0 f32G f33G− λIn f34G

0 0 0 f44G− λIn

























y1

y2

y3

y4













=













c1

c2

c3

c4













where yi ∈ IRn and ci ∈ IRn for i = 1:4. Assume that the system is nonsingular. The
first step is to solve the n-by-n quasi-triangular system

(f44G− λIn) y4 = c4

for y4. Substituting this into the above system reduces it to








f11G− λIn f12G f13G

0 f22G− λIn f23G

0 f32G f33G− λIn

















y1

y2

y3









=









c̃1

c̃2

c̃3









(3.3)

where c̃i = ci − fi4Gy4. The vectors y4 and Gy4 require O(n2) flops. Next we solve
the block 2-by-2 system





f22G− λIn f23G

f32G f33G− λIn





[

y2

y3

]

=

[

c̃2

c̃3

]

(3.4)

for y2 and y3. We are then left with a single system for y1:

(f11G− λIn)y1 = c̃1 − f12Gy2 − f13Gy3.

From this example the general plan is clear. At each stage we solve either an n-by-n
system for a single yi or a 2n-by-2n block system for a pair of yi’s. The results are
then substituted into the remaining equations.

Now let us consider how to solve a system of the form (3.4). For concreteness,
suppose

G =













× × × × ×
× × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×













.

It is easy to verify that the 2-by-2 block matrix of coefficients in (3.4) has the form
































× × × × × × × × × ×
× × × × × × × × × ×
0 0 × × × 0 0 × × ×
0 0 0 × × 0 0 0 × ×
0 0 0 × × 0 0 0 × ×
× × × × × × × × × ×
× × × × × × × × × ×
0 0 × × × 0 0 × × ×
0 0 0 × × 0 0 0 × ×
0 0 0 × × 0 0 0 × ×

































= S.(3.5)

8 C. D. MORAVITZ MARTIN and C. F. VAN LOAN

Since S = F (2:3, 2:3)⊗ G − λI10, we can reverse the order of the Kronecker factors
via a permutation as discussed in §2:

ΠT
5,10SΠ5,10 = G⊗ F (2:3, 2:3)− λI10 =

































× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
0 0 0 0 × × × × × ×
0 0 0 0 × × × × × ×
0 0 0 0 0 0 × × × ×
0 0 0 0 0 0 × × × ×
0 0 0 0 0 0 × × × ×
0 0 0 0 0 0 × × × ×

































.

Extrapolating from this example it is clear that a block system like (3.4) can be solved
in O(n2) flops by permuting it into a block triangular system with diagonal blocks
that are either 2-by-2 or 4-by-4.

We are now in a position to formulate a complete algorithm for the problem
(F ⊗G− λImn)y = c when F ∈ IRm×m and G ∈ IRn×n are upper quasi-triangular. If

F =











F11 F12 · · · F1r

0 F22 · · · F2r

...
...

. . .
...

0 0 · · · Frr











with 1-by-1 and 2-by-2 diagonal blocks, then (F ⊗G− λImn)y = c has the form













F11 ⊗G− λIℓ F12 ⊗G · · · F1r ⊗G

0 F22 ⊗G− λIℓ · · · F2r ⊗G
...

...
. . .

...

0 0 · · · Frr ⊗G− λIℓ

























y1

y2

...

yr













=













c1

c2

...

cr













,

where ℓ = n if Fii is 1-by-1 and ℓ = 2n if Fii is 2-by-2 for i = 1:r. The overall
back-substitution process then looks like this:

for k = r: − 1:1
if Fkk is 1-by-1

Solve (FkkG− λIn)yk = ck for yk ∈ IRn

z ← Gyk

ci ← ci − Fikz, i = 1:k − 1
else

Solve (Fkk ⊗G− λI2n)yk = ck for yk ∈ IR2n

z ← (I2 ⊗G)yk

ci ← ci − (Fik ⊗ In)z, , i = 1:k − 1

end

end

(3.6)

SHIFTED KRONECKER PRODUCT SYSTEMS 9

Thus, each pass through the loop we solve an n-by-n quasi-triangular system or a
2n-by-2n block triangular system obtained via permutation. The exact flop count
depends upon the number of 2-by-2 blocks along the diagonals of F and G, i.e.,
the number of complex conjugate eigenvalue pairs that these matrices have. But
regardless, the volume of computation is O(mn(m + n)).

4. The General Algorithm. Observe that Algorithm 3.6 could be a solution
framework for the general (T (p) ⊗ · · · ⊗ T (1))y = c problem if we set

F = T (p)

G = T (p−1) ⊗ · · · ⊗ T (1)

m = np

n = n1 · · ·np−1

The “solve” steps in (3.6) become recursive calls. If the T (i) are all upper triangular,
then Fkk is 1-by-1 and Algorithm 3.6 can be easily extended for general p. However, if
the T (i) are quasi-triangular then Fkk is 2-by-2 and the system (Fkk⊗G−λI2n)yk = ck

has the form
(

Fkk ⊗ T (p−1) ⊗ · · · ⊗ T (1) − λIm

)

yk = ck.

If we use the methods of the previous section, we can permute this system to obtain

(

T (p−1) ⊗ · · · ⊗ T (1) ⊗ Fkk − λIm

)

ỹk = c̃k.(4.1)

However, the permute-to-block-triangular-form approach that we illustrated in §3
is much less appealing when we consider the general p case. If G is itself a Kronecker
product, e.g., T (p−1) ⊗ · · · ⊗ T (1), then its structure is adversely scrambled when we
permute S in (3.5).

For this reason, if we are confronted with a system of the form

(α⊗G− λI) y = c(4.2)

where

α =

[

α11 α12

α21 α22

]

has complex eigenvalues, then we compute the complex 2-by-2 Schur decomposition

QHαQ =

[

s11 s12

0 s22

]

.

Equation (4.2) transforms to

([

s11 s12

0 s22

]

⊗G− λI

)

z = d

where z = (QH ⊗ I)y and d = (QH ⊗ I)c. This can be solved recursively when G is a
Kronecker product. The (real) solution to the original system is then prescribed by
y = (Q⊗ I)z.

10 C. D. MORAVITZ MARTIN and C. F. VAN LOAN

Therefore, if the T (i) are upper quasi-triangular, extending Algorithm 3.6 for
general p involves creating an input parameter, α, that can be either a 1-by-1 or
2-by-2 matrix. If α is 2-by-2 we compute its complex Schur decomposition and solve

([

α11 α12

α21 α22

]

⊗ T (p−1) ⊗ · · · ⊗ T (1) − λI

)

y = c

recursively.
Of course, the hassle associated with the 2-by-2 bumps can be avoided altogether if

the complex Schur decompositions Q(i)HAQ(i) = T (i) are computed right at the start.
However, the proposed strategy is preferred because it restricts complex arithmetic
to diagonal block subproblems. In pseudo-Matlab our algorithm, KPShiftSolve, is
given in Figure 4.1.

To assess the volume of the computation, let νp be the number of flops required
by a call to KPShiftSolve when the matrix of coefficients involves a p-fold Kronecker
product. Ignoring low-order terms,

νp =







1.5n2
1 if p = 1

npνp−1 + n1 · · ·np(n1 + · · ·+ np) if p > 1
(4.3)

Of course, the exact flop count depends on the number of complex eigenvalues of
the T (i). We mentioned that an alternative, but more costly, algorithm involves
computing the complex Schur decompositions of the T (i) from the start. If p = 1,
then solving (T1 − λI)y = c in complex arithmetic requires 6.5n2

1 as compared with
(4.3). When p > 1, the cost of the update (2.7) also increases by a factor of 6 using
complex arithmetic. Hence, the exact flop count of KPShiftSolve lies between what
is specified in (4.3) and the bounds given above when complex arithmetic is used for
the entire process.

If n1 = · · · = np ≡ n in (4.3), then it can be shown that

νp =
1 + p + p2

2
np+1 =

1 + p + p2

2
Nn

Things are even more complicated if the ni vary. For example, if the T (i) are triangular
and real, then having n1 ≤ · · · ≤ np can is more advantageous than having n1 ≥ · · · ≥
np to reduce the number of recursive calls. For quasi-triangular T (i), the flop count,
vectorization properties, and recursion overheads depend upon the size ordering and
the number of 2-by-2 bumps in each T (i).

5. Implementation Issues and Performance. KPShiftSolve can be made
more efficient in two ways. First, the T (i) should be sorted so that T (i+1) has fewer
2-by-2 bumps than T (i), i = 1:p − 1 so there are fewer recursive calls. This can be
accomplished via the perfect shuffle explained in §2 and reduces the overall flop count.
Second, instead of computing the real Schur form of T (1), we need only compute the
cheaper Hessenberg decomposition. To appreciate why this is sufficient consider the
p = 2 example at the start of §3. If G is upper Hessenberg then the linear systems
with coefficient matrices fiiG − λI that arise during the back-substitution process
(3.2) are also upper Hessenberg. Hessenberg systems can be solved just as fast as
quasi-triangular systems [1, p.155].

Matlab codes for the algorithms discussed in this paper are available at
http://www.cam.cornell.edu/∼carlam/.

SHIFTED KRONECKER PRODUCT SYSTEMS 11

function y = KPShiftSolve(T, n, c, λ, α)

% T is a length p cell array and n = (n1, . . . , np). Assume that the
% i-th element of T is the upper quasi-triangular matrix Ti.
% Set N = n1 · · ·np. α is a scalar or a 2-by-2 matrix. If λ is a real scalar
% and c ∈ IRN , then y ∈ IRN solves (α ⊗ Tp ⊗ · · · ⊗ T1 − λI)y = c assuming that
% the system is nonsingular. α = 1 is the default value when not specified.

p = length(n); N = prod(n);

if α ∈ IR

Tp = αTp

if p == 1

Solve (T1 − λIn1
)y = c for y.

else

y = zeros(N, 1); mp = N/np; i = np;

while (i ≥ 1)

if i > 1 & Tp(i, i− 1) 6= 0 (Tp has a 2-by-2 bump)

idx = 1 + (i− 2)mp: imp

y(idx) = KPShiftSolve(T, n(1:p− 1), c(idx), λ, Tp(i− 1:i, i− 1:i))

z1 = (Tp−1 ⊗ · · · ⊗ T1) · y(idx(1):(i− 1)mp) (Invoke (2.7))

z2 = (Tp−1 ⊗ · · · ⊗ T1) · y(1 + (i− 1)mp:idx(end)) (Invoke (2.7))

for j = 1:i− 2

jdx = 1 + (j − 1)mp: jmp

c(jdx) = c(jdx) − Tp(j, i− 1)z1 − Tp(j, i)z2

end

i = i− 2
else (Tp does not have a 2-by-2 bump)

idx = 1 + (i− 1)mp: imp

y(idx) = KPShiftSolve(T, n(1:p− 1), c(idx), λ, Tp(i, i))

z = (Tp−1 ⊗ · · · ⊗ T1) y(idx) (Invoke (2.7))

for j = 1:i− 1

jdx = 1 + (j − 1)mp: jmp

c(jdx) = c(jdx) − Tp(j, i)z
end
i = i− 1

end
end

else (α ∈ IR2×2)

Compute Q unitary, S upper triangular so that QHαQ = S

d = (QH ⊗ I)c; Tp+1 = S; np+1 = 2;

z = KPShiftSolve(T, n, d, λ, 1)

y = (Q⊗ I)z; y = real(y);
end

Fig. 4.1. Pseudo-Matlab code for KPShiftSolve

12 C. D. MORAVITZ MARTIN and C. F. VAN LOAN

The reader interested in details, especially as they concern the recursion, should study
the codes directly.

With respect to the roundoff properties of the algorithm, the computed solution
x̂ can be shown to solve

(

A(p) ⊗ · · · ⊗A(1) − λIN + E
)

x̂ = b(5.1)

where for any p-norm

‖ E ‖ ≈ u
(

‖A(p) ‖ · · · ‖A(1) ‖+ |λ|
)

= u
(

‖A(p) ⊗ · · · ⊗A(1) ‖+ |λ|
)

(5.2)

and u is the unit roundoff. See Appendix 1 for details.
We make a three comments related to (5.2). First, the explicit formation of the

coefficient matrix involves rounding errors of the same magnitude as ‖ E ‖. Second,
as with any shifted, nonsymmetric linear system, there is not much we can say about
the forward stability in x̂ because the connection between the condition and the
shift parameter is nontrivial. Finally, if κp(·) denotes the p-norm condition, then
κp(A

(p) ⊗ · · · ⊗ A(1)) = κp(A
(p)) · · ·κp(A

(1)). Thus, modest ill-conditioning among
the A(i) compounds to severe ill-conditioning in the Kronecker product.

6. Conclusion. We have presented an algorithm that solves the shifted system
(

A(p) ⊗ · · · ⊗A(1) − λIN

)

x = b

where A(i) ∈ IRni×ni for i = 1:p and N = n1 · · ·np. Our algorithm involves taking the
real Schur decompositions to convert this system to a quasi-triangular system and uses
a recursive block back-substitution procedure (KPShiftSolve). When a 2-by-2 bump
is encountered in the leading coefficient matrix, the complex Schur decomposition is
computed of the 2-by-2 matrix. This is faster than computing the complex Schur
decompositions from the start. The error associated with our algorithm is no worse
than the method of actually forming the Kronecker Product and using standard back-
substitution.

Appendix A. Error Analysis. In this appendix, we establish (5.1) and (5.2).
Recall the first step in our algorithm is to compute the (real) Schur decompositions
of each A(i). Because of the results in [3], it suffices to show that if ŷ is produced by
KPShiftSolve then

(T (p) ⊗ . . .⊗ T (1) − λI + ∆T)ŷ = c(A.1)

‖∆T ‖ ≤ δT (||T (p)|| . . . ||T (1)||+ |λ|)(A.2)

where δT is a modest multiple of the unit roundoff u and T (i) is either triangular or
quasi-triangular for i = 1:p. To establish these results we first say something about
the case p = 2. As in [3], we adopt the convention that all the δ’s below are O(u) in
magnitude. In addition, the floating point result of a matrix calculation is indicated
by fl(·) and we use “hat” notation to represent computed quantities.

Lemma A.1. Let F ∈ IRm×m be upper triangular, G ∈ IRn×n be quasi-upper

triangular, c ∈ IRmn, and λ ∈ IR. If ŷ is obtained by using KPShiftSolve to solve

(F ⊗G− λI)y = c, then there exists E ∈ IRmn×mn such that

(F ⊗G− λI + E)ŷ = c,(A.3)

‖ E ‖ ≤ δE(‖ F ‖‖G ‖+ |λ|).(A.4)

SHIFTED KRONECKER PRODUCT SYSTEMS 13

Proof. The proof is by induction on the dimension of F . If m = 1 then we solve
(f11G − λIn)y = c. This involves first forming M = f11G − λIn and then solving
My = c using back-substitution. Accounting for the rounding error associated with
forming M , there exists H1 such that

M̂ = fl(M) = f11G− λI + H1 ‖H1 ‖ ≤ δ1(|f11| · ‖G ‖+ |λ|).(A.5)

Next, the computed solution to the triangular system satisfies

(M̂ + H2)ŷ = c(A.6)

‖H2 ‖ ≤ δ2‖ M̂ ‖ ≤ δ3(|f11| · ‖G ‖+ |λ|)(A.7)

where δ3 = δ1 + δ2 (see [1, p.89]). Combining (A.5)-(A.7) and setting E = H1 + H2

completes the proof when m = 1.
Now suppose (A.3), (A.4) hold for all k < m. Partition the system as

[

f11G− λI F12 ⊗G

0 F22 ⊗G− λI

][

y1

y2

]

=

[

c1

c2

]

where F12 = F (1, 2:m), F22 = F (2:m, 2:m) and y1, y2, c1, c2 are appropriate blockings
of y and c, respectively. By induction, ŷ2 solves

(F22 ⊗G− λI + E22)ŷ2 = c2

with

‖ E22 ‖ ≤ δ4(‖ F22 ‖‖G ‖+ |λ|).(A.8)

The next step is to solve for y1 with

(f11G− λI)y1 = fl(c1 − (F12 ⊗G)ŷ2).

The computations associated with the update d1 = c1 − (F12 ⊗G)ŷ2 satisfy

d̂1 = fl(d1) = c1 − (F12 ⊗G + E12)ŷ2 + ∆c,

where

‖ E12 ‖ ≤ δ5‖ F12 ‖‖G ‖(A.9)

‖∆c ‖ ≤ δ6(‖ c1 ‖+ ‖ F12 ‖‖G ‖‖ ŷ2 ‖).(A.10)

Finally, we form M = f11G−λI and solve My1 = d1 using back-substitution. Forming
M gives

M̂ = fl(M) = f11G− λI + ∆1(A.11)

‖∆1 ‖ ≤ δ7(|f11| · ‖G ‖+ |λ|).(A.12)

Then the computed solution to the triangular system M̂y1 = d̂1 satisfies

(M̂ + ∆2)ŷ1= d̂1

14 C. D. MORAVITZ MARTIN and C. F. VAN LOAN

with

‖∆2 ‖ ≤ δ8‖ M̂ ‖ ≤ δ9(|f11 · ‖G ‖+ |λ|).(A.13)

Let E11 = ∆1 + ∆2 and set

E =

[

E11 E12

0 E22

]

.

The proof follows from (A.8), (A.9), (A.12), (A.13), and by setting δE = δ4 + δ5 +
δ7 + δ9.

Next, we address the error associated with computations when a 2-by-2 bump is
encountered. For simplicity, we show this for p = 2.

Lemma A.2. Let α be a scalar or a 2 × 2 matrix with complex eigenvalues, and

let T be an upper quasi-triangular n × n matrix. Let m = n dim(α), c ∈ IRm, and

λ ∈ IR. If ŷ is obtained from using KPShiftSolve to solve (α ⊗ T − λI)y = c, then

there exists E ∈ IRm×m such that

(α⊗ T − λIm + E)ŷ = c,(A.14)

‖ E ‖ ≤ δE(‖ α ‖‖ T ‖+ |λ|).(A.15)

Proof. If α is 1×1, then the proof is completed by using Lemma A.1. If α is 2×2
then KPShiftSolve computes the complex Schur decomposition of α and then solves
a block upper triangular system. Specifically, KPShiftSolve performs the following
four steps:

1. Compute the complex Schur decomposition QHαQ = S.
2. Form d = (QH ⊗ I)c.
3. Solve the system (S ⊗ T − λI)z = d for z using KPShiftSolve.
4. Set y = (Q⊗ I)z.

These steps are analogous to solving a linear system using the complex Schur
decomposition. The Kronecker product structure does not affect the result and can
be shown using the methods found in [3] and Lemma A.1.

Now that we have dealt with the error associated with solving the system when a
2-by-2 bump is encountered, we are ready to establish the error results for a Kronecker
product of quasi-triangular matrices. In the next lemma, we present the results for
p = 2.

Lemma A.3. Let F and G be a quasi-triangular matrices of size m × m and

n × n, respectively. Let λ ∈ IR and b ∈ IRmn. If KPShiftSolve is used to solve

(F ⊗G− λImn)y = c then there exists E ∈ IRmn×mn such that the computed solution

ŷ solves

(F ⊗G− λI + E)ŷ = c,(A.16)

‖ E ‖ ≤ δE(‖ F ‖‖G ‖+ |λ|).(A.17)

SHIFTED KRONECKER PRODUCT SYSTEMS 15

Proof. The proof is similar to the proof of Lemma A.1 and is completed by induc-
tion on the dimension of F . Lemma A.2 is used when a 2-by-2 bump is encountered
in F .

We are now ready to establish the final result for general p. The following lemma
establishes (A.1) and (A.2).

Lemma A.4. Let T (1), . . . , T (p) be upper quasi-triangular ni × ni matrices, i =
1, . . . , p. Let λ ∈ IR and b ∈ IRn1...np . If KPShiftSolve is used to solve (T (p) ⊗ · · · ⊗
T (1) − λI)y = c, then there exists ∆T ∈ IRN×N where N = n1 · · ·np such that the

computed solution ŷ solves

(T (p) ⊗ · · · ⊗ T (1) − λI + ∆T)ŷ = c,

‖∆T ‖ ≤ δT (||T (p)|| · · · ||T (1)||+ |λ|).

Proof. We prove this by induction on p. Lemma A.3 proves the base case when
p = 2. Now assume Lemma A.4 holds for p − 1. To show this is true for p, we use
induction on dim(A(p)). The proof follows by following the methods similar to the
proof of Lemma A.1 when p = 2. The proof now easily follows from Lemma A.3 by
setting G = T (p−1) ⊗ · · · ⊗ T (1).

REFERENCES

[1] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Third Edition, Johns Hopkins
University Press, Baltimore, MD, 1996.

[2] I. Jonsson and B. K̊agström. Recursive blocked algorithm for solving triangular systems. II.
Two-sided and generalized Sylvester and Lyapunov matrix equations. ACM Trans. Math.

Software, 28 (4): 416-435, 2002.
[3] Carla D. Moravitz Martin and Charles F. Van Loan. Solving Real Linear Systems with the

Complex Schur Decomposition, To appear: SIAM J. Matrix Anal. Appl. (2006).
[4] Charles F. Van Loan. Computational Frameworks for the Fast Fourier Transform, SIAM Pub-

lications, Philadelphia, 1992.

